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ABSTRACT: Sharing data in the twenty-first century is fraught with error. Most com-
monly, data is freely accessible, surreptitiously stolen, and easily capitalized in the pur-
suit of monetary maximization. But when data does find itself shrouded behind the veil 
of “personally identifiable information” (PII), it becomes nearly sacrosanct, impenetrable 
without consideration of ambiguous (yet penalty-rich) statutory law—inhibiting utility. 
Either choice, unnecessarily stifling innovation or indiscriminately pilfering privacy, 
leaves much to be desired. 
 This Article proposes a novel, two-step test for creating futureproof, bright-line 
rules around the sharing of legally protected data. The crux of the test centers on identi-
fying a legal comparator between a particular data sanitization standard—differential pri-
vacy: a means of analyzing mechanisms that manipulate, and therefore sanitize, data—
and statutory law. Step one identifies a proxy value for reidentification risk which may 
be easy calculated from an ε-differentially private mechanism: the guess difference. Step 
two finds a corollary in statutory law: the maximum reidentification risk a statute toler-
ates when permitting confidential data sharing. If step one is lower than or equal to step 
two, any output derived using the mechanism may be considered legally shareable; the 
mechanism itself may be deemed (statute, ε)-differentially private.  
 The two-step test provides clarity to data stewards hosting legally or possibly legally 
protected data, greasing the wheels in advancements in science and technology by 
providing an avenue for protected, compliant, and useful data sharing. 
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 One of the most popular data sanitization concepts of the twenty-first cen-
tury is differential privacy. The idea may be stated in one line: purposefully 
failing to see the trees for the forest. Differential privacy allows one to learn the 
statistics of a group without also learning the statistics of the individuals making 
up the group.1 To illustrate why this type of crowd-but-not-individual learning 
is necessary in our data-agnostic2 world, consider the case of Merck’s block-
buster3 drug Vioxx.4 
 A pharmaceutical boon, Vioxx grossed drug maker Merck around eight bil-
lion dollars in the approximately four years it was prescribable, 1999–2004;5 the 
drug was marketed as a safer alternative to ibuprofen and quickly became heav-
ily prescribed.6 All that changed in September 2004 when Merck voluntarily, 

 
 1. Differential privacy operates on the “crowd” level, ensuring that individual data is, in many 
ways, meaningless. In this way, the individuals who make up the crowd are assured that their data, 
their secrets, will be kept confidential. See Cynthia Dwork & Aaron Roth, The Algorithmic 
Foundations of Differential Privacy, 9 FOUNDS. & TRENDS THEORETICAL COMPUT. SCI. 211, 215–
16 (2013).  
 2. Formally defined, data agnosticism means that a device is able to receive, as input, many 
different types of data validly; the device will work regardless of what type of data it is receiving. 
See Tian J. Ma et al., Big Data Actionable Intelligence Architecture, 7 J. BIG DATA, 2020, art. no. 
103, at 1 (discussing a piece of data-agnostic software capable of accepting several types of incom-
ing data). The saturation of computing devices in our day-to-day life is data-agnostic—all types of 
data may be validly captured and used to infer attributes about the subjects providing the data. For 
instance, your smartphone may natively receive cell signal data, allowing you to make phone calls 
and send text messages, something which may be later used by law enforcement to track your loca-
tion. However, this type of data requires a warrant, and police cannot request this information with-
out one. See Carpenter v. United States, 138 S. Ct. 2206 (2018). Likewise, your smart phone is also 
collecting data from a large swath of sensors (e.g., gyroscope, magnetometer, and accelerometer to 
name a few), which enables tracking, behavior detection (e.g., walking, sitting, running), and pos-
sibly psychological-type diagnosis like depression. See Anupam Das et al., The Web’s Sixth Sense: 
A Study of Scripts Accessing Smartphone Sensors, in CCS ’18: PROCEEDINGS OF THE 2018 ACM 
SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY 1515 (2018); Michalis 
Diamantaris et al., The Seven Deadly Sins of the HTML5 WebAPI: A Large-Scale Study on the Risks 
of Mobile Sensor-Based Attacks, ACM TRANSACTIONS ON PRIV. & SEC., Nov. 2020, art. no. 19, at 
19:1; Taylor A. Braund et al., Smartphone Sensor Data for Identifying and Monitoring Symptoms 
of Mood Disorders: A Longitudinal Observational Study, 9 JMIR MENTAL HEALTH, no. 5, 2022, 
art. no. e35549, at 1. 
 3. See James Brumley, Biggest Blockbuster Drugs of All Time, KIPLINGER (Jan. 3, 2018), 
https://www.kiplinger.com/article/investing/t052-c000-s001-biggest-blockbuster-drugs-of-all-time. 
html [https://perma.cc/XQ2W-FG3M] (“A prescription drug that surpasses $1 billion in sales is 
known as a blockbuster. It’s a rare feat, but when a pharmaceutical company finds a true blockbuster 
drug the payoff is enormous.”). 
 4. Richard Knox, Merck Pulls Arthritis Drug Vioxx from Market, NPR: ALL THINGS 
CONSIDERED (Sept. 30, 2004, 12:00 AM), https://www.npr.org/2004/09/30/4054991/merck-pulls-
arthritis-drug-vioxx-from-market [https://perma.cc/NTY3-2J4D].  
 5. See Kurt W. Rotthoff, Product Liability Litigation: An Issue of Merck and Lawsuits Over 
Vioxx, 20 APPLIED FIN. ECON. 1867, 1867–68 (2010) (“When Vioxx was withdrawn, Merck had 
approximately 9 more years of patent life left on a drug selling $2.5 billion a year”). At the time it 
was recalled, the drug had been taken by approximately 20 million people. See Snigdha Prakash & 
Vikki Valentine, Timeline: The Rise and Fall of Vioxx, NPR (Nov. 10, 2007, 2:40 PM), https://www. 
npr.org/2007/11/10/5470430/timeline-the-rise-and-fall-of-vioxx [https://perma.cc/WY7B-DB5P] (high-
lighting events leading up to the recall).  
 6. See Matthew Herper, Merck Withdraws Vioxx, FORBES (Sept. 30, 2004, 8:33 AM), https:// 
www.forbes.com/2004/09/30/cx_mh_0930merck.html?sh=52a1d8c753fb [https://perma.cc/WGQ7-
KMP9]. 
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abruptly pulled Vioxx from the market, resulting in a nearly twenty-seven per-
cent stock drop.7 
 While Vioxx had great success at treating arthritis, it also had great success 
at causing heart attacks.8 This was a surprise to many—but not the Food and 
Drug Administration (FDA).9 Almost three and a half years before Merck im-
posed its to-be-permanent moratorium on Vioxx sales, the FDA possessed data 
which, if analyzed, would have illuminated this danger, possibly preventing fu-
ture harm.10 
 The specter of confidentiality is one of the many reasons why this data 
never saw the light of day. Releasing legally protected or even potentially le-
gally protected data into the wild is a low-benefit, high risk endeavor. The ben-
efits rely on unpredictable, open-source engagement while the risks involve 
highly likely public scrutiny and legal backlash (e.g., the mires of anonymiza-
tion from the 2004s).11 To be sure, without tools like differential privacy, the 
risks may outweigh the benefits, and it may be reasonable to withhold data.  
 Differential privacy solves the confidentiality problem by offering future-
proof guarantees to individuals, and therefore data stewards.12 Differential pri-
vacy can guarantee that releasing your data will not be the cause of any adverse 

 
 7. Walter Hamilton, Merck’s Shares Sink 27% on Vioxx News, L.A. TIMES (Oct. 1, 2004, 4:12 
AM), https://www.latimes.com/archives/la-xpm-2004-oct-01-fi-merck1-story.html [perma.cc/NX5G-
SC8K]. 
 8. Daniel J. DeNoon, When Did Merck Know Vioxx Was Deadly?, MYTWINTIERS, https:// 
www.mytwintiers.com/news-cat/when-did-merck-know-vioxx-was-deadly-3/ [https://perma.cc/G5Y4 
-EMEP] (Nov. 30, 2012, 10:17 PM) (“Vioxx increased the risk of [a cardiovascular thromboembolic 
event] or death by 43%.”).  
 9. According to the then director for the FDA’s center on Drug Evaluation and Research, Dr. 
Steven Galson, “This [was] not a total surprise.” Merck Recalls Vioxx, WA. TIMES, Sept. 30, 2004, 
https://www.washingtontimes.com/news/2004/sep/30/20040930-100336-3743r/ [https://perma.cc/PB 
2B-YLYC]. 
 10. See Christopher J. Morten & Amy Kapczynski, The Big Data Regulator, Rebooted: Why 
and How the FDA Can and Should Disclose Confidential Data on Prescription Drugs and Vaccines, 
109 CALIF. L. REV. 493, 496 (2021) (discussing how evidence of these risks, as identified in the 
FDA data, became available to experts only after legal proceedings were initiated); see also id. at 
496 (citing David J Graham et al., Risk of Acute Myocardial Infarction and Sudden Cardiac Death 
in Patients Treated with Cyclo-Oxygenase 2 Selective and Non-Selective Non-Steroidal Anti-
Inflammatory Drugs: Nested Case-Control Study, 365 LANCET 475, 480 (2005)); Carolyn Abraham, 
Vioxx Took Deadly Toll: Study, GLOBE & MAIL (Jan. 25, 2005), https://www.theglobeandmail.com/ 
life/vioxx-took-deadly-toll-study/article1113848/ [https://perma.cc/5ZYF-3JJY]; Alex Berenson et 
al., Despite Warnings, Drug Giant Took Long Path to Vioxx Recall, N.Y. TIMES (Nov. 14, 2004), 
https://www.nytimes.com/2004/11/14/business/despite-warnings-drug-giant-took-long-path-to-vioxx-
recall.html [https://perma.cc/BJE2-2SW2] (reporting that over 27,000 heart attacks or deaths were 
linked to Vioxx). 
 11. See Paul Ohm, Broken Promises of Privacy: Responding to the Surprising Failure of 
Anonymization, 57 UCLA L. REV. 1701, 1717–22 (2010) (discussing headliner deidentification af-
fairs like the Netflix prize and AOL search queries).  
 12. We use the term data steward to refer to any entity which possesses user data. See 
generally Christine L. Borgman, Open Data, Grey Data, and Stewardship: Universities at the 
Privacy Frontier, 33 BERKELEY TECH. L.J. 365, 368–69 (2018) (discussing data stewardship in the 
context of academic universities). 
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harm13—a guarantee which is not matched by any other sanitization technique.14 
However, while removing the risk in the to-release-or-not-to-release dilemma 
should result in a positive-sum game, differential privacy today is a mixed bag.  
 To be sure, differential privacy can be (mostly) life changing15 or some-
thing of a dubitante.16 We see the census going all-in on differential privacy and 

 
 13. Another framing for this may be that adverse effects are quantified, meaning that a data 
steward can measure the amount of adverse effects to ensure the effects are minimal. See Dwork & 
Roth, supra note 1, at 215.  
 14. The term technique here is used loosely. We are generally referring to ways to think about 
gaining privacy, while maintaining utility in datasets. More specifically, standards like k-anonymity, 
l-diversity, and t-closeness provide a way of reasoning about privacy in a sanitized dataset, and are 
therefore similar to differential privacy, but do not provide the same type of guarantee when it comes 
adverse harm from an individual’s perspective. See infra notes 57–62 and accompanying text.  
 15. In the technical world, differential privacy is something of a panacea, rarely experiencing 
critique outside of the constructive flavor, with blind spots shored up by new techniques or exten-
sions that improve the concept over time. See, e.g., Úlfar Erlingsson et al., RAPPOR: Randomized 
Aggregatable Privacy-Preserving Ordinal Response, in CCS ’14: PROCEEDINGS OF THE 2014 ACM 
SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY 1054, 1054 (2014) (de-
scribing a technique for private data collection among end users); Michael Carl Tschantz et al., SoK: 
Differential Privacy as a Causal Property, in 2020 IEEE SYMPOSIUM ON SECURITY AND PRIVACY 
354, 354 (2020) (concluding that the misgivings about differential privacy are misplaced—issues 
with trusting differential privacy are actually not issues with differential privacy itself, but instead 
come from a misunderstanding regarding “correlation doesn’t imply causation.”); Maritz Hardt & 
Guy N. Rothblum, A Multiplicative Weights Mechanism for Privacy-Preserving Data Analysis, in 
2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE 61, 61 (2010) 
(“Our primary contribution is a new differentially private multiplicative weights mechanism for 
answering a large number of interactive counting (or linear) queries that arrive online and may be 
adaptively chosen.”) (emphasis omitted). But see Josep Domingo-Ferrer et al., The Limits of 
Differential Privacy (and Its Misuse in Data Release and Machine Learning), COMMC’NS. ACM, 
July 2021, at 33, 33 (finding that gaps in differential privacy are not owed to a fundamental lack of 
privacy, but instead to a lack of utility degrading its usefulness, suspect assumptions about the cor-
relations among the data, or high values of epsilon used in practice). 
 16. On the legal side, however, differential privacy seems to have unwittingly subscribed to a 
vendetta, where proponents of the tool argue its application in an expansively impressive array of 
settings, but dissenters appear to be making an attempt to critique the tool out of existence. Compare 
Andrew Chin & Ann Kleinfelter, Differential Privacy as a Response to the Reidentification Threat, 
90 N.C. L. REV. 1417, 1427–28 (2010) (discussing the “solution” of differential privacy as a re-
sponse to the “problem” of reidentification); and Ohm, supra note 11, at 1756 (discussing potential 
limitations of differential privacy, in a relatively positive light); Felix Wu, Defining Privacy and 
Utility in Data Sets, 84 U. COLO. L. REV 1117, 1137–38 (2013) (discussing differential privacy in a 
positive light); and Anna Myers & Grant Nelson, Differential Privacy: Raising the Bar, 1 GEO. L. 
TECH. REV. 135, 135–36 (2016) (“Differential privacy is raising the bar for effective data responsi-
bility by redefining the balance and reducing the trade-off between privacy and data utility.”), with 
Jane Bambauer et al., Fool’s Gold: An Illustrated Critique of Differential Privacy, 16 VAND. J. ENT. 
& TECH. L. 701, 701–07, 753–55 (2014) (attempting to curb enthusiasm for differential privacy by 
highlighting its limitations in regard to practical use cases). And this same dichotomy may be seen 
through the 2020 census lawsuit. See Alabama v. U.S. Dep’t Com., No. 3:21-cv-211-RAH-ECM-
KCN (M.D. Ala., June 29, 2021); Brief for Jane Bambauer as Amici Curiae Supporting Plaintiffs’, 
Alabama v. U.S. Dep’t Comm., 2:21-cv-00211-RAH-ECM-KCN *1, *2 (2021) (arguing for the 
inapplicability of differential privacy); see also Christopher T. Kenny et al., The Use of Differential 
Privacy for Census Data and its Impact on Redistricting: The Case of the 2020 U.S. Census, 7 SCI. 
ADV., no. 41, 2021, art. no. eabk3283, at 1, 1 (“We find that the [disclosure avoidance system] 
systematically undercounts the population in mixed-race and mixed-partisan precincts, yielding un-
predictable racial and partisan biases.”). See generally Steven Ruggles & David Van Riper, The 
Role of Chance in the Census Bureau Database Reconstruction Experiment, 41 POPULATION RSCH. 
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technical scholars having difficulty mentioning privacy without also discussing 
differential privacy17—like a Marbury v. Madison for a mathematical under-
standing of privacy itself.18 On the other hand, we also see attempts at critiquing 
differential privacy into the dustbin.19 Both in academia and in the courts, dif-
ferential privacy has seen its fair share of challenges. Pundits and politicians 
aside, there may be some justification for this polarity. 

