
By Paul H. Arne

New Developments
in an Agile World

Drafting Software
Development Agreements

Published in The SciTech Lawyer, Volume 10, Issue 3, Spring 2014. © 2014 American Bar Association. Reproduced with permission. All rights reserved. This information or any portion thereof may
not be copied or disseminated in any form or by any means or stored in an electronic database or retrieval system without the express written consent of the American Bar Association.

Paul H. Arne is the chair of the
Technology Transactions Group of
Morris, Manning & Martin, L.L.P. The
author wishes to thank Mike Cottmeyer
for his insights into Agile development,
especially for large organizations. Mr.
Cottmeyer is the CEO of LeadingAgile,
LLC, a company devoted to assisting
large organizations transition to
Agile development methodologies,
including training, coaching, and
strategic consulting in portfolio
management, project management, and
transformation. Also, special thanks
to Austin B. Mills for his assistance in
preparing this article.

Software development agreements
pose challenges to attorneys and
clients alike. Having a robust

development process is a key factor in
the likelihood of success of any software
development project. Project failure
rates are high. Both of these factors
place demands on those who provide
or receive development services and
those who memorialize the transac-
tion and allocate risk. Companies are
increasingly using a new development
methodology, broadly known as “Agile.”
This relatively new way of developing
software poses additional challenges to
attorneys.

If you are an attorney who drafts,
negotiates, or reviews software devel-
opment agreements, you need to know
about Agile. If you haven’t already been
brought into a development transaction
involving Agile software development,
you will. The use of Agile software
development principles may change the
way your software development agree-
ments should be drafted.1

Waterfall Approach
Traditional software development is
often described as waterfall develop-
ment. The basic components of waterfall
development include the following
processes, to be completed in order:
conception, analysis (including require-
ments gathering), design, construction,

Through this work we have come
to value:

Individuals and interactions over
processes and tools
Working software over compre-
hensive documentation
Customer collaboration over
contract negotiation
Responding to change over fol-
lowing a plan

Another result of this meeting was a
statement of principles, set forth at the
end of this article.

Note the distinct lack of the following
as objectives of Agile: predictability of
timing, predictability of cost, and clear
advance determination of what func-
tionality is to be developed.

Generally, Agile methodologies
result in the delivery of working soft-
ware at relatively short intervals—as
often as two weeks. These intervals
are frequently called sprints. Teams of
developers must therefore contain all
disciplines necessary to deliver work-
ing code. Agile teams will normally be
staffed with architects/designers, pro-
grammers, and testers.

Industry Trends Point to Agile
Another force that moves software
development towards Agile method-
ologies is the changing method of how
software is being delivered—specifically,
software as a service (SaaS).

Traditionally, software was deliv-
ered and operated on computers owned
or controlled by the licensee, and sig-
nificant software upgrades tended to
be major events. On the licensor side,
software must be tested against multi-
ple hardware configurations. Interfaces
may also need to be tested. Mainte-
nance and support personnel must have
the capability to support multiple ver-
sions of the software simultaneously,
because not all customers will migrate
to the new version at the same time.
On the licensee side, new versions of
software can require extensive testing

testing, implementation, production
use, and maintenance.2 Upon comple-
tion of each step, the process flows to
the next one, hence the term waterfall.
Inherent in this approach is a substantial
attempt to determine as fully as possible
what will be built before construction
commences.

With waterfall development, changes
of plans are generally discouraged and
should be carefully scoped before imple-
mentation. This places a huge emphasis
on getting the design process right.
However, there are at least two inher-
ent problems. First, it is hard for human
beings to describe what they need when
they haven’t seen it before. Second,
there is a lag between the time some-
thing is determined to be needed and
the time it is delivered. Changing tech-
nologies or business circumstances that
arise between the completion of speci-
fications and delivery of the completed
software may result in changed needs.
Agile development seems to prove more
successful.

What Is Agile Software
Development?
The name Agile can be traced back to
one event—in February 2001, 17 soft-
ware developers met at a Utah resort to
discuss lightweight development meth-
ods. However, programming styles
consistent with Agile principles have
been around for much longer. Examples
include software development method-
ologies called Crystal Clear, Extreme
Programming (or XP), Rational Unified
Process, Dynamic Systems Devel-
opment Method (or DSDM), Scrum,
Adaptive Software Development, and
Feature-Driven Development. Many of
these techniques are now treated as sub-
sets of Agile.

Out of that event came the “Mani-
festo for Agile Software Development,”
set forth below.3

We are uncovering better ways of
developing software by doing it
and helping others do it.