 
POL’Y REV. 781 (2022). As Jason J. Czarneki notes, “A dubitante (pronounced d[y]oo-bi-tan-tee) 
opinion indicates that ‘the judge doubted a legal point but was unwilling to state that it was wrong.’. . .  
[T]he judge is unhappy about some aspect of the decision rendered, but cannot quite bring himself 
to record an open dissent.” Jason J. Czarnezki, The Dubitante Opinion, 39 AKRON L. REV. 1, 1–2 
(2006) (citing BLACK’S LAW DICTIONARY 515 (7th ed. 1999) (emphasis omitted); LON FULLER, 
ANATOMY OF THE LAW 93 (1968)). 
 17. The inventors of the technique (Cynthia Dwork, Frank McSherry, Kobbi Nissim, and 
Adam Smith) won the Gödel prize in 2017. 2017 Godel Prize, EUR. ASS’N THEO. COMP. SCI., https:// 
www.eatcs.org/index.php/component/content/article/1-news/2450-2017-godel-prize [https://perma. 
cc/CE5Y-KC4Z]; see Thomas D. Grant & Damon J. Wischik, Show Us the Data: Privacy, 
Explainability, and Why the Law Can’t Have Both, 88 GEO. WASH. L. REV. 1350, 1413 n.228 (2020) 
(“[Differential privacy] has stood the test of time: in the workshop on privacy in machine learning 
held as part of the 2019 NeurIPS conference, 25 out of the 42 accepted papers concerned differential 
privacy.”). And most recently, differential privacy is starting to be folded into programming pack-
ages to allow for its easy application in software. See, e.g., Naoise Holohan et al., Diffprivlib: The 
IBM Differential Privacy Library, ARXIV 1, 1 (July 4, 2019), https://arxiv.org/pdf/1907.02444.pdf. 
OpenDP, spawned from Harvard’s Privacy Tools Project, also has a suite of open-source differential 
privacy tools. About, OPENDP, https://opendp.org/about [https://perma.cc/D3Y4-8VQK]; Benjamin 
I.P. Rubinstein & Francesco Aldà, Diffpriv: An R Package for Easy Differential Privacy, 18 J. 
MACHINE LEARNING RSCH., 2017, at 1, 1, https://www.bipr.net/diffpriv/articles/diffpriv.pdf [https: 
//perma.cc/FV3L-BZWD].  
 18. Differential privacy, in a way, defines the concept of privacy, similar to how Marbury v. 
Madison, in a way, defines the concept of judicial review. See Marbury v. Madison, 5 U.S. 137, 
138, 177–80 (1803) (establishing the principle of judicial review). Indeed, it is often difficult, from 
a technical perspective, to discuss the concept of privacy without bringing up differential privacy. 
See, e.g., Fang Liu, A Statistical Overview on Data Privacy, 34 NOTRE DAME J.L. ETHICS & PUB. 
POL’Y 477, 479–80 (2020) (introducing privacy leakage by discussing differential privacy’s 
bounded loss). For a discussion of what bounds mean, see infra Section II.D. 
 19. See Alabama, 3:21-cv-211-RAH-ECM-KCN at *4–5 (“Citing the need to counter ad-
vancements in computational power and the threat of sophisticated re-identification and reconstruc-
tion attacks, the Bureau announced in September 2017 that it would employ a new and more 
proactive method of disclosure avoidance for the 2020 Census—‘differential privacy.’ Differential 
privacy, the Bureau concluded, is the most efficient method by which it can accomplish both of its 
goals: adequately protecting respondent information while also preserving the utility of census 
data.”) (internal citations omitted).  
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 For one, differential privacy is not a well-understood concept.20 Math is 
hard.21 Additionally, applying differential privacy in a practical, legal setting is 
in many ways terra incognita.22 This Article attempts to solve both problems.  
 The Article begins by teaching differential privacy using a building blocks 
approach, starting from the most basic23 and building to a full mathematical def-

 
 20. This Article adds to, and hopes to build upon, work which similarly attempts to teach dif-
ferential privacy to a nontechnical audience. See Kobbi Nissim et al., Bridging the Gap Between 
Computer Science and Legal Approaches to Privacy, 31 HARV. J.L. & TECH. 687, 689–93 (2017) 
(introducing differential privacy and applying it to FERPA as a game-based exercise involving, 
primarily, a mathematical definition of what FERPA requires to release information); Alexandra 
Wood et al., Differential Privacy: A Primer for a Non-Technical Audience, 21 VAND. J. ENT. & 
TECH. L. 209, 223 (2018) (providing an overview of differential privacy); see also Aloni Cohen & 
Kobbi Nissim, Towards Formalizing the GDPR’s Notion of Singling Out, 117 PROCS. NAT’L ACAD. 
SCI. 8344, 8346 (2020) (discussing singling out in technical terms as it may be understood by the 
GDPR, with a related discussion of differential privacy). Although this set of work takes great ef-
forts to distill differential privacy in basic, understandable terms, there is likely room for improve-
ment in translation without over-precision—that is, starting lower, with basic building blocks, and 
being more accommodating with the law’s natural ambiguity (i.e., maintaining “it depends” while 
nonetheless providing useful solutions). Most importantly, this Article attempts to provide some-
thing that every One L learns the value of around exam time; understanding a concept in theory is 
great, but having an attack plan for what to do with a fact pattern is golden. See SCOTT TUROW, ONE 
L: THE TURBULENT TRUE STORY OF A FIRST YEAR AT HARVARD LAW SCHOOL 1 (2010); RICHARD 
MICHAEL FISCHL & JEREMY PAUL, GETTING TO MAYBE: HOW TO EXCEL ON LAW SCHOOL EXAMS 
1 (1999). In this light, this Article has two primary goals: (1) introduce differential privacy in an 
accessible way; and (2) use that understanding to form the basis of an easy-to-apply, two-step test 
for attacking legal problems. 
 21. Similar to how odd the following statement is at first glance—in room of 23 people there 
is a 50% chance that two of them have the same birthday—differential privacy only offers an un-
derstanding of its protections through a mathematical conversation. See Understanding the Birthday 
Paradox, BETTER EXPLAINED, https://betterexplained.com/articles/understanding-the-birthday-
paradox/ [https://perma.cc/7UK7-GL77]; Russell Samora, The Birthday Paradox, PUDDING, https:// 
scout.wisc.edu/archives/index.php?P=GoTo&ID=49730&MF=4 (last visited Nov. 7, 2022); see 
also Jackson v. Pollion, 733 F.3d 786, 790 (7th Cir. Ill. 2013) (“To determine the effect on the 
plaintiff’s health of a temporary interruption in his medication, the lawyers in the first instance, and 
if they did their job the judges in the second instance, would have had to make some investment in 
learning about the condition. . . . The legal profession must get over its fear and loathing of sci-
ence. . . . [T]his plainly meritless suit was filed on September 2, 2009—more than four years ago. 
The intervening years have been consumed largely by procedural wrangling and protracted, tedious 
depositions. A stronger judicial hand on the tiller could have saved a good deal of time, effort, and 
paper.”). And more directly related to differential privacy, the controversial Fool’s Gold Article had 
a particularly galvanizing effect on some. See Frank McSherry, Differential Privacy for Dummies, 
GITHUB (Jan. 4, 2017), https://github.com/frankmcsherry/blog/blob/master/posts/2016-02-03.md 
[https://perma.cc/EYT4-N2JR] (“[The Fool’s Gold] article starts ‘Legal scholars champion differ-
ential privacy as a practical solution to the competing interests in research and confidentiality, and 
policymakers are poised to adopt it as the gold standard for data privacy. It would be a disastrous 
mistake.’ And concludes ‘[d]ifferential privacy faces a hard choice. It must either recede into the 
ash heap of theory, or surrender its claim to uniqueness and supremacy.’ I will present a third option: 
The authors could take a fucking stats class and stop intentionally misleading their readers.” (citing 
Bambauer et al., supra note 16, at 701, 753–54)). 
 22. True enough, there have been several attempts at applying differential privacy in a legal 
setting. See supra note 20 and accompanying text. While attractive in theory, however, these ap-
proaches may be difficult to directly apply in a practical, legal setting.  
 23. See infra Part II (teaching differential privacy using a ground-up approach). 



 ε-Differential Privacy, and a Two Step 
 

 
SPRING 2023 269 

inition.24 The Article then proposes a novel means of understanding differential 
privacy, which intends to be readily applicable in a statutory framework.25 By 
default, differential privacy does not directly translate to statutes regulating data. 
If data protection laws made statements like “it is permissible to share data if 
the mechanism of release applies differential privacy with an epsilon value of 
less than or equal to .05,”26 then this Article would be superfluous. For good 
reason,27 this will likely never happen. Instead, most statutes create ambiguous 
mandates like “remove any information which could lead to identification.”28 
This, however, leaves a data steward in a difficult position: How much sanitiza-
tion does a dataset29 need to undergo before there is no data remaining that could 
“lead to identification?”30 Likewise, this leaves differential privacy in a difficult 
position: When does a differentially private mechanism permit legally shareable 
data and when does it not?  
 This translation problem stems equally from issues rooted in both law and 
technology. To solve it requires finding a common element among data protec-
tive statutes that provides a metric against which differential privacy can be 
measured. Stated otherwise, is there a single, mathematical value that (step one) 
may be derived from a differentially private mechanism and (step two) is trans-
latable to what statutes require for the sharing of confidential data? Yes.  
 For the legal piece, all data protective statutes, we argue, regulate “reidenti-
fication risk.”31 Statutes go about this by using a variety of unique textual 
phrases (e.g., “personally identifiable information” (PII) or “personal data”) but 
what all of these phrases have in common is an intent to reduce the potential for 

 
 24. See infra Part III (unveiling the full mathematical definition of differential privacy and 
introducing step one of our two-part test).  
 25. See infra Section III.C (identifying a proxy value which summarizes the reidentification 
risk a differentially private mechanism encumbers—the guess difference). 
 26. At least one state statute in the United States has been built with differential privacy in 
mind, but without mentioning specific requirements. See, e.g., WASH. REV. CODE § 69.51A.230(8)(c) 
(2022) (requiring a medical cannabis database to “incorporate current best differential privacy prac-
tices, allowing for maximum accuracy of database queries while minimizing the chances of identi-
fying the personally identifiable information included therein”). 
 27. Determining the appropriate balancing of interests in the making of law does not go hand 
in hand with definitive, one-size-fits-all rules. See Jarrod Shobe, Intertemporal Statutory 
Interpretation and the Evolution of Legislative Drafting, 114 COLUM. L. REV. 807, 866–67 (2014) 
(discussing how statutory ambiguity is, today, most often intentional, and plays a role in the rule-
making process); see also infra note 208 and accompanying text.  
 28. See infra Section IV.A.1. 
 29. A dataset is simply a collection of data, like a series of rows in a spreadsheet. See infra 
note 59 and accompanying text.  
 30. Unfortunately, the easiest answer here is simply not asking the question and refusing to 
share data entirely. See David Deming, Balancing Privacy with Data Sharing for the Public Good, 
N.Y. TIMES, (Feb. 19, 2021), https://www.nytimes.com/2021/02/19/business/privacy-open-data-
public.html (“Governments and technology companies are increasingly collecting vast amounts of 
personal data, prompting new laws, myriad investigations and calls for stricter regulation to protect 
individual privacy. Yet despite these issues, economics tells us that society needs more data sharing 
rather than less, because the benefits of publicly available data often outweigh the costs.”). 
 31. See infra Part IV (assessing differential privacy from a practical legal perspective and in-
troducing step two: the maximum reidentification risk a statute permits).  
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harm that an individual described in a dataset faces when their data is shared.32 
The harm is that someone can look at a statutorily compliant dataset and say 
“this record is your record.” Some statutes may have a very low threshold for 
risk (e.g., Health Insurance Portability and Accountability Act (HIPAA)33) 
while others may have a high tolerance (e.g., Video Privacy Protection Act 
(VPPA)34); ultimately, however, all statutes share a common goal of reducing 
this risk—at varying thresholds.  
 For the technical piece, the Article looks at identifying a value native to 
differential privacy which may be called the reidentification risk of the mecha-
nism. We call this value the guess difference35: the risk of being reidentified in 
data that comes from an ε-differentially private mechanism. This proxy value 
for reidentification risk is easy to understand, adds context to an otherwise am-
biguous number, and allows differential privacy to be directly compared to what 
statutes mandate in terms of data confidentiality.36  
 Working together, the two-step test provides much needed confidence to 
data stewards hosting legally protected data. The test permits easy line drawing 
around how little or how much sanitization is required before sharing data 
within a regulatory ecosystem—greasing the wheels on private, useful data shar-
ing.37 Before introducing the primitives on which differential privacy operates, 
the Article first elaborates on how modern-day privacy leads to, and necessi-
tates, differential privacy.38 

 
 32. See infra Section IV.A.  
 33. Health Insurance Portability and Accountability Act (HIPAA) of 1996, 42 U.S.C. § 1320 
(2017); 45 C.F.R. § 164.514 (2021) (requiring, in a safe harbor provision, the stripping of numerous 
identifiers before the legal release of data). 
 34. Video Privacy Protection Act of 1988, 18 U.S.C. § 2710 (2018). VPPA has been deemed 
by the courts to not prevent data release even if some amount of detective work could reidentify an 
individual. See Eichenberger v. ESPN, Inc., 876 F.3d 979, 985 (9th Cir. 2017) (“[I]t was clear that, 
if the disclosure were that ‘a local high school teacher’ had rented a particular movie, the manager 
would not have violated the statute. That was so even if one recipient of the information happened 
to be a resourceful private investigator who could, with great effort, figure out which of the hundreds 
of teachers had rented the video.”). 
 35. For reasons we further elaborate below, we do not wish to call this value “reidentification 
risk” directly. See infra Section III.B. First, differential privacy does not natively provide a “reidenti-
fication risk” value; we are attempting to find a proxy value in differential privacy which represents 
reidentification risk. Second, there may be many ways to express the reidentification risk of a dif-
ferentially private mechanism. The “guess difference” is merely one of the ways we felt did a par-
ticularly good job at being both insightful and simple. We urge further technical work to build upon 
our Article by analyzing the “guess difference” and possibly coming up with a more robust way of 
summarizing the reidentification risk a differentially private mechanism provides.  
 36. See infra Section III.B.2 (discussing the options for guess difference and how some of 
these options lack context that allows reidentification risk to be understood), Section IV.B (provid-
ing an example application of our two-step test). 
 37. See infra Section IV.C (highlighting the benefits this type of test offers).  
 38. See infra Part I (explaining why differential privacy is a necessary tool when sharing pri-
vate data).  
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I. CONSTITUTIONAL HERITAGE 
 Data is inescapable,39 revolutionary,40 and commoditized.41 Everything you 
do online42 and offline43 is captured. True enough, this has negative side ef-

 
 39. See Eben Moglen, Law in the Internet Society, COLUM. L. (Nov. 03, 2020), https://moglen. 
law.columbia.edu/audio/LIS-2020-11-03 [https://perma.cc/5P22-4JFE] (“[A]s a result of changes 
brought about by the cold war . . . in the 1970s, the American government and the research institu-
tions of American society began to evolve the nervous system of a species-wide interconnection for 
the human race that at the time was thought of only as a method for securing robust political and 
military command and control under the conditions of possible nuclear war. . . . On top of this 
physiology is the economy of everything that came to be digital, that is, that came to have zero 
marginal cost of copying and transmission, which turned out to be pretty much all the cultural pos-
session of the human race, its science, its art, its music, its exchange information, its authenticated 
records, its history, its journalism, its spying propaganda . . . . This structure of a system of inter-
connected neural operations that spans the globe and can reach anything has no defined social pur-
pose. It can be used to allow every brain on earth to learn anything . . . it wants . . . . regardless of 
the ability to pay or govern attitude. It can also be used to perfect surveillance based despotism . . . . 
Above the layer of the physiology of the switches, the network can be thought of as a hierarchy of 
services. You get from somewhere the services that through the handset or laptop or other form of 
switch closest to your eyeball and your eardrum supports your life. Email and other forms of mes-
saging between individuals, calendaring, and the other tools of collaboration which are ethnometh-
odologies now, ways of living just as important as how you walk down the street without bumping 
into people or how you use a knife and fork so as to assume the role in one or another society of 
civilized person. . . . At the center of this network now barely half a decade old [is] this entity we 
created that knows about human beings . . . that eats behavior in order to increase its grasp, and 
secrets hormones that create more clicking, swiping, tapping, buzzing, beeping, walking, running 
and etcetera—this parasite with the mind of God.”) (audio recording of class).  
 40. See Peter F. Drucker, Beyond the Information Revolution, ATLANTIC (Oct. 1999), https:// 
www.theatlantic.com/magazine/archive/1999/10/beyond-the-information-revolution/304658/ [https:// 
perma.cc/T3YQ-Y72J]; Yaameen Choudhury, Data Science: 7 Reasons Why It Is the Most 
Revolutionary Sector of the Century, TECHIE CUB (Sept. 7, 2021), https://techiecub.com/data-
science-7-reasons-why-it-is-the-most-revolutionary-sector-of-the-century/ [https://perma.cc/Z464-
BW83]; Steve MacFeely, The Data Revolution is Only Beginning, UNITED NATIONS: UNITE (Aug. 
13, 2021), https://unite.un.org/blog/data-revolution-only-beginning [https://perma.cc/J35Y-7PHE]; 
Andrew Brust, Why Is Big Data Revolutionary, ZDNET (Apr. 10, 2012), https://www.zdnet.com/ 
article/why-is-big-data-revolutionary/ [https://perma.cc/DS8S-7EVV].  
 41. In 2017, the Economist stated that “the world’s most valuable resource is no longer oil, 
but data.” The World’s Most Valuable Resource Is No Longer Oil, but Data, ECONOMIST (May 6, 
2017), http://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-
antitrust-rules-worlds-most-valuable-resource [https://perma.cc/2K7Z-3LH3]; see also Dennis D. 
Hirsch, The Glass House Effect; Big Data, the New Oil, and the Power of Analogy, 66 ME. L. REV. 
373, 373–75 (2014) (“Data is an essential resource that powers the information economy much like 
oil has fueled the industrial economy. Big Data promises a plethora of new uses—the identification 
and prevention of pandemics, the emergence of new businesses and business sectors, the improve-
ment of health care quality and efficiency, and enhanced protection of the environment, to name but 
a few—just as oil has generated useful plastics, petro-chemicals, lubricants, and gasoline. Big Data 
‘is becoming a significant corporate asset, a vital economic input, and the foundation of new busi-
ness models. It is the oil of the information economy.’ This Article looks at the analogy in a different 
way, one not yet developed in the scholarly literature. It examines the underside of the ‘Big Data is 
the new oil’ comparison. Oil certainly has many productive uses, but it also leads to oil pollution. 
Big Data is similar. It produces tremendous benefits, but simultaneously generates significant pri-
vacy injuries.” (quoting VIKTOR MAYER-SCHÖNBERGER & KENNETH CUKIER, BIG DATA: A 
REVOLUTION THAT WILL TRANSFORM HOW WE LIVE, WORK AND THINK 16 (2013)).  
 42. See Moglen, supra note 39; see also Nathan Reitinger & Michelle L. Mazurek, ML-CB: 
Machine Learning Canvas Block, 2021 PROC. ON PRIV. ENHANCING TECHS., no. 3, 2021, at 453, 
459 (finding that nearly a quarter of the top 100 websites on Alexa Top Rank engaged in canvas 
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fects—for example, Panopticon-styled chilling effects, overbroad NSA drag-
nets,44 and the transactional cost of reductionism in the pursuit of category-
themed, ad-based45 monetization. But at the same time, big data46 also has pos-
itive side effects—for example, democratized education via massive open 
online courses,47 the proliferation of e-commerce, and worldwide, instantaneous 
communication networks. To be sure, no effect (positive or negative) is without 
a privacy loss.  

A. Privacy Loss: Legal Protections  
 Privacy loss is a difficult-to-describe harm, but one which, when looking 
for it, may be easily found in marking the boundary lines of governmental in-
trusion. Marriages, procreation, and parenthood have all been subject to fierce 
protection (or at the very least debate) by the Supreme Court,48 which has ex-

 
fingerprinting, a technique used to surreptitiously track website visitors), https://petsymposium. 
org/popets/2021/popets-2021-0056.pdf [https://perma.cc/7VUT-HM2M]; Chris Jay Hoofnagle et 
al., Behavioral Advertising: The Offer You Cannot Refuse, 6 HARV. L. & POL’Y REV. 273, 273–79 
(2012). 
 43. See Charles Duhigg, How Companies Learn Your Secrets, N.Y. TIMES (Feb. 16, 2012), 
https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html [https://perma.cc/8ZWG-VKCT] 
(tracking pregnant women based on products purchased rather than online activity); Miranda Wei 
et al., What Twitter Knows: Characterizing Ad Targeting Practices, User Perceptions, and Ad 
Explanations Through Users’ Own Twitter Data, in PROCEEDINGS OF THE 29TH USENIX SECURITY 
SYMPOSIUM 145, 153 tbl.1 (Aug. 2020), https://www.usenix.org/system/files/sec20-wei.pdf 
(reporting, in Table 1, that some sources of advertising come not from internet-based behaviors like 
web-browsing history, but from real-world attributes like household income or location).  
 44. See Megan Pugh, Note, Privacy? What Privacy?: Reforming the State Secrets Privilege to 
Protect Individual Privacy Rights From Expansive Government Surveillance, 9 BELMONT L. REV. 
265, 272–73 (2021) (“PRISM is an NSA internet surveillance tool created to collect the private 
internet data of foreign nationals. However, in doing so, it also sweeps up the data of United States 
citizens, including emails, files and photos, through accessing user accounts on Gmail, Facebook, 
Apple, Microsoft and other technology companies.”); Mark M. Jaycox, No Oversight, No Limits, 
No Worries: A Primer on Presidential Spying and Executive Order 12,333, 12 HARV. NAT’L SEC. 
J. 58, 61 (2021). 
 45. See Ben Weinshel et al., Oh, the Places You’ve Been! User Reactions to Longitudinal 
Transparency About Third-Party Web Tracking and Inferencing, in CCS ’19: PROCEEDINGS OF THE 
2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY 149 (Nov. 
2019) (illuminating online tracking mechanisms with a transparency-inspired, tracker-themed 
browser extension), https://dl.acm.org/doi/pdf/10.1145/3319535.3363200; Wei et al., supra note 43 
(exploring the ways Twitter views users from a sales perspective—i.e., of the then 30 ways to assess 
users, advertisers may target users by household income, keywords like “#AfricanAmerican” or 
“unemployment,” or any type of list (with any type of name), such as “Christian Audience to 
Exclude” or “LGBT Suppression List”).  
 46. This quotation is from 2017: “The world produces 2.5 quintillion bytes a day, and 90% of 
all data has been produced in just the last two years.” Vasudha Thirani & Arvind Gupta, The Value 
of Data, ECON. F. (Apr. 22, 2017), https://www.weforum.org/agenda/2017/09/the-value-of-data/ 
[https://perma.cc/UKF2-HDAM]. It is predicted that by 2025 “the amount of data generated each 
day is expected to reach 463 exabytes globally.” How Much Data Is Created Every Day?, SEED 
SCIENTIFIC (Oct. 28, 2021), https://seedscientific.com/how-much-data-is-created-every-day/ [https: 
//perma.cc/6YK4-5GFB].  
 47. See, e.g., Meltem Huri Baturay, An Overview of the World of MOOCs, 174 PROCEDIA-
SOC. & BEHAV. SCIS. 427, 427 (2015).  
 48. See Griswold v. Connecticut, 381 U.S. 479, 480 (1965) (striking down a Connecticut stat-
ute which prohibited the use of contraception); Eisenstadt v. Baird, 405 U.S. 438, 443 (1971) (“In-
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plicitly noted the right to privacy as one of the most valued rights for all citizens. 
For example, the Court stated in Lawrence v. Texas: “[There is] no legitimate 
state interest which can justify its intrusion into the individual’s personal and 
private life.”49 And the Court observed in Stanley v. Georgia:  

If the First Amendment means anything, it means that a State has no business 
telling a man, sitting alone in his own house, what books he may read or what 
films he may watch. Our whole constitutional heritage rebels at the thought of 
giving government the power to control men’s minds.50  

 Though not explicitly tied to the polarizing invasions highlighted in Law-
rence v. Texas and Stanley v. Georgia, data itself makes these types of invasions 

 
stead, the court concluded that the statutory goal was to limit contraception in and of itself—a 
purpose that the court held conflicted ‘with fundamental human rights’ under Griswold v. Connect-
icut, 381 U.S. 479 (1965), where this Court struck down Connecticut’s prohibition against the use 
of contraceptives as an unconstitutional infringement of the right of marital privacy.”); Roe v. Wade, 
410 U.S. 113 (1973) (protecting a women’s right to an abortion), overruled by Dobbs v. Jackson 
Women’s Health Org., 2022 U.S. LEXIS 3057 (June 24, 2022); Barton Gellman & Sam Adler-Bell, 
The Disparate Impact of Surveillance, CENTURY FOUND. (Dec. 21, 2017), https://tcf.org/content/ 
report/disparate-impact-surveillance/?agreed=1 [https://perma.cc/QQ5C-GD4V] (“The concept of 
privacy was conceived in counterpoint to the government’s growing ambition to peer inside long-
closed compartments of our personal lives. The struggle took place most often in court. The leading 
cases mark milestones in that history, and show the disproportionate place of minority surveillance 
in the evolution of law.”).  
 49. Lawrence v. Texas, 539 U.S. 558, 578 (2003) (emphasis added); see also DALE 
CARPENTER, FLAGRANT CONDUCT: THE STORY OF LAWRENCE V. TEXAS 3–18 (2013). Perhaps shock-
ing today, these types of laws are anything but uncommon to history:  

Through the nineteenth century and well into the twentieth, every state in the United States had laws 
prohibiting anal sex, often called in state statutes “crimes against nature,” “sodomy,” or “buggery.” 
During the same period, states also began specifically prohibiting oral sex. Prior to the late 1960s, 
such laws applied regardless of the sex of the participants in the act and regardless of whether the 
couple was married. A husband and wife who engaged in oral sex were potentially as guilty as two 
men who had anal sex. This reflected the moral view that all sex outside of marriage, and all 
nonprocreative sex within marriage, were improper expressions of human sexuality.  

Id. at 4–5. 
 50. See Stanley v. Georgia, 394 U.S. 557, 565 (1969). 
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possible.51 Data permits oppression52 just as easily as it permits freedom. If not 
properly harnessed “data availability” can become “the database of ruin,” trans-
forming worldwide communication networks into worldwide surveillance net-
works.53 The bright side is that data sanitization has grown in leaps and bounds 
since the early days of reidentification awareness.54  

 
 51. Basic properties of data, like persistence, make it amenable to overreaching. For example, 
in Carpenter, a defendant was tied to the scene of a crime by using fine-grained motion data—data 
which is necessarily, natively produced when using a cellular phone. Carpenter v. United States, 
138 S. Ct. 2206, 2212–13 (2018) (“Altogether the Government obtained 12,898 location points cat-
aloging Carpenter’s movements—an average of 101 data points per day.”); see Rashida Richardson 
et al., Dirty Data, Bad Predictions: How Civil Rights Violations Impact Police Data, Predictive 
Policing Systems, and Justice, 94 N.Y.U. L. REV. 15, 19–20 (2019) (assessing “bias in, bias out” in 
the data used by predictive policing tools); Cameron Martin, Facial Recognition in Law 
Enforcement, 19 SEATTLE J. FOR SOC. JUST. 309, 309 (2020) (“[In] October 2018, Thomas saw a 
neighbor preparing to cut a tree from Thomas’s land. The two of them got into a heated argument 
. . . . Someone called the police, and a patrolman of the Carrolton Township Police Department 
(CTPD), Jack Vincennes, responded to the call. Patrolman Vincennes broke up the fight, but the 
facial-recognition feature of his CopperFR body camera attached to the front of his uniform flagged 
Thomas. This camera automatically took a picture of Thomas and sent it back to the precinct. The 
system identified Thomas as another person, Rollo Smith, who was the subject of an outstanding 
arrest warrant for robbery and murder in Los Angeles, California . . . . Vincennes arrested Thomas, 
who was held for three days while the Carrolton and Los Angeles Police Departments (LAPD) con-
ducted further investigations. On the fourth day, a comparison of his fingerprints and physical de-
scription with the LAPD’s records definitively showed that Thomas was not Smith, who, aside from 
having different fingerprints, also had several distinctive scars and tattoos. Thomas was released.”); 
see also Riley v. California, 573 U.S. 373, 393–94 (2014). 
 52. See Solon Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104 CALIF. L. REV. 
671, 673 (2016) (“Where data is used predictively to assist decision making, it can affect the fortunes 
of whole classes of people in consistently unfavorable ways. Sorting and selecting for the best or 
most profitable candidates means generating a model with winners and losers. If data miners are not 
careful, the process can result in disproportionately adverse outcomes concentrated within histori-
cally disadvantaged groups in ways that look a lot like discrimination.”). 
 53. See Ohm, supra note 11, at 1746. Data is simply a tool wielded to enforce certain goals, 
appropriate or inappropriate. For example, the Doomsday Book was simply a physical database of 
tax information, considered an oppressive tool of the time given the way it was used to control 
ownership rights. John Henry Clippinger, Digital Innovation in Governance: New Rules for Sharing 
and Protecting Private Information, in RULES FOR GROWTH: PROMOTING INNOVATION AND 
GROWTH THROUGH LEGAL REFORM 381, 387 (2011) (“The first inkling of Western privacy aware-
ness manifested itself nearly one thousand years ago with the issuance of the Doomsday Book (so 
named after the Anglo-Saxon term ‘doom,’ for reckoning, accounting, judgment) by the Norman 
king, William the Conqueror, in 1086. For the first time in the West, a ruler had a written record in 
Latin of the major property holdings of his subjects. For non-Normans, it was a greatly feared and 
resented registry, because it gave the Norman king unprecedented powers to tax properties and as-
semble armies.”); see also Alistair, Big Data Is Our Generation’s Civil Rights Issue, and We Don’t 
Know It, SOLVE FOR INTERESTING (July 31, 2012, 12:40 PM), http://solveforinteresting.com/big-
data-is-our-generations-civil-rights-issue-and-we-dont-know-it/ [https://perma.cc/DC32-G93B] (“OK 
cupid’s 2010 blog post ‘The Real Stuff White People Like’ showed just how easily we can use 
information to guess at race. . . . They simply looked at the words one group used which others 
didn’t often use. The result was a list of ‘trigger’ words for a particular race or gender. Now run this 
backwards. If I know you like these things, or see you mention them in blog posts, on Facebook, or 
in tweets, then there’s a good chance I know your gender and your race, and maybe even your 
religion and your sexual orientation. And that I can personalize my marketing efforts towards you.”).  
 54. This would be the idea that simple methods of deidentification are not bullet proof, and 
may nonetheless enable attackers to reidentify individuals in a deidentified dataset. See Jules 
Polonetsky et al., Shades of Gray: Seeing the Full Spectrum of Practical Data De-Identification, 56 
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B. Privacy Loss: Technical Protections 
 Techniques, tools, and a mountain of interest have matured around the 
“safe” sharing of data, vis-à-vis standards like k-anonymity,55 l-diversity,56 and 
t-closeness.57 At a high level, these concepts are all attempts at assessing the 
privacy preserving qualities of an “anonymized”58 dataset.59 In simple terms, 
taking a set of raw data, applying some measure of noise (e.g., “suppression” by 
redacting all zip code digits), and then assessing how privacy preserving the 
resulting dataset is.60 
 The thorn for each of these standards, however, is that none of them provide 
guarantees in the same way that differential privacy provides guarantees.61 For 