Published in The SciTech Lawyer, Volume 10, Issue 3, Spring 2014. © 2014 American Bar Association. Reproduced with permission. All rights reserved. This information or any portion thereof may
not be copied or disseminated in any form or by any means or stored in an electronic database or retrieval system without the express written consent of the American Bar Association.

Published in The SciTech Lawyer, Volume 10, Issue 3, Spring 2014. © 2014 American Bar Association. Reproduced with permission. All rights reserved. This information or any portion thereof may
not be copied or disseminated in any form or by any means or stored in an electronic database or retrieval system without the express written consent of the American Bar Association.

before introduction into a production
environment, as well as potentially user
training. Because of these costs, based
on the author’s experience, major new
versions of software tend to be delivered
no more than about twice a year.

Instead, when software functionality
is delivered as a service over the Inter-
net, these dynamics can change. First,
software has to be tested against only
one hardware environment. Second,
there is no compelling reason not to
introduce new functionality on an incre-
mental basis as it is completed. With
incremental change, training can occur
more as an ongoing process rather than
being driven by major releases. Support
and maintenance personnel frequently
only have to deal with one version of
the software for all customers. As a
result, release cycles for new function-
ality can be greatly shortened, allowing
for new releases as often as a few times
a month (sometimes even daily).This
new and growing model lends itself to
a more iterative software development
process, favoring the adoption of Agile
methodologies.

Software Development
Agreements
Development Agreements
Software development agreements serve
the same functions as other contracts.
Normal contract functions generally
include certainty, roles, risk allocation,
and dispute resolution.

Software development relationships
usually involve, or should involve, sig-
nificant interactions between the parties.
Guidance in the agreement about how
the parties will interact with each other
during the project can be helpful to set
expectations and define responsibilities,
and thereby reduce uncertainty and risk.
The following terms, among others, can
be used in software development agree-
ments to guide the parties, catch and
address problems early, assign responsi-
bilities, and manage risk.

•	 Development of Specifications.
Because software development
agreements are routinely entered
into before the parties know

from the project absent unusual
circumstances.

•	 Changing Plans. The process of
requesting, scoping, and intro-
ducing change into a project is
normally addressed.

Using Agile Development Features to
Manage the Risk
Some features of Agile development are
problematic to attorneys who rightfully
seek certainty and risk allocation. When
faced with the need to prepare a soft-
ware development agreement—a kind of
agreement already known to be fraught
with risk—imagine your client not being
able to tell you what is to be developed,
how much it will cost, or how long it
will take. On top of that, the Agile Mani-
festo favors customer collaboration over
contract negotiation. As an attorney, you
may get business pushback as a matter
of principle.

However, there are some key fea-
tures of Agile that help reduce the risk
of development projects. These features
may be useful to consider when drafting
a corresponding software development
agreement.

Agile Embraces Changes in Scope.
This uncertainty, however, suggests
that an ongoing process will exist for
evaluating and determining the scope.
Therefore, consider identifying what
that process is and build into the agree-
ment the requirement of significant
participation in scope decisions by both
parties.

Also, some kind of scope, anticipated
resources, number of sprints, and rough
time line still should exist at the begin-
ning of a project. Therefore, consider
making sure that at least what is known
about scope, timing, and cost are made a
part of the agreement.

The agreement should also contem-
plate how changes to scope are handled
in terms of development, time, and
money.

It is also important for the attorney
to put Agile development in context.
Admittedly, in Agile projects it may be
challenging to state in a contract specifi-
cally what is being developed, at what
cost, or how long it will take. However,

specifically what is being created,
processes are often built into the
agreement related to determining
requirements, setting time frames,
and providing for the review and
approval of the specifications.

•	 Establishment of Price. At times,
the cost will not be known either,
so there may be a need to provide
for a mechanism to determine
how much the developer will be
paid and when.

•	 Management and Decision Mak-
ing. Contracts for large-scale
development projects often define
the organizational structures for
managing projects as well as iden-
tify who makes what decisions
during the course of the project.

•	 Milestones. Software develop-
ment agreements frequently call
for the development and identifi-
cation of various milestones, and
the responsibilities of the parties if
these development milestones are
missed.

•	 Progress Reporting. Catching
problems early can be very impor-
tant to the ultimate success of a
project. Provisions related to what
is reported and when, as well as
the obligations of the parties based
on the substance of the reports,
are often found in software devel-
opment agreements.

•	 Acceptance. The acceptance pro-
cess normally provides for (i) how
completed work is reviewed and
confirmed to be in order, (ii) what
the responsibilities of the parties
are if the completed work is found
to be inadequate, and (iii) what
the responsibilities of the parties
are if the completed work com-
plies with the requirements of the
contract.