 
SANTA CLARA L. REV. 593, 594–95 (2016) (“Computer scientists and mathematicians have come 
up with a re-identification tit for every de-identification tat.”). 
 55. As discussed below, differential privacy provides a way to reason about mechanisms or 
algorithms which perturb data. See infra Part II. Likewise, k-anonymity provides a similar view-
point—how privacy preserving is this dataset if it meets the k-anonymity standard, if 𝑘 − 1 records 
in the dataset are identical? Latanya Sweeney, k-Anonymity: A Model for Protecting Privacy, 10 
INT’L J. ON UNCERTAINTY, FUZZINESS & KNOWLEDGE-BASED SYS. 557, 559 (2002) (“[The joint-
based privacy attack] provides a demonstration of re-identification by directly linking (or ‘match-
ing’) on shared attributes. The work presented in this paper shows that altering the released infor-
mation to map to many possible people, thereby making the linking ambiguous, can thwart this kind 
of attack. The greater the number of candidates provided, the more ambiguous the linking, and 
therefore, the more anonymous the data.”). 
 56. See Ashwin Machanavajjhala et al., l-Diversity: Privacy Beyond k-Anonymity, ACM 
TRANSACTIONS KNOWLEDGE DISCOVERY DATA, Mar. 2007, art. 3, at 1, 3, https://dl.acm.org/ 
doi/pdf/10.1145/1217299.1217302 (“[D]oes k-anonymity really guarantee privacy? In the next sec-
tion, we will show that the answer to this question is interestingly no. We give examples of two 
simple yet subtle attacks on a 𝑘-anonymous dataset that allow an attacker to identify individual 
records. Defending against these attacks requires a stronger notion of privacy that we call l-diversity, 
the focus of this article.”). 
 57. See Ninghui Li et al., t-Closeness: Privacy Beyond k-Anonymity and l-Diversity, in 2007 
IEEE 23RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING 106 (Apr. 2006) (improving l-
diversity by focusing on what information an attacker may have as background knowledge). Newer 
techniques also exist, such as machine-learning based synthetic data generation. See Steven M. 
Bellovin, Preetam K. Dutta, & Nathan Reitinger, Privacy and Synthetic Datasets, 22 STAN. TECH. 
L. REV. 1, 5 (2019) (“In essence, take an original (and thus sensitive) dataset, use it to train a ma-
chine-learning enabled generative model, and then use that model to produce realistic, yet artificial 
data that nevertheless has the same statistical properties.”) (footnotes omitted).  
 58. “Anonymization” would in some ways be a misnomer because these techniques do not 
always provide truly private data. See Wu, supra note 16, at 1126 (“One cannot talk about the suc-
cess or failure of anonymization in the abstract. Anonymization encompasses a set of technical tools 
that are effective for some purposes, but not others. What matters is how well those purposes match 
the law and policy goals society wants to achieve. That is a question of social choice, not mathe-
matics.”). 
 59. A dataset (different from a database) may be thought of as a collection of data organized 
in a tabular (i.e., columns and rows) format. See Bellovin et al., supra note 57, at 10.  
 60. At a high level, this is the same process differential privacy. See generally Liu, supra note 
18, at 477 (discussing sanitization practices).  
 61. Although these techniques do provide what may be described as types of guarantees, the 
guarantees are not very useful in a practical sense. See, e.g., Aaron Beach et al., Social-K: Real-
Time k-Anonymity Guarantees for Social Network Applications, in 8th IEEE INTERNATIONAL 
CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS 600 (2010) (discussing the guar-
antee of k-anonymity, that a record is only unique in terms of the set of indistinguishable records it 
must be grouped with—a guarantee which says little about what type of external attacks may be 
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example, consider a dataset that is 𝑘-anonymized.62 In shorthand, what this 
means is that, assuming a 𝑘 value of three, for every record (i.e., row in a spread-
sheet) at least two other records are identical.63  
 If your data were within this anonymized dataset,64 would you feel com-
fortable allowing it to be released publicly, into the wild, forever? Your answer 
likely depends on the sensitivity of the data, the trustworthiness of the data stew-
ard, how the data may be used by others, and the many other potential implica-
tions arising from releasing the data.65 Underneath each of these concerns, 
however, is a singular risk: How likely is it that you will be “reidentified?” In a 
worst-case scenario, what is the risk that someone will be able to point at your 
record and say “this is you.” All other adverse effects stem from this singular, 
null-privacy end result: reidentification.66 
 Most sanitization standards, like k-anonymity, say nothing about how likely 
or unlikely the threat of reidentification is.67 Is a k value of three, four, or five 
required for a release to be privacy preserving enough to make the risk of 
reidentification minimal? If “joins”68 with auxiliary data are off the table (i.e., a 

 
successful despite the use of a particular 𝑘 value). For more detail on k-anonymity, see infra Section 
II.A. Even newer methods of sanitized data generation, like vanilla synthetic data, do not provide 
the type of guarantees that differential privacy provides. See Bellovin et al., supra note 57, at 37–41 
(“[W] would be remiss if we did not make it absolutely clear that synthetic data and even differen-
tially private synthetic data are not silver bullets”); see also Theresa Stadler et al., Synthetic Data—
Anonymisation Groundhog Day, in PROCEEDINGS OF THE 31ST USENIX SECURITY SYMPOSIUM 
1451 (2022), https://www.usenix.org/system/files/sec22-stadler.pdf (discussing how synthetic data 
is rarely a silver bullet). 
 62. See Latanya Sweeney, Achieving k-Anonymity Privacy Protection Using Generalization 
and Suppression, 10 INT’L J. UNCERTAINTY, FUZZINESS & KNOWLEDGE-BASED SYSTEMS 571, 
571–72 (2002) (“One way to achieve this is to have the released records adhere to k-anonymity, 
which means each released record has at least (𝑘 − 1) other records in the release whose values are 
indistinct over those fields that appear in external data. So, k-anonymity provides privacy protection 
by guaranteeing that each released record will relate to at least 𝑘 individuals even if the records are 
directly linked to external information.”). 
 63. More accurately, the identical records are identical in regard to quasi-identifiers (i.e., the 
attributes that may be used to identify an individual, either by themselves or in combination). For 
more detail on k-anonymity and a fuller explanation for how the standard works, see infra Section 
II.A.  
 64. For example, if a table had columns of name, zip code, date of birth, and ‘is or is not’ a 
parent, then the information may look like this in raw form <Nathan, 20009, 06-30-1999, no> and 
this in 𝑘-anonymized form <Nathan, 2****, 06-**-1999, no>. Assuming there are at least two other 
people named Nathan who have a zip code starting in 2, a birthday in June of 1999, and who are not 
parents, the dataset is valid, at least for this record, at a 𝑘 level of 3. 
 65. See generally CATHY O’NEIL, WEAPONS OF MATH DESTRUCTION 141–60 (2016).  
 66. Notably, it is patently true that many other forms of harm exist following the deidentifica-
tion of some amount of data found in a “sanitized” dataset. For the purposes of statutory data sani-
tization requirements, however, we limit our scope, and therefore our test, to the harms of 
reidentification exclusively. See discussion infra Section IV.A.1. Likewise, it is also noteworthy 
that data protective statutes do much more than regulate the sharing of data. See, e.g., 16 C.F.R. § 
312.1 (2020) (predominantly regulating data collection).  
 67. See infra Section II.A (discussing reidentification in regard to a dataset anonymized with 
k-anonymity).  
 68. This is a specific type of reidentification attack on a dataset which seeks to take unknown 
information and match it with known information, in the end revealing something about the un-
known information. In more technical terms, a join may be thought of as a combination of two 
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privacy attack which matches known information with unknown information—
one which k-anonymity was designed to protect against), is the threat of reidenti-
fication completely eliminated?69 Are contractual requirements needed to add 
teeth to a sanitization technique’s gums or are the technical mechanics of sani-
tization a sufficient deterrent? No standard mentioned above provides definitive 
answers to these questions except for differential privacy.  
 Differential privacy is no tourist when it comes to guarantees. In fact, dif-
ferential privacy was built with these guarantees in mind, requiring that individ-
ual data, by itself, be meaningless. As Cynthia Dwork and her coauthors state: 
“[D]ifferential privacy by definition [protects against] re-identification.”70  
 Similar to k-anonymity, differential privacy looks at a process of sanitiza-
tion (e.g., when asked for your age, answer with your real age plus a random 
number from 1 to 10) and assesses how privacy preserving the output71 is. The 
difference occurs, in part,72 because differential privacy tells you how privacy 
preserving an output will always be, in a worst-case scenario, no matter what 
new privacy attacks are identified and no matter what new information an at-
tacker learns. True enough, this protection comes at a cost—it is heavy handed, 
it does not apply to all scenarios, and it creates diminishing usefulness implica-
tions for the type of questions that may be answered73—but what it provides to 
the forest for the sake of the trees guarantees privacy like none other.  

 
different things based on a similarity. In the database world, this often means two rows are merged 
together given similarity of an identifier, like a name. See, e.g., Bellovin et al., supra note 57, at 4–
5.  
 69. A technique like k-anonymity was built to side-step joins, but that does not mean adver-
sarial attacks using auxiliary data are completely off the table. A long line of literature following k-
anonymity proved this. See supra notes 55–57 and accompanying text. In other words, that a tech-
nique is built specifically with one adversarial attack in mind, does not mean it has no weaknesses. 
 70. Cynthia Dwork et al., Exposed! A Survey of Attacks on Private Data 61, 64–65 (2017) 
(“Reconstruction represents spectacular success on the part of the adversary, or, conversely, a spec-
tacular failure of the putative privacy mechanisms. Tracing—that is, determining whether or not a 
specific individual is a member of a given dataset—is a much more modest adversarial goal.”). In 
terms of tracing and reconstruction, reidentification would be somewhere in-between in terms of 
difficulty. See infra Section II.C.1. 
 71. That standards like k-anonymity, see supra notes 58–60 and accompanying text, measure 
the privacy-preserving qualities of a dataset, rather than an output (as referenced above), does not 
displace the comparison here. Differential privacy is most easily thought of, didactically, in the 
query-response mode. See infra note 146 and accompanying text. A question is asked of a “recipe” 
which takes in data, processes it in some sanitizing way, and then sends it back out. That process 
produces “private” output, and although we are measuring the privacy preserving ability of the 
mechanism itself (rather than the output), we are nonetheless describing what can be learned, at 
most, by someone who wants to reidentify individuals in a sanitized output, regardless of whether 
that is a single answer (an output) or a dataset.  
 72. See infra Part II for a full discussion.  
 73. See Bambauer et al., supra note 16, at 723; see also Table 4 and accompanying text. Dif-
ferential privacy is no panacea: it may not be right for all scenarios, it requires that certain types of 
questions be asked, and, by considering a worst-case scenario, it may be overly protective. See, e.g., 
Matthew Fredrikson et al., Privacy in Pharmacogenetics: An End-to-End Case Study of 
Personalized Warfarin Dosing, in PROCEEDINGS OF THE 23RD USENIX SECURITY SYMPOSIUM 17 
(2014), https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-fredrikson-
privacy.pdf [https://perma.cc/CD4N-P8JV]. These limitations, however, may be a positive form of 
privacy friction. See Paul Ohm & Jonathan Frankle, Desirable Inefficiency, 70 FLA. L. REV. 777, 
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 To more fully understand differential privacy, and how it may be “attacked” 
in a legal scenario, we must start with a few building blocks. The next Part pro-
vides the viewpoint from which differential privacy is most easily accessible, 
discussing the type of “noise”74 differential privacy uses to measure privacy and 
explaining how the mathematical quantity of epsilon is used as an adjustable 
knob in the privacy–⁠utility tradeoff.  

II. BUILDING BLOCKS OF DIFFERENTIAL PRIVACY 
 Differential privacy requires a particular frame of mind. Similar to how, 
when considering the rule against perpetuities, it is important to take a step back 
and understand the perspective driving the rule,75 differential privacy is most 
easily understood using the viewpoint from which it operates. This viewpoint 
may be grouped around three core concepts: (1) differential privacy focuses on 
“mechanisms” or “algorithms” (i.e., descriptions for how to accept some type 
of input, engaging with that input, and produce some type of output); (2) differ-
ential privacy is not a tool used to sanitize data, but is more like a standard, a 
statement about the privacy preserving abilities of a mechanism itself; and (3) 
differential privacy lives in a world of datasets, and produces its guarantees by 
measuring itself against a powerful adversary, quantifying how much infor-
mation an attacker would, at most, be able to learn. The next section discusses 
each of these building blocks in turn.  

A. Preliminary Cairns 
 For starters, differential privacy only concerns itself with mechanisms. A 
mechanism, broadly speaking, is a recipe, like a cooking recipe. Another term 
used for these recipes is a function or algorithm: a repeatable, consistent way of 
doing something that takes in a certain type of input and produces out a certain 
type of output.76 It is best to think of this at the highest level possible: widget A 

 
827–28 (2018) (“privacy is ‘protected by the high cost of gathering or using’ information, meaning 
that ‘friction is . . . privacy’s best friend.’” (citing William M Geveran, The Law of Friction, 2013 
U. CHI. LEGAL F. 15, 15 (2013)). 
 74. A terse term for this noise might be “lying”—a differentially private mechanism will pro-
vide back an “untruthful” answer to protect the “real” answer. See generally Bambauer et al., supra 
note 16. Nuance is lost, however, in that lying does not suggest a logical process behind the lie. 
Differential privacy is very particular about the type of noise it uses to maintain its guarantees, and 
calling this process “lying” is a disservice to that under-the-hood process.  
 75. See Peter A. Appel, The Embarrassing Rule Against Perpetuities, 54 J. LEGAL EDU. 264, 
264–66 (2004) (“Ask students what subject within property they hated most, and most will answer 
that it was the Rule Against Perpetuities. Indeed, it might rank as the most-hated doctrine studied in 
the first year of law school (although the Erie doctrine might give it a run for its money). Arcane in 
origin, difficult to understand and apply, unintuitive, and seemingly random in its effect, the rule 
brings together many of the difficulties that students have in adjusting to the rigors of legal study.”). 
But see Shrutarshi Basu et al., A Programming Language for Future Interests, 24 YALE J.L. & TECH. 
75, 79 (2022) (“Rather than using an existing programming language to write a program to model 
future interests, we treated the formalized, ritualized language of first-year Property conveyances as 
a programming language itself.”). 
 76. This is true even if the mechanism uses randomness. The function will take in some input, 
use randomness in a predictable, reputable way, and then produce out some output. Any mechanism 
that is called ε-differentially private works like this, from Google Chrome’s RAPPOR to Facebook’s 
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goes in and widget B comes out. For example, a mechanism for making a peanut 
butter and jelly sandwich would look like this: 

 

 
Figure 1. An Algorithm for Making a Sandwich 

 
We have an input of bread (two slices), peanut butter, and jelly. The algorithm 
takes this input, executes a sequence of operations (i.e., add peanut butter, add 
jelly, put the two together), and produces an output: a sandwich. 
 Differential privacy operates on mechanisms, like Algorithm 1 as shown in 
Figure 1. In fact, only mechanisms may be deemed ε-differentially private, not 
the results of the mechanism. We would not say the peanut butter and jelly sand-
wich (output) is ε-differentially private, but that the algorithm used to make the 
sandwich is ε-differentially private.77 The ε part (Greek for epsilon) is discussed 
in Section II.D below. In short, it signifies how “private”78 the output is. Also 
noteworthy is how differential privacy allows these functions to be made pub-
licly available in a “don’t-roll-your-own-crypto”79 type of way. This allows for 

 
“Full URLs” dataset. Solomon Messing et al., Facebook Privacy-Protected Full URLs Data Set, 
HARV. DATAVERSE (2022), https://doi.org/10.7910/DVN/TDOAPG.  
 77. To be sure, the peanut-butter-and-jelly-sandwich algorithm is not, in fact, differentially 
private.  
 78. This quick definition is purposefully ambiguous, given that it relies on the term privacy, 
which is famously ambiguous. Further clarification may be found in Section II.B infra.  
 79. The idea is sometimes attributed to Bruce Schneier. “Schneier’s Law,” SCHNEIER ON 
SECURITY: BLOG, https://www.schneier.com/blog/archives/2011/04/schneiers_law.html [https:// 
perma.cc/3RVS-KDU6]. For an explanation, see AN INTRODUCTION TO CRYPTOGRAPHY 54 (1998) 
(“When I was in college in the early 70s, I devised what I believed was a brilliant encryption scheme. 
A simple pseudorandom number stream was added to the plaintext stream to create ciphertext. This 
would seemingly thwart any frequency analysis of the ciphertext, and would be uncrackable even 
to the most resourceful government intelligence agencies. I felt so smug about my achievement. 
Years later, I discovered this same scheme in several introductory cryptography texts and tutorial 
papers. How nice. Other cryptographers had thought of the same scheme. Unfortunately, the scheme 
was presented as a simple homework assignment on how to use elementary cryptanalytic techniques 
to trivially crack it. So much for my brilliant scheme. From this humbling experience I learned how 
easy it is to fall into a false sense of security when devising an encryption algorithm. Most people 
don’t realize how fiendishly difficult it is to devise an encryption algorithm that can withstand a 
prolonged and determined attack by a resourceful opponent.”); see also AUGUSTE KERCKHOFFS, LA 

Algorithm 3 Sandwich—Peanut Butter and Jelly
Input: Bread, Peanut Butter, Jelly

Algorithm 1 Sandwich—Peanut Butter and Jelly
Input: Bread, Peanut Butter, Jelly

1: with
�
first slice of bread

�
. pre-sliced bread

2: add Peanut Butter to slice
3: with

�
second slice of bread

�

4: add Jelly to slice
5: Sandwich = merge first and second slice

Output: return Sandwich

Algorithm 2 Randomized Response
Input: Are you a member of the Communist Party?

1: flip a coin . 50% chance heads or tails
2: if tails:
3: Response = tell the truth
4: if heads:
5: flip a second coin
6: if heads:
7: Response = “Yes”
8: if tails:
9: Response = “No”

Output: return Response
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better mechanisms through open-source analysis and reproducibility. For in-
stance, anyone may fully assess Google’s RAPPOR system, which uses differ-
ential privacy in the Chrome web browser to check on intimate telemetry80 
details such as users’ default homepages in their browsers.81 
 The second building block concerns differential privacy’s role not as a tool 
of anonymization, but as a way of reasoning about mechanisms.82 To be sure, 
differential privacy is not itself a tool for creating privacy. Unlike the methods 
of “generalization” (i.e., modifying data by generalizing it83) or “suppression” 
(i.e., modifying data by removing it84) differential privacy is a measure of pri-
vacy under a particular scenario. In many ways, it is like PII in that it ties to a 
general concept of privacy, but is not itself a way to achieve privacy.85 For in-
stance, COPPA defines “personal information”86 as “individually identifiable 
information [(e.g., name, social security number, and e-mail address)] about an 
individual collected online”87 while VPPA defines PII as any “information 
which identifies a person.”88 Neither one of these definitions provides a way to 
create privacy, yet, both provide a standard for evaluating privacy (or lack of 
privacy) in a specific setting. Similarly, the concept of differential privacy is not 
the narrow application of a tool to data; to understand the term in a working 
sense requires a setting, and this is where the third concept comes in.  
 Lastly, differential privacy lives in a world of datasets (i.e., tables of 
columnized information89) and adversaries (i.e., actors who wish to reidentify 
individuals in those datasets). In fact, the mathematical definition of differential 

 
CRYPTOGRAPHIE MILITAIRE 8 (1883) (discussing how a cryptographic system should be secure re-
gardless of whether its mechanics are known); Nissim et al., supra note 20, at 703–06.  
 80. Telemetry data refers to general “use” information shared about a system. See Bolin Ding 
et al., Collecting Telemetry Data Privately, in 31ST CONFERENCE ON NEURAL INFORMATION 
PROCESSING SYSTEMS 3572, 3572 (2017) (“Counter data, e.g., daily app or system usage statistics 
reported in seconds, is a common form of telemetry.”). 
 81. See Erlingsson et al., supra note 15, at 1063.  
 82. See, e.g., Dan Feldman & Eldar Haber, Measuring and Protecting Privacy in the Always-
On Era, 35 BERKELEY TECH. L.J. 197, 234 (2020) (describing differential privacy correctly as a 
standard).  
 83. For example, the zip codes 93940, 93942, and 93943 may all be called “Monterey, 
California”—the data has been generalized, and therefore made more anonymous, by replacing all 
three datapoints with a single text statement. 
 84. For example, the zip codes 93940, 93942, and 93943 may be replaced with 9394*, 9394*, 
and 9394*—the data has been suppressed, and therefore made more anonymous, by replacing the 
last digit of each zip code with an asterisk.  
 85. See generally Paul M. Schwartz & Daniel J. Solove, The PII Problem: Privacy and a New 
Concept of Personally Identifiable Information, 86 N.Y.U. L. REV. 1814, 1819–36 (2011). 
 86. Although PII is used as a term which applies to many data protective statutes, see id., some 
statutes, like COPPA, may use phrases like “personal information” instead. See Children’s Online 
Privacy Protection Act, 15 U.S.C. §§ 6501–6505 (Supp. IV 1998); 16 C.F.R. § 312.2 (2020) (defin-
ing “personal information” as “individually identifiable information about an individual collected 
online,” including attributes like first and last name or social security number). 
 87. 16 C.F.R. § 312.2 (2020). 
 88. Video Privacy Protection Act of 1988, 18 U.S.C. § 2710(a)(3) (2006) (defining “personally 
identifiable information” as “information which identifies a person as having requested or obtained 
specific video materials or services from a video tape service provider”). 
 89. Literature on differential privacy often mixes the terms database and dataset. Here, we use 
the term dataset. See supra note 59 and accompanying text.  
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privacy makes no sense without these two elements. To better understand this 
world, consider the following table, which lists the names of individuals who 
ate certain types of cookies. This table would be deemed a “dataset.” 
 

Table 1. Original “Raw” Dataset 
First Last Birth-Year Cookie Eaten 

Alice Westminster  1984 Chocolate Chip 

Bob Kensington 2000 Gingersnap 

Abigale Westminster 1989 Chocolate Chip 

Bob Chelsea 2010 Gingersnap 

 
 The “adversary” here would be someone who tries to reidentify the individ-
uals described by the dataset, which is a very simple task if Table 1 is shared in 
its raw form (i.e., just look at the table). Instead, what a data steward who owns 
the dataset and wants to “release and forget”90 it into the wild may do is opt 
(even today91) for something like k-anonymity, which would create a sanitized-
looking dataset.92  
  

 
 90. See Ohm, supra note 11, at 1711–12.  
 91. As the President’s Council of Advisors on Science and Technology reported, “Anony-
mization of a data record might seem easy to implement. Unfortunately, it is increasingly easy to 
defeat anonymization by the very techniques that are being developed for many legitimate applica-
tions of big data.” EXEC. OFF. OF THE PRESIDENT, REPORT TO THE PRESIDENT, BIG DATA AND 
PRIVACY: A TECHNOLOGICAL PERSPECTIVE 38–39 (2014), https://bigdatawg.nist.gov/pdf/pcast_ 
big_data_and_privacy_-_may_2014.pdf [https://perma.cc/MLL5-F2HT]. Despite what we know 
about reidentification and the inadequacies of narrow definitions of PII, this understanding is still 
making the rounds today (e.g., a majority of the 50 states define PII narrowly when defining what 
actions do or do not trigger data breach protections). See Sara A. Needles, Comment, The Data 
Game: Learning to Love the State-Based Approach to Data Breach Notification Law, 88 N.C.L. 
REV. 267, 277–79 (2009) (finding that how a state defines PII hints at the state’s overall objective 
for the purpose of a breach notification law). 
 92. As Latanya Sweeney and her coauthors observed: “These findings suggest that there is 
something fundamentally flawed with ad hoc redactions of data. They fail to accurately account for 
the quality and nature of external information. Heavily redacted data may look anonymous, but it is 
not necessarily so.” Latanya Sweeney et al., Re-Identification Risks in HIPAA Safe Harbor Data: A 
Study of Data from One Environmental Health Study, TECH. SCI., Aug. 28, 2017, at 1, 51–52, 
http://techscience.org/a/2017082801(click “Download” to access PDF) (arguing for increased sani-
tization in the HIPAA safe harbor redaction requirements).  
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Table 2. Sanitized-Looking Dataset 
First Last Birth-Year Cookie Eaten 

- Westminster 1980s Chocolate Chip 

Bob - - Gingersnap 

- Westminster 1980s Chocolate Chip 

Bob - - Gingersnap 

 
For every row in the table, there are at least 𝑘 − 1 other rows in the table with 
the exact the same information (i.e., allowing Alice to “hide in the crowd” with 
Abigale by making the first and third rows in Table 1 identical). Practically, we 
are achieving a privacy “crowd” via k-anonymity by applying suppression (i.e., 
replacing a cell with “–”) and generalization (i.e., making more general, like 
replacing the year 1984 with 1980s) all the while keeping our 𝑘 goals in mind.  
 Although the above table looks sanitized, how confident should Alice be 
that no attacker could reidentify her? Should Alice be comfortable knowing that 
her data is deidentified? No.  
 A hypothetical adversary, Mallory, may have an easy time reidentifying 
Alice if Mallory happens to have access to another dataset (i.e., auxiliary infor-
mation, Table 3) with full name and age information. All Mallory would have 
to do is search for all the Westminsters born in the 1980s to figure out that both 
Alice and Abigale ate chocolate chip cookies (i.e., PII may have been un-
veiled).93  
  

 
 93. The assumption is based on the idea these two are the only two Westminsters born in the 
1980s. Indeed, this is a toy example illustrating how an attacker may nonetheless learn from an 
anonymized dataset (i.e., it is not very sensible to leave a last-name column unmodified). A more 
typical, realistic attack on k-anonymity comes from the heterogeneity attack (i.e., learning what 
cookie Alice had eaten by knowing that Alice was born in the 1980s and has a last name of West-
minster—the 𝑘-anonymized Table 2 does not hide this information well enough) or a background 
knowledge attack (i.e., assume the attacker knows only that the person they are attempting to learn 
about is deathly allergic to ginger, meaning that the only other option, in this dataset, is chocolate 
chip, and therefore the person must have eaten a chocolate chip cookie). See infra note 111 and 
accompanying text; see also supra note 56 and accompanying text (introducing these attacks).  
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Table 3. Original Plus Auxiliary Datasets 

Original Dataset  Auxiliary Dataset 

First Last Birth-
Year 

Cookie 
Eaten 

 Last First Birth-
Year 

- Westminster 1980s Chocolate 
Chip 

 Alice Westminster 1984 

Bob - - Gingersnap  Bob Kensington 2000 

- Westminster 1980s Chocolate 
Chip 

 Abigale Westminster 1989 

Bob - - Gingersnap  Bob Chelsea 2010 

 
 True enough, k-anonymity may preserve privacy if the 𝑘 value is increased; 
the kernel in this example, however, is not how the adversary was able to un-
cover information, but that the strength of a privacy preserving standard is meas-
ured against an adversary who is assumed to always exist and always possess 
the goal of unveiling who is in the dataset. This is the perspective taken by dif-
ferential privacy, motivating how it is technically defined.  
 In summary, differential privacy is a way of measuring the privacy of mech-
anisms acting on datasets in the face of an adversary. The following three Sec-
tions outline the core of why differential privacy works (randomness), what 
exactly differential privacy guarantees (the adversary), and how differential pri-
vacy uses randomness like a knob to increase or decrease privacy (epsilon). To-
gether, these Sections represent the building blocks for the mathematical def-
inition of differential privacy introduced in Part III. The next Section starts by 
introducing the randomness that differential privacy uses to purchase94 privacy. 

B. Why Differential Privacy Works: Randomness 
 Differential privacy works against an age-old quandary: How do you hide 
information while at the same time reveal information? For differential privacy, 
privacy is purchased95 by avoiding real answers in a particular way, providing a 
veil of “plausible deniability” from the implications of a mechanism’s output. 

 
 94. True, differential privacy is not exchanging funds for privacy; however, the phrasing con-
notes the idea that privacy is not achieved for free. In the case of differential privacy, the cost is 
reduced utility owed to the use of randomness. 
 95. See supra text accompanying note 94. Privacy is constrained by the concepts addressed at 
the beginning of Part I, supra. Indeed, with the possibly endless definitions of privacy going back 
to the fourteenth century, stating a singular definition of privacy and claiming that it is achieved 
may be a bit too far reaching.  