•	 Personnel. Frequently, software
development agreements will
provide for how and under what
circumstances developer person-
nel may be added to or eliminated
from the development team.
For example, it is not unusual to
have provisions that prevent key
personnel from being removed

Principles Behind the
Agile Manifesto
We follow these principles:

•	 Our highest priority is to sat-
isfy the customer through
early and continuous delivery
of valuable software.

•	 Welcome changing require-
ments, even late in
development. Agile pro-
cesses harness change for
the customer’s competitive
advantage.

•	 Deliver working software fre-
quently, from a couple of
weeks to a couple of months,
with a preference to the
shorter timescale.

•	 Business people and develop-
ers must work together daily
throughout the project.

•	 Build projects around moti-
vated individuals. Give them
the environment and support
they need, and trust them to
get the job done.

•	 The most efficient and effec-
tive method of conveying
information to and within a
development team is face-to-
face conversation.

•	 Working software is the pri-
mary measure of progress.

•	 Agile processes promote
sustainable development.
The sponsors, developers,
and users should be able to
maintain a constant pace
indefinitely.

•	 Continuous attention to tech-
nical excellence and good
design enhances agility.

•	 Simplicity—the art of maximiz-
ing the amount of work not
done—is essential.

•	 The best architectures,
requirements, and designs
emerge from self-organizing
teams.

•	 At regular intervals, the team
reflects on how to become
more effective, then tunes
and adjusts its behavior
accordingly.

if more than half the time the reasons
cited for projects being over time, over
budget, or missing functionality relate
to the difficulty of determining require-
ments or changing needs, how much
risk are you reducing by insisting on
certainty of scope at the beginning of
a project? Also, if statistically software
development using Agile methodolo-
gies is more likely to be successful, as
it seems to be, why would an attorney
resist it just because it is less “certain”?

Agile Encourages Close Collabora-
tion Between the Business Unit and the
Software Developer. This means that
there will be one or more business and
developer collaboration processes—
structured, informal, or both—that are
going to be a part of an Agile devel-
opment project. Consider building at
least some of these processes into the
agreement.

Agile Emphasizes the Delivery of
Working Software at Relatively Short
Intervals Throughout the Project. There
are at least two important features of the
regular delivery of working code. First,
as long as a business can keep what has
been built even upon an early termina-
tion, then the business may have less
risk of having to start all over again. Sec-
ond, the failure to deliver working code
regularly can be a key way to determine
whether something is going wrong in
the development process. If the code
doesn’t work, doesn’t have the agreed
features, or is buggy, then maybe rights
should be triggered to get out of the
relationship.

Consider building into the develop-
ment agreement both parties’ testing
and evaluation of software as a part
of each sprint. Also, consider whether
there should be a right to terminate at
the end of a sprint if the code isn’t satis-
factory or for convenience.

One More Complication
Unfortunately, everyone seems to have
their own interpretation of what Agile
development really means. Some devel-
opers are more pure in their approach to
Agile, while others are clearly not. In the
author’s practice, he has yet to see two
Agile development projects that actually

used the same development processes.
Therefore, it is important to recognize
that the Agile methodologies used by
one company will not necessarily match
another. Due diligence into the specifics
of what is done is an important part of
getting the contract right.

Conclusion
Agile development can be uncomfort-
able to attorneys because of a lack of
certainty. However, given success rates
of Agile projects compared with other
methodologies, the use of Agile seems
to be growing. Fortunately, some fea-
tures of traditional development projects
(such as controls related to personnel)
are still available to assist with help-
ing to improve the chances for success.
Coupled with a sensitivity to features of
Agile that are also useful in connection
with writing a development contract,
lawyers are still in a position to pro-
vide value by drafting a document that
reduces risk and provides a guide to the
parties that may increase the chances for
success. u

Endnotes
1. This article does not create an attor-

ney/client relationship with you and does not
provide specific legal advice to you or your
company. Certain legal concepts have not
been fully developed and certain legal issues
have been stated as fact for which arguments
can be made to the contrary, due to space
constraints. It is provided for educational pur-
poses only.

2. See Wikipedia, Waterfall model, http://
en.wikipedia.org/wiki/Waterfall_model (as of
Oct. 12, 2013).

3. Manifesto for Agile Software Develop-
ment, http://agilemanifesto.org/ (last visited
Oct. 12, 2013) (emphasis in original).

Published in The SciTech Lawyer, Volume 10, Issue 3, Spring 2014. © 2014 American Bar Association. Reproduced with permission.
All rights reserved. This information or any portion thereof may not be copied or disseminated in any form or by any means or stored

in an electronic database or retrieval system without the express written consent of the American Bar Association.