Reitinger & Deshpande 
 

 
284 63 JURIMETRICS 

 Consider a hypothetical where Alice does not want anyone to know her real 
age. When asked her age, Alice responds with a random age near96 her real age. 
The recipe or mechanism Alice uses has an input of “what is your age” and an 
output of {real age plus or minus a random number}.  
 To be sure, trusting Alice’s response at face value, given that she uses the 
random-age mechanism, is unreliable; it is entirely possible and very likely that 
Alice has not provided her real age. True enough, knowing additional infor-
mation about how Alice picks random numbers (to add or subtract from her real 
age) would help a detective (i.e., adversary) figure out exactly what Alice’s real 
age is,97 but assuming that random-age-choice information is off the table, Alice 
is free to proffer a responsive answer because her provided age is meaningless.98  
 In the same way, differential privacy relies on randomness to attain privacy. 
In fact, its inventors go so far as to state that “any non-trivial privacy guarantee 
that holds regardless of all present or even future sources of auxiliary infor-
mation . . . . requires randomization.”99 On the other hand, using randomness, 
though effectuating privacy, degrades utility—what if we really did want to 
know Alice’s real age?100  

1. Truth and Not-Truth: The Privacy-Utility Tradeoff 
 If privacy cannot be attained without returning an unreal answer, then per-
fect privacy may be considered the opposite of perfect utility. We have privacy 
via randomness, but what if we also want utility? 
 Imagine trying to determine the ages of everyone in a particular neighbor-
hood. If the Alice from our hypothetical, using the random-age generator, lived 
in this neighborhood, then the age-counts for this neighborhood would be inac-

 
 96. “Near” here is mathematically defined to be within a certain interval centering on Alice’s 
real age. 
 97. This is why differential privacy spends much of its time debating all possible results that 
could come out of the function. For instance, if the random-name generator only picked from three 
different names, including the name Alice, then we might say that Alice has less privacy when 
answering the question because an adversary knows that her name is only one of the three.  
 98. For example, Alice’s age information cannot be “joined” with other auxiliary information 
to uncover the real answer—the provided answer was likely fake to begin with. We say “likely” here 
because Alice is using a random number generator to come up with the number to add or subtract 
from her real age, and it may be possible that the random number generator includes 0 in its list of 
potential answers. Therefore, it is at least theoretically possible that Alice could respond with her real 
age even when using the range-age mechanism. See also Nathan Reitinger et al., Is Cryptographic 
Deniability Sufficient? Non-Expert Perceptions of Deniability in Secure Messaging, in PROCEEDINGS 
OF THE 44TH IEEE SYMPOSIUM ON SECURITY AND PRIVACY 274, 274–76 (2023) (discussing the 
implications of deniability in secure messaging systems). 
 99. Dwork & Roth, supra note 1, at 226.  
 100. Curtly, in the differential privacy setting, you would be out of luck; this question is not 
suitable for differential privacy. Differential privacy aims to protect individuals, and in this sense, 
if Alice’s age mechanism were ε-differentially private with a “low enough” epsilon, then the ran-
dom-age mechanism would always lie too much to allow you to figure out Alice’s real age. This 
outcome is by design; differential privacy only allows “aggregate”-type queries, and this query is 
too specific. See Section II.D infra for a discussion of a “low enough” epsilon value.  
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curate, because Alice would most likely101 lie about her real age. Alice’s privacy 
is preserved, but the utility or accuracy of the overall count is harmed.  
 Elegantly, differential privacy uses the privacy-utility tradeoff to its ad-
vantage. By concerning itself with large-enough questions, differential privacy 
is able to play nice with Alice and the count, preserving Alice’s desire to keep 
her true age private while also preserving the accuracy of the overall tally-count 
being close enough. 
 To see how this plays out, consider a neighborhood of 1,000 people and a 
specific question: How many people in this neighborhood are 33 years old? As-
suming 100 of them are, in truth, 33 years old (including Alice), the real answer 
to this question is 100 (i.e., 10%). Given the lying mechanism102 that Alice uses, 
however, the privacy-preserved answer would most likely103 be 99 (i.e., 9.9%). 
Out of all the people who live in this neighborhood, 99 of them are 33 years old 
(including Alice’s privacy preserved, unreliable answer).  
 The point here is not that 10% (i.e., the answer) is numerically close to 
9.9%; rather, the point is that if the question concerns a large enough group, then 
the whole will be greater than its parts, the truth of the crowd outweighs Alice’s 
lie. Imagine instead that the neighborhood only consisted of ten people. A lie 
here has an impressive impact on the outcome—adding an inaccurate 10% mar-
gin to any tally looking at age. This would be a large impact on utility.104 
 Differential privacy is powerful because it gets away with adding much 
more noise than simply one person out of the group lying—in fact, every person 
in the group receives the same insulation from the truth as Alice. For example, 
if we took an ASCII art picture105 of a bike, modified all individual characters 
in the picture by flipping them blank (i.e., “ ”) or leaving them as is with 50% 
probability, then we would still be able to discern the overall picture, even 
though each character is insulated with a 50% chance of accurate–not accurate.  
 

 
 101. If the random number pool Alice draws from when using her mechanism includes 0 then 
it is possible that Alice would respond with her real age, but, either way, if an attacker knew the 
mechanism was being used, then even the real age answer is unreliable—the attacker has to assume 
that the proffered age is inaccurate at least to some degree.  
 102. As explained in supra note 74, Alice’s lies are not the same as differential privacy’s noise, 
though both return information which is untruthful. For Alice, a responsive answer is random, there 
is (necessarily) no way to predict which number is picked in the {real age ± random number} mech-
anism; for differential privacy, a responsive answer is not random, and (necessarily) adheres to a 
particular distribution. See, e.g., infra Section III.A.  
 103. See supra note 101 and accompanying text. 
 104. If there is no one else in the neighborhood who is 33 years old, then with Alice’s lie of 
“not 33” there are 0/10 or 0% of people who are 33. If Alice were to tell the truth, then this number 
magically becomes 10%—0% versus 10% is a large difference. If there was one other person in the 
neighborhood who was 33 years old, then either 10% (with lie) or 20% (without lie) of people are 
33 years old. Again, a large difference given the size of this particular neighborhood.  
 105. Technically, this picture of a bicycle was created using Unicode characters rather than 
pure ASCII characters. See David C. Zentgraf, What Every Programmer Absolutely, Positively 
Needs to Know About Encodings and Character Sets to Work with Text, KUNSTSTUBE (Apr. 27, 
2015), https://kunststube.net/encoding/ [https://perma.cc/SA6P-WUX4]. 
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Figure 3. Sanitized ASCII Image107 

 So long as responsive answers (e.g., flipping each character or answering 
the “what is your age” question) are provided in a particular way, nothing will 
be learned about the individuals making up the group, but a fairly accurate some-

 
 106. This image comes from (public domain) from a black and white image of a bike. See 
Vector Graphics of Bicycle, FREE SVG (Mar. 24, 2014), https://freesvg.org/vector-graphics-of-
bicycle7887 [https://perma.cc/CJ2V-Z63P]. The image is then processed into ASCII using a series 
of transformations on the raw image input. See Convert Image or Text to the ASCII-Art, ASCII-
GENERATOR, https://ascii-generator.site [https://perma.cc/4EBU-A9PY]. Figure 2 shows the result-
ing ASCII image post-processing.  
 107. Using Figure 2’s image in text form, each character in the image was either modified 
with “ ” (i.e., a blank space) or left unchanged. The resulting picture nonetheless shows a bike. See 
also DIMACS/Northeast Big Data Hub Workshop on Privacy and Security for Big Data, Utilizing 
Large-Scale Randomized Response at Google: RAPPOR and Its Lessons by Ananth Raghunathan, 
YOUTUBE (Sept. 6, 2017), https://www.youtube.com/watch?v=tuOBz5AzivM [https://perma.cc/ 
Y9CG-P9XR] (discussing Google’s RAPPOR system by first teaching differential using a similar 
example on a Mona Lisa ASCII art picture); see also Priyanka Mathikshara, (Local) Differential 
Privacy for Dummies :D, MATHIKSHARA.COM (Aug. 4, 2020), https://www.mathikshara.com/post/ 
local-differential-privacy-for-dummies [https://perma.cc/Q956-XN9B].  
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thing will be learned about the group as a whole. Stated in more mathematical 
terms, any output of a differentially private mechanism is nearly as likely re-
gardless of whether one individual was “in” the dataset or not.108 

C. Adversarial Perspective 
 Taking a step back, it is important to note the why behind differential pri-
vacy’s use of noise to provide inaccurate answers. The why here comes directly 
from the historic perspective of reidentification attacks: deidentification talks 
more than it walks.109 
 Differential privacy takes a nod from the failings of Netflix Prize and the 
AOL search log110 by leaving room for the possibility that someone may try and 
use any and all auxiliary information (i.e., information unbounded by the instant 
dataset) in a hodgepodge aimed at reidentification. And this goes beyond the 
practical attack Professor Sweeney persuasively demonstrated in 1997 (e.g., tak-
ing public voter list records and joining111 them with deidentified112 medical 
records). Instead, differential privacy directly addresses the means used to ef-
fectuate those attacks: reconstruction attacks.113  
 Simply speaking, reconstruction attacks take advantage of the fact that 
computer time and human time are different. One of the most magical parts of 

 
 108. See generally Graham Cormode et al., Privacy at Scale: Local Differential Privacy in 
Practice, in SIGMOD ‘18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON 
MANAGEMENT OF DATA 1655 (2018), https://dl.acm.org/doi/pdf/10.1145/3183713.3197390 [https: 
//perma.cc/5N54-U9UH]; see also Graham Cormode et al., Privacy at Scale, Part B, Lecture Slides, 
https://sites.google.com/view/kdd2018-tutorial/home/slides (Part B) [https://perma.cc/22S4-86RQ].  
 109. In other words, a dataset may look well sanitized in practice, but throwing powerful com-
puters at it seem to melt away those protections entirely. See Brief for U.S. Dep’t of Commerce as 
Amici Curiae Supporting Respondents, Alabama v. U.S. Dep’t of Commerce (No. 3:21-CV-211-
RAH), at *12, https://www.brennancenter.org/sites/default/files/2021-04/Amicus%20Brief_data 
privacyexperts_%202021-04-23.pdf [https://perma.cc/2TVK-6QAJ] (“At this point, re-identifica-
tion of ‘anonymized’ data is taken for granted by the academic privacy community. It is no longer 
an open research question.”). 
 110. Several widely publicized reidentification examples come from the mid-2000s, including 
both the Netflix Prize affair and the AOL search log debacle. Both examples stem from releases of 
data assumedly anonymized, but later found to be re-identifiable. See Boris Lubarsky, Re-Identifi-
cation of “Anonymized” Data, 1 GEO. L. TECH. REV. 202, 208–12 (2017) (discussing these exam-
ples at a high level). See generally Ohm, supra note 11, at 1716–22. 
 111. See RAMEZ ELMASRI & SHAMKANT B. NAVATHE, FUNDAMENTALS OF DATABASE 
SYSTEMS 251 (7th ed. 2016) (“The JOIN operation, denoted by ⨝, is used to combine related tuples 
from two relations into single “longer” tuples. This operation is very important for any relational 
database with more than a single relation because it allows us to process relationships among rela-
tions.”); see also RAGHU RAMAKRISHNAN & JOHANNES GEHRKE, DATABASE MANAGEMENT 
SYSTEMS 107 (3d ed. 2003) (“The join operation is one of the most useful operations in relational 
algebra and the most commonly used way to combine information from two or more relations. Al-
though a join can be defined as a cross-product followed by selections and projections, joins arise 
much more frequently in practice than plain cross-products.”). 
 112. See Latanya Sweeney, Simple Demographics Often Identify People Uniquely 1 (Carnegie 
Mellon Univ., Data Priv. Working Paper No. 3, 2000), https://dataprivacylab.org/projects/iden 
tifiability/paper1.pdf [https://perma.cc/TGF8-XNTL]). 
 113. See Arvind Narayanan & Vitaly Shmatikov, Robust De-Anonymization of Large Sparse 
Datasets, in PROCEEDINGS OF THE 2008 IEEE SYMPOSIUM ON SECURITY AND PRIVACY 111, 112 
(2008), https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4531148.  
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computing is a computer’s ability to execute computations with blazing speed 
(e.g., variable a = 1 + 1) and remember those computations (e.g., variable b = 
1 + a) in a useful way (e.g., variable b is 3).114 What this means for a chess 
master like Garry Kasparov is bad news, at least when it comes to winning,115 
because as long as a problem can be represented mathematically, then a com-
puter can blindly work on it for what would be considered decades of human 
time—that is, Kasparov lost because Deep Blue checked many, but not all, pos-
sible combinations of chess moves that could be made116—but are merely sec-
onds in computer time117 (also known as cheating).  
 The same time difference is leveraged in reconstruction attacks by knowing 
an output (i.e., you are given an answer, like, the mean age of my classmates is 
24) and finding all possible combinations of numbers that could lead to that 
output (e.g., (23 + 25) ⁄ 2).118 This may seem impossible given a complicated 
output, but with unlimited guessing and nearly unlimited storage capacity, it 
accords with logic to say that the answer will eventually come to the fore. 
 Two key presuppositions can be learned from the reconstruction attack. 
First, some combinations of numbers are more likely than others. For example, 
it is unlikely that, if the average age of a group of classmates is 24, and if I know 

 
 114. In short, this is because computers are universal machines. See, e.g., Ian Watson, How 
Alan Turing Invented the Computer Age, SCI. AM. (Apr. 26, 2012), https://blogs.scientificamerican. 
com/guest-blog/how-alan-turing-invented-the-computer-age/ [https://perma.cc/8QSQ-V8E7].  
 115. There is a long history of fairness in competition, typically requiring a win to be won 
fairly, something that may be called into question given the unfair abilities of computing. See, e.g., 
Avila v. Citrus Community College Dist., 41 Cal. Rptr. 3d 299, 302 (2006) (discussing the legality 
of a “beanball”: in baseball, a pitch that targets a batting player’s head). 
 116. For an updated version of Deep Blue, see alphaGo David Silver et al., Mastering the 
Game of Go with Deep Neural Networks and Tree Search, 529 NATURE 484, 488 (2016) (“In this 
work we have developed a Go program, based on a combination of deep neural networks and tree 
search, that plays at the level of the strongest human players, thereby achieving one of artificial 
intelligence’s ‘grand challenges’); ALPHAGO (Netflix 2017). Alphabet Inc. followed alphaGo up 
with a self-learning version, a difference in kind from Deep Blue and alphaGo: alphaGo Zero). See 
Dawn Chan, The AI That Has Nothing to Learn from Humans, ATLANTIC (Oct. 20, 2017), https:// 
www.theatlantic.com/technology/archive/2017/10/alphago-zero-the-ai-that-taught-itself-go/543450/ 
[https://perma.cc/V3CG-RSTA] (“You have to be ready to deny a lot of the things that we’ve be-
lieved and that have worked for us.”).  
 117. CPUs crunch numbers very quickly, without getting tired. Imagine if you had to calculate 
many (not all, the space is quite large) chess moves’ outcomes on every single chess move. Sure, 
the problem gets easier as the game goes on, but most of the game is built on millions of possible 
moves. Gil Press, The Brute Force of IBM Deep Blue and Google DeepMind, FORBES (Feb. 7, 2019, 
9:18AM) https://www.forbes.com/sites/gilpress/2018/02/07/the-brute-force-of-deep-blue-and-deep 
-learning/?sh=6dafb3be49e3 [https://perma.cc/9HE3-2XC2] (“Deep Blue was an example of so-
called “artificial intelligence” achieved through “brute force,” the super-human calculating speed 
that has been the hallmark of digital computers since they were invented in the 1940s. Deep Blue 
was a specialized, purpose-built computer, the fastest to face a chess world champion, capable of 
examining 200 million moves per second, or 50 billion positions, in the three minutes allocated for 
a single move in a chess game.”).  
 118. Cynthia Dwork, Ask a Better Question, Get a Better Answer: A New Approach to Private 
Data Analysis, in DATABASE THEORY—ICDT 2007: 11TH INTERNATIONAL CONFERENCE 18, 18–
20 (Thomas Schwentick & Dan Suciu eds., 2006); Irit Dinur & Kobi Nissim, Revealing Information 
While Preserving Privacy, in PODS’03: PROCEEDINGS OF THE TWENTY-SECOND ACM SIGMOD-
SIGACT-SIGART SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS 202 (2003), https://dl.acm. 
org/doi/pdf/10.1145/773153.773173. 
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that there are nine classmates in the class, then the ages of the nine classmates 
are 200, 9, 1, 1, 1, 1, 1, 1, 1—though this makeup does produce an average age 
of 24. Second, hunches about real answers will improve over time if repeat ques-
tions are permitted.119  
 In the first case (i.e., likely combinations), the questions you may ask a 
function are not all created equal, particularly with respect to an output. Some 
questions have specific answers, others have general answers. What this means 
for a reconstruction attack is that some answers are more reconstructable than 
others because only a few combinations produce the particular output. Differ-
ential privacy takes this into consideration when deciding how much noise to 
add to a function’s output. In fact, differential privacy, using the common La-
place method, considers explicitly the maximum range of values there might be 
when assigning noise. As Part III more fully explains below, the fewer combi-
nations there are, the more noise is needed.  
 And in the second (i.e., repeat questions), if we are playing the guess-this-
input-given-that-output game, from the perspective that each time we see an 
output we come up with a list of combinations that produce that output, then it 
is easy to see how repeating questions allows for a paring down of possible 
combinations. In a brute force type of way, if we ask the same question over and 
over again, we will eventually find the real answer, regardless of the inaccura-
cies reported over time.120 For example, if you give me a random answer which 
deviates slightly from the real answer each time I ask for it, all I need to do is 
average the random answers to get better and better hunches of the real answer. 
If I ask Alice “what is your age” over and over again, and Alice says: 33, 34, 
30, 31, 33, 33, 37 then I might start to get the suspicion that Alice’s real age is 
33.  
 In a more nuanced sense, each time we reconstruct the possible inputs to 
produce an observed output, we are producing a set of combinations, and we 
know that the space between all of these combinations is where the real answer 
lies. In this way, the space gets smaller and smaller as we ask more and more 
questions. This is why you may have heard rumors of a privacy budget.121 The 

 
 119. This is known as the database reconstruction theorem. See Dinur & Nissim, supra note 
118 (finding that accurately revealing any information, over time, no matter how small, from a da-
taset will eventual destroy all “privacy” the dataset had—i.e., only publishing statistical summaries 
will betray privacy, eventually); see also Dwork et al., supra note 70, at 64 (“There is by now a rich 
literature showing that any mechanism providing overly accurate answers to too many linear queries 
is blatantly nonprivate, meaning that it succumbs to a reconstruction attack. Indeed, there is a single 
attack strategy that succeeds against all such overly accurate answering of too many queries. Here, 
‘too many’ is quite small (e.g., only n queries) and ‘overly accurate’ means having fractional error 
on the order of o(1/√n).”) 
 120. The “it depends” here turns on whether the mechanism generates answers independently 
(i.e., the case explained above) or remembers questions asked and returns the previous answer pro-
vided (i.e., a more common case in actual differential privacy deployments).  
 121. See, e.g., Liu, supra note 18, at 497; Myres & Nelson, supra note 16, at 137; Andrea 
Scripa Els, Artificial Intelligence as a Digital Privacy Protector, 31 HARV. J.L. & TECH. 217, 220 
(2017) (“How much of an impact the data must have on the query to be excluded—and by extension 
how likely it is that a query would lead to personal identification—depends on a ‘privacy budget’ 
set by the holder of the data, which defines how much information leakage is considered accepta-
ble.”). 
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budget runs out the more you ask questions. That said, this is a well-known 
aspect of differential privacy, and one that can be controlled.  
 Differential privacy overcomes both how much noise and repeat questions 
with a adjustable knob known as epsilon. Knowing how to turn this knob de-
pends, essentially, on how privacy sensitive an output is. The following section 
discusses how epsilon responds to these two issues in more depth.  

D. What the Knob Means—Epsilon 
 Epsilon is the most important part of differential privacy.122 The reason for 
this, however, may not be what you are thinking.  

1. Non-Contextual Epsilon  
 A naïve way to think about epsilon would be to consider it the amount of 
noise that is added within a mechanism. A lot of noise is added with a small 
epsilon value (e.g., .01) and almost no noise is added with a large epsilon value 
(e.g., 10). If the output is privacy sensitive, like the answer to a sensitive ques-
tion such as “have you ever had an abortion,” then you will likely want more 
buffer room between the real answer and the mechanism’s output; but if the 
question is not considered very sensitive, such as “do you like pizza,” then you 
might use a larger epsilon value, meaning the provided answer is more likely 
close to the truthful answer.  
 This is how epsilon works in a mathematical sense, with more nonsensical 
output associated with low epsilon values and basically real outputs associated 
with high epsilon values, but the problem with this understanding is that it has 
no context. What does an almost-real output mean? Why should anyone be com-
fortable with a mechanism that used a small epsilon value but nonetheless out-
puts a number close to the real answer? Context is necessary and context for 
differential privacy comes from the adversarial perspective.  

2. Contextual Epsilon: Bounding  
 Epsilon matters is because it bounds the threat of privacy loss. Epsilon says: 
this output (i.e., mechanism’s answer) is no more meaningful than an increase 
in some percentage of a belief that it is correct.123 In other words, confidence in 

 
 122. Interestingly, it is also relatively scantly addressed in the technical literature, at least 
when it comes to setting an epsilon value. This is likely because setting epsilon requires considering 
the particular setting a mechanism is being applied to, which cannot be done a priori. See Cynthia 
Dwork et al., Differential Privacy in Practice: Expose Your Epsilons!, 9 J. PRIV. & 
CONFIDENTIALITY, no. 2, 2019, at 1 (arguing for an epsilon repository); see also Mary Anne Smart 
et al., Understanding Risks of Privacy Theater with Differential Privacy, 6 PROC. ACM HUM. 
COMPUT. INTERACTION, no. CSCW2, 2022, art. no. 342, at 1, 1 (2022), https://dl.acm.org/doi/pdf/ 
10.1145/3555762 (“In implementations of differential privacy, certain algorithm parameters control 
the tradeoff between privacy protection for individuals and utility for the data collector; thus, data 
collectors who do not provide transparency into these parameters may obscure the limited protection 
offered by their implementation. . . . ”). 
 123. True enough, this is not how statutes regulate privacy risk, neither is it how typical users 
think of privacy risk, and this is why a proxy value is needed to translate what differential privacy 
provides—bounded loss—to what data protective statutes require—a certain threshold of appropri-
ate reidentification risk. See infra Section III.B.2; see also Rachel Cummings et al., “I Need a Better 
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a guess at the real answer, when seeing the output of a mechanism, will never 
go beyond the limit set by epsilon. Your answer of “yes I have had an abortion” 
may only be 2% more likely to be the true answer, which is likely not high 
enough for me to trust that it is the true answer. Epsilon says that someone see-
ing your answer to this question will never have more than a 2% confidence 
boost that this is the real answer.124  
 In more concrete terms, differential privacy guarantees that an attacker, 
with some predefined, best-guess idea at an outcome, who views the results of 
a mechanism, cannot learn more, in percentages, than is controlled by epsilon.125 
For low values of epsilon, this means that the attacker’s initial suspicion (e.g., 
50%) will not change very much, probability wise, after seeing the mechanism’s 
output (e.g., from 50% to 52%). For high values of epsilon, this means the at-
tacker’s initial belief that an outcome is real (e.g., 50%) may grow substantially 
after seeing an output (e.g., from 50% to 75%). The same is true regardless of 
the level of initial suspicion. If an attacker knew the real answer was a number 
between one and ten, then attacker has a 10% guess out of the gate—but if ep-
silon was set to be high, then the attacker may, after seeing an output, believe 
there is a 95% chance that the observed output is real (i.e., believe that this spe-
cific value in a range of possibilities is likely to be the real answer with a 95% 
chance).126 And this is why differential privacy is only meaningful in terms of 
the particular epsilon a mechanism wields—a high epsilon means that there is 
practically no privacy, the results of the function are almost-but-not-quite right; 
a low epsilon means that there is practically no usefulness to the data, the results 
of the function are too incorrect to be useful. This is why we do not call a mech-
anism (i.e., recipe) differentially private, but ε-differentially private. The fol-
lowing Part takes this understanding one step further by unveiling the 
mathematical definition of differential privacy.  

III. DEFINITION AND STEP ONE 
 A more formal127 definition of differential privacy looks like this:  

 
Description”: An Investigation into User Expectations for Differential Privacy, in CCS ’21: 
PROCEEDINGS OF THE 2021 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS 
SECURITY 3037 (2021), https://dl.acm.org/doi/pdf/10.1145/3460120.3485252 (investigating user 
opinions on differential privacy across a variety of metrics). 
 124. See infra Figure 6 (showing how various values of epsilon impact an attacker confidence 
that a provided answer is the true answer). An answer to this question (have you ever had an abor-
tion) is either yes or no. Depending on the mechanism under consideration, epsilon may tell some-
thing like this: the attacker may gain at most a 2% boost in confidence in an answer—there is a 52% 
chance that the observed answer is the real answer.  
 125. Truthfully, it is 𝑒, Euler’s number, with an exponent of epsilon—𝑒!—but this simplifi-
cation is permissible for now. Additionally, differential privacy compares this value against a mul-
tiplicative measure of similarity between two similar datasets (see the definition in Part III infra). 
For more detail, see Salil Vadhan, The Complexity of Differential Privacy, in TUTORIALS ON THE 
FOUNDATIONS OF CRYPTOGRAPHY 347, 354–58 (Yehuda Lindell ed., 2017). 
 126. Perhaps it is very, very unlikely that a “real” answer is 1, but the output is 1, which means 
the attacker has “learned” a lot, in terms of confidence, that the observed output of “1” is the real 
answer. 
 127. This version omits certain details which are needed to mathematically prove the equation, 
but are unnecessary for a basic understanding.  
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ℙ[𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚(𝑖𝑛𝑝𝑢𝑡!"#"$%#&) = 𝑜𝑢𝑡𝑝𝑢𝑡]
ℙ[𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚(𝑖𝑛𝑝𝑢𝑡!"#"$%#') = 𝑜𝑢𝑡𝑝𝑢𝑡] 	≤ 𝑒( 

 
Although this equation may appear jarring, Part I covered its most difficult parts. 
For notation, the ℙ in both the numerator (top) and denominator (bottom) simply 
mean “the probability”; in this case, the probability that version one or version 
two of the mechanism’s input will have a particular (same) output, which has to 
be less than or equal to e, a number,128 raised to ε, the epsilon value discussed 
in Section II.D above. If the numerator were one and the denominator were two, 
then the equation would simply look like this: 1 ⁄ 2 ≤ e^ε. The number e, Euler’s 
number, may be simply thought of as approximately 2.71828 (i.e., 1 ⁄ 2 ≤ 2.7^ε). 
 The two datasets129 of the mechanism’s input (dataset1 and dataset2, nu-
merator and denominator, respectively) are meant to capture the situation where 
the data the function operates on differs in a small way, while using the same 
mechanism. For example, using Table 1’s “cookie eaten” column (mechanism: 
name the type of cookie eaten), dataset1 would be the a dataset with someone 
eating a gingersnap and dataset2 would be the same dataset, but this time with-
out that person eating the gingersnap.130 Differential privacy looks at the prob-
lem this way because it attempts to capture the reconstruction attack: If my best 
guess combination to produce an output similar to the mechanism’s output is as 
good as I can get—i.e., my combination which produces this output is only one 
missing piece away—then what does that mean for privacy loss? 
 In summary, at a high level, the mathematical definition of differential pri-
vacy requires that a mechanism’s output (e.g., cookie count) on a dataset (e.g., 
one gingersnap eaten by the individual) be close to the mechanism’s output (e.g., 
cookie count) on a similar dataset (e.g., zero gingersnaps eaten by the individ-
ual). Why differential privacy is able to offer a “privacy guarantee” is because 
it is able to define close mathematically: the left side of the equation (i.e., 
fraction) must be equal to or smaller than the right side (i.e., Euler’s number 
raised to epsilon). In other words, the mechanism makes a similar statement both 

 
 128. This number is known as Euler’s number and shows up across a variety of disciplines. 
See Stefanie Reichert, e is Everywhere, 15 NATURE PHYSICS 982, 982 (2019) (discussing Euler’s 
number). For our purposes, it may be helpful to think of the number as simply ~2.7.  
 129. Truthfully, differential privacy requires that this equation holds for all datasets. However, 
it may be easier to imagine a case where the two datasets are similar, but for one particular datum, 
a case which is most likely to produce a fraction equal to or larger than the value of epsilon. 
 130. More specifically, the person eating the gingersnap would be present (i.e., “in”) the first 
dataset, and not present (i.e., not “in”) the second dataset. In this way, the two datasets differ in 
regard to a single record. JOSEPH P. NEAR & CHIKÉ ABUAH, PROGRAMMING DIFFERENTIAL 
PRIVACY 19 (2022) (“Two datasets are considered neighbors if they differ in the data of a single 
individual. . . . The important implication of this definition is that [the mechanism’s] output will be 
pretty much the same, with or without the data of any specific individual. In other words, the ran-
domness built into [the mechanism] should be 'enough' so that an observed output from [the mech-
anism] will not reveal which of [dataset1] or [dataset2] was the input. Imagine that my data is 
present in [dataset1] but not in [dataset2]. If an adversary can’t determine which of [dataset1] or 
[dataset2] was the input to [the mechanism], then the adversary can’t tell whether or not my data 
was present in the input—let alone the contents of that data.”). 
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with and without the data from the person who ate a gingersnap—the gingersnap 
lover’s data must be, in some ways, meaningless.  
 For a more technical explanation, which is helpful didactically, we can take 
a look at a mechanism that has been around for a long time: randomized re-
sponse.131 Indeed, any mechanism, including those created before the invention 
of differential privacy, may be analyzed with the lens of differential privacy. 
Differential privacy did not invent privacy preserving algorithms, it is simply a 
means of measuring one type132 of privacy loss that an algorithm encumbers. If 
a mechanism has some measure of randomness, then the mechanism may133 be 
proved to have a calculable ε, representing an ε-differentially private algorithm. 
Randomized response, in the setup given below, has an ε value of ~1.098.  

A. Mechanism—Randomized Response: A Teaching Tool 
 Imagine we are using the following algorithm:  

 
 
 

 
 131. To be sure, our understanding of differential privacy so far, and the eventual two-step 
test discussed in Part IV supra, applies to situations beyond randomized response; randomized re-
sponse simply presents a simplistic way to understand differential privacy. The same is true for our 
two-step test’s direct applicability to differential privacy in the “query” mode—that is, a question is 
asked of a mechanism and a privatized response is provided in return. There are many ways to 
achieve differential privacy (e.g., local differential privacy) and we picked what we thought was the 
easiest from a didactic standpoint.  
 132. To be sure, differential privacy is one way, a mathematical way, of looking at privacy. 
This is not to say no other means exist to describe privacy or that differential privacy fully captures 
an understanding of privacy. See Dwork et al., supra note 70, at 77 (“The limits imposed by recon-
struction and tracing attacks are absolute: no mechanism protecting against reconstruction and trac-
ing can introduce less noise than is required to stymie the attacks discussed earlier. However, there 
are other adversarial goals, such as learning the sickle cell status of a specific individual, that do not 
require reconstruction, re-identification, or tracing, and each of these new goals may have its own 
set of attack strategies. A privacy solution that rules out reconstruction and tracing may not rule out 
attacks satisfying these other goals. The cryptographic approach to this dilemma is to first define 
privacy and then provide techniques that provably satisfy this definition. If the definition is too 
weak, in that it fails to protect against an important class of adversarial goals, it can be strengthened 
and new algorithms designed. The advantage to the definitional approach is that, because the defi-
nitions are getting stronger, progress is made. Differential privacy was first proposed in 2006 and 
so far has not required strengthening.”) 
 133. This is not yet a proved assertion! The idea, however, has grounding in the literature. See 
Dwork & Roth, supra note 1, at 216.  
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Figure 4. Algorithm 2 

 
 This mechanism134 has an input of a question and an output of the answer 
to that question.135 The mechanism uses coin flips to insulate a respondent’s 
secrets, similar to Alice’s random-age generator.136 If the coin lands tails, then 
the question is answered truthfully, but if the coin lands heads, then the question 
is answered true or false depending on another coin flip. In this way, the mech-
anism buys privacy with the fifty-fifty–tails-heads odds.137  
 We may analyze138 this mechanism by noting all possible outcomes. We 
can then find the best-case scenario for an attacker to learn as much as possible 

 
 134. See generally Dwork & Roth, supra note 1; Daniel Kifer, Introduction to Differential 
Privacy, NBER (July 17, 2020), https://www.nber.org/sites/default/files/2021-01/KiferIntroduction. 
pdf [https://perma.cc/72TN-NYZY]; Mark Bun, A Teaser for Differential Privacy, CS.PRINCETON 
(Dec. 8, 2017), https://www.cs.princeton.edu/~smattw/Teaching/521fa17lec22.pdf [https://perma. 
cc/5UZU-UZVY]; Damien Desfontaines, Differential Privacy in (A Bit) More Detail, DESFONTAIN.ES, 
https://desfontain.es/privacy/differential-privacy-in-more-detail.html [https://perma.cc/C6TX-2J5K] 
(Feb. 20, 2019).  
 135. “Sensitive” here being illegal behavior. Randomized response has been used to assess the 
state of abortions pre-Roe v. Wade and tax evasion. See James R. Abernathy et al., Estimates of 
Induced Abortion in Urban North Carolina, 7 DEMOGRAPHY 19 (1970); Jodie Houston & Alfred 
Tran, A Survey of Tax Evasion Using the Randomized Response Technique, 13 ADVANCES 
TAXATION 69 (2001); Stanley L. Warner, Randomized Response: A Survey Technique for 
Eliminating Evasive Answer Bias, 60 J. AM. STAT. ASS’N 63 (1965); Bernard G. Greenberg et al., 
The Unrelated Question Randomized Response Model: Theoretical Framework, 64 J. AM. STAT. 
ASS’N 520 (1969). 
 136. See supra Section II.B. 
 137. See Dwork & Roth, supra note 1, at 255.  
 138. This is the Bayesian method of analysis. That is a way of thinking about differential pri-
vacy. See Desfontaines, supra note 134.  

Algorithm 3 Sandwich—Peanut Butter and Jelly
Input: Bread, Peanut Butter, Jelly

Algorithm 1 Sandwich—Peanut Butter and Jelly
Input: Bread, Peanut Butter, Jelly

1: with
�
first slice of bread

�
. pre-sliced bread

2: add Peanut Butter to slice
3: with

�
second slice of bread

�

4: add Jelly to slice
5: Sandwich = merge first and second slice

Output: return Sandwich

Algorithm 2 Randomized Response
Input: Are you a member of the Communist Party?

1: flip a coin . 50% chance heads or tails
2: if tails:
3: Response = tell the truth
4: if heads:
5: flip a second coin
6: if heads:
7: Response = “Yes”
8: if tails:
9: Response = “No”

Output: return Response
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from the response.139 Notably, an attacker’s best-case scenario is the one which 
has the most likely outcome.140  
 As Figure 4 shows, only two possible outcomes for Algorithm 2 exist: yes 
or no. You either are or are not a member of the Communist Party. Given the 
definition of differential privacy from above, we may consider the case where 
inputdataset1 is a yes—a “dataset” with a person who would answer yes (“real 
answer”) to the question being asked. Therefore, the only other possibility for 
inputdataset2 is a “no,” and the person would answer “no” as the real answer. 
Stated otherwise, what is the probability (numerator) of a “yes” (output) with 
someone whose real answer is yes, and what is the probability (denominator) of 
a “yes” (output) with someone whose real answer is no—we are trying to figure 
out all the ways a yes occurs, letting us know what the probability of seeing a 
yes is. This gives us the probability of a yes in the best case for the attacker (i.e., 
the most we can learn when we see the output of the randomized response algo-
rithm—the worst case for privacy).  

 
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑦𝑒𝑠	𝑔𝑖𝑣𝑒𝑛	𝑎	𝑟𝑒𝑎𝑙	𝑎𝑛𝑠𝑤𝑒𝑟	𝑜𝑓	𝑦𝑒𝑠
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎	𝑦𝑒𝑠	𝑔𝑖𝑣𝑒𝑛	𝑎	𝑟𝑒𝑎𝑙	𝑎𝑛𝑠𝑤𝑒𝑟	𝑜𝑓	𝑛𝑜 	≤ 𝑒( 

 
 For the numerator (i.e., top line), a yes can occur with a 50% chance of 
being truthful (line 2, Algorithm 2) or a 50% chance of landing heads and then 
a 50% chance of landing on heads again (line 6, Algorithm 2). Together, this is 
a 75% chance (.50 + (.50 * .50)). For the denominator (i.e., bottom line) to be 
yes with a real no answer, the first flip must be heads (line 4, Algorithm 2) and 
the second flip must also be heads (line 6, Algorithm 2). This case happens with 
a 25% chance (.50 * .50). Therefore, assuming we are talking about the proba-
bility of a yes in general, we can say that there is a (.75 / .25) fraction that this 
occurs, or a whole number of three. We plug this into the differential privacy 
equation: 
 

3	 ≤ 𝑒( 
 

 
 139. In this case, we are revealing the mechanism’s epsilon value instead of setting it, given 
that the algorithm is stated as fact. Typically, given the popular Laplace method used in differential 
privacy, epsilon is an input variable to the question. In this way, epsilon may be modified to meet a 
particular privacy-utility balance. The randomized response protocol described in Figure 4’s Algo-
rithm 2, however, uses set coins to achieve randomness. Therefore, Algorithm 2’s epsilon value is 
more accurately “identified” via proof rather than modified on an ad hoc basis.  
 140. By analogy, if a ball was hidden underneath one of two buckets, bucket #1 with a 20% 
chance and bucket #2 with an 80% chance, and you had to guess which bucket the ball was in, you 
would logically pick the second bucket. Time-flipping this, if the ball is out and you had to guess 
which bucket it came from, the best-guess is bucket #2. Likewise, given that we are analyzing all 
possible inputs given a particular output, the output with the highest probability will be the “best 
case” for the attacker; if this outcome is returned by the mechanism, then there is a higher chance 
that is the “real” answer. 
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A math trick allows us to rephrase this statement to make it cleaner: the natural 
logarithm of three must be less than or equal to epsilon. This number, rounded, 
is approximately 1.098. 
 This results in the worst-case scenario for the respondent (i.e., highest prob-
ability of seeing a yes), meaning that this value sets our epsilon in this particular 
algorithm. Algorithm 2 is therefore deemed (1.098)-differentially private. Im-
portantly, as Section II.D.2. emphasized above, this is an expression regarding 
the bounds of what an attacker may learn when seeing the output of a mecha-
nism. 

B. Differential Privacy Takeaways 
 Taking a step back and focusing on the task at hand—translating differen-
tial privacy into something legally meaningful—a problem is found with the 
previous Section’s closing statement: it is legally meaningless.141 Data regula-
tion does not speak directly to differential privacy and the idea of bounded pri-
vacy loss; instead, statutes regulating data require data to be kept confidential 
(i.e., not shared) if the data is considered PII.142 And although one way to trans-
form PII into non-PII is to sanitize it, it is difficult to know exactly how sanitized 
resulting outputs are and how much sanitization a statute requires. Therefore, 
what needs to be found is a common measurement between what a statute deems 
sufficient sanitization and what a mechanism technically provides.  
 Luckily, differential privacy offers one of the most applicable, system-to-
system comparisons for privacy that exists: epsilon—privacy by any other 
name.143 If properly framed, the attributes inherent to differential privacy allow 
it to be consistently and repeatably applied to legal questions. In this way, what 
a mechanism technically provides may be rephrased, legally speaking, as 
reidentification risk. Before diving into possible options for framing differential 
privacy in terms of a reidentification risk, however, we must first address the 
fact that, mathematically speaking, differential privacy says nothing about 
reidentification risk.144  

1. Reidentification: Appropriate Overprotection145  
 To clarify, reidentification occurs when an individual’s data found within a 
dataset is no longer anonymous. An attacker is able to point at a record and say 

 
 141. Previous work has attempted to make this translation easier, but a generally applicable 
lens may nonetheless be beneficial. See, e.g., Nissim et al., supra note 20 and accompanying text. 
 142. See infra notes 173–178 and accompanying text.  
 143. See, e.g., Dwork et al., supra note 122, at 4. 
 144. True enough, differential privacy does protect against reidentification risk, but, speaking 
technically, the equation in Part III’s introduction does not include a statement about the reidentifi-
cation of individuals. See id. at 2–3 (discussing reidentification risk).  
 145. We use the term “reidentification risk”—and not something like “disclosure risk”—be-
cause this is the term which is more likely common to a legal audience; in fact, this is a term which 
has already been picked up by several courts debating issues of data sanitization requirements. See 
infra Section IV.A. We note, however, that the term is, in some ways, lacking. For example, assum-
ing a nearly nonexistent privacy budget (i.e., epsilon) and a query of “how many people have 
Crohn’s disease” would not, on its face, reidentify someone. Learning the truth of this question is 
not, per se, a reidentification. That said, it does increase the risk of reidentification, which is what 
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“this is your data,” or, for differential privacy in the query setting discussed so 
far,146 see the output of a mechanism (e.g., did Abigale eat a chocolate chip 
cookie—yes) and know it is real.147 This is a spectacular failure for a dataset—
game over for an individual.  
 Importantly, differential privacy does protect against reidentification at-
tacks, but it also protects against other types of attacks as well. Differential pri-
vacy must protect against all types of attacks for its guarantee to hold.148 For 
example, in a successful tracing attack, which is covered by differential pri-
vacy’s protection guarantee, an attacker merely learns whether an individual is 
in a dataset, not what the individual’s data is (e.g., is Abigale in the “cookies 
eaten” dataset).149  
 The problem is that summarizing differential privacy in terms of reidentifi-
cation risk inherits this overprotection, and what this means for our legal com-
parator, introduced in Section III.C below, is that we will be necessarily 
overprotecting data. That said, hinging protection on an overinclusive definition 
has several advantages.  
 First, using overprotection provides breathing room to an otherwise uneasy 
ask—releasing protected data into the wild. Understanding that the measure of 
reidentification risk borne from a differential privacy mechanism assumes a 
worst-case scenario gives balance to that proposition. Second, and more im-
portant, this amount of overprotection is necessary to prevent new, currently 
unknown attacks from degrading current standards of sanitization (i.e., differ-
ential privacy is futureproof). As discussed in Section IV.A.2 below, a thorn for 

 
statutes aim to regulate. Our two-step test using the “guess difference” value aims to provide a 
roadmap for interpretation—a translation—of differentially private mechanisms in a legal setting, 
not create a new, rigorous, mathematical way of measuring the risk that mechanisms encumber (i.e., 
something like the disclosure risk of a mechanism). See supra Section III.B. 
 146. Differential privacy has many different implementations, generally categorized in either 
a central, trusted model (i.e., the query-response mode would fit here, because we are putting our 
trust in the entity handling the answering of a question—that entity knows the “true” answer and 
returns a sanitized answer) or a localized, untrusted model (i.e., where no “real” data is shared with-
out undergoing a process of sanitization first). See generally Damien Desfontaines, Local vs. Central 
Differential Privacy, TED IS WRITING THINGS, https://desfontain.es/privacy/local-global-different 
ial-privacy.html [https://perma.cc/2AG9-QY45] (Sept. 30, 2021). In this Article, we discuss primar-
ily the query-response implementation of differential because it is somewhat easier to understand 
when learning the concept. Questions of “how private” are easily mapped, for example, to how 
accurate the response to a specific query is. Reasoning about how differential privacy applies to 
something like an entire dataset produced with differential privacy or how privacy is affected in the 
local version of differential privacy is out of the scope for this Article; however, the two-step test 
introduced here would nonetheless be applicable. See, e.g., Xingxing Xiong et al., A Comprehensive 
Survey on Local Differential Privacy, SECURITY & COMM. NETWORKS, Oct. 8, 2020, art. no. 
8829523, at 1, 1–3 (2020) (providing a summary of techniques for local differential privacy and also 
discussing centralized differential privacy); NINGHUI LI ET AL., DIFFERENTIAL PRIVACY: FROM 
THEORY TO PRACTICE 1–30 (Elisa Bertino & Ravi Sandhu eds., 2022).  
 147. See also infra note 201 and accompanying text (discussing a reidentification).  
 148. See infra Section IV.A. This is partly why differential privacy has faced criticism in over-
protection; it necessarily operates in a world where two similar datasets exist, and reasons about 
what information is nonetheless learned from that world. See infra note 206 and accompanying text.  
 149. See id. at 1–2 (“Tracing can be significant if, for example, the dataset comprises medical 
records of participants in a pharmaceutical trial or patient records from an abortion clinic.”). 
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many of the standards in use today is that new attacks are later invented that 
undermine the assurance of outdated methods to sanitize data—what can you 
do with anonymized Massachusetts hospital information?150 With this in mind, 
we turn to identifying an aspect of an ε-differentially private mechanism that is 
transferrable to a legal understanding of statutorily mandated data confidential-
ity.  

2. Legal Comparator  
 Distilling a legal comparator from an ε-differentially private mechanism 
first requires an understanding of what various values of epsilon mean for a pri-
vacy loss. To aid this understanding, it is helpful to visualize the bounds of Al-
gorithm 2’s mechanism (as shown in Figure 4).151 
 That mechanism had an epsilon value of 1.098, which produced an upper 
bound of 75%. In the best-case scenario for an attacker, an observed output 
would be known to be real with a 75% confidence. Stated otherwise, if the at-
tacker sees that an output to “are you a member of the Communist Party” is yes, 
then the attacker has a 75% confidence level that this was the participant’s real 
answer—there is a 75% chance that this person is a member of the Communist 
Party. A visualization here allows us to more fully contextualize that 75%.  

 
 150. See Ohm, supra note 11, at 1720–21 (“At the time [the Massachusetts Group Insurance 
Commission (GIC)] released the data, William Weld—then Governor of Massachusetts, assured the 
public that GIC had protected patient privacy by deleting identifiers. In response—then graduate 
student Sweeney started hunting for the Governor’s hospital records in the GIC data. She knew that 
Governor Weld resided in Cambridge, Massachusetts, a city of fifty-four thousand residents and 
seven ZIP codes. For twenty dollars, she purchased the complete voter rolls from the city of Cam-
bridge—a database containing, among other things, the name, address, ZIP code, birth date, and sex 
of every voter. By combining this data with the GIC records, Sweeney found Governor Weld with 
ease. Only six people in Cambridge shared his birth date; only three of them men, and of them, only 
he lived in his ZIP code.”) (citing Sweeney, supra note 112). To be sure, this example relies on data 
which did not adhere to a statute like HIPAA. Nonetheless, this canary does exemplify the necessity 
for sanitization standards to be futureproof. See also infra notes 194–196 and accompanying text 
(applying these same types of reidentification attacks to statutorily-compliant datasets). 
 151. See supra notes 134–140 and accompanying text (discussing where the probabilities 
come from).  
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Figure 5. Bounding of The Randomized Response Algorithm152 

 The attacker in this mechanism has a 50% chance of correctly guessing an 
output a priori: an answer to a yes or no question is either yes or no. This 
knowledge is represented as the initial suspicion found along the x axis, at the 
0.5 mark. Tracing this initial suspicion value vertically to the y axis will end at 
the thick black diagonal line, which represents what may be thought of as the 
home base position (i.e., the attacker did not learn anything from initial to up-
dated suspicion). Using Figure 4’s Algorithm 2, we found that the attacker’s 
guess may be adjusted by at most 25% for a highest-possible confidence of 75%. 
This is represented by vertically adding 25% to that diagonal line, ending at 75% 

 
 152. This image (showing the bounding of the randomized response algorithm) is a modified 
version of a figure found in Dr. Desfontaines’s dissertation. See Damien Desfontaines, Lowering 
the Cost of Anonymization 1, 26–30 (2020) (Ph.D. dissertation, ETH Zurich), https://desfontain. 
es/thesis.pdf [https://perma.cc/352J-4SH2] (Fig. 2.1, epsilon set to the natural logarithm of three). 
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along the y axis. This point on the y axis is the a posteriori confidence, belief in 
the correctness of an output after seeing the mechanism’s output.153 
 The final value here is known as the upper bound—an adversary can gain 
no more confidence when witnessing a mechanism’s output than this percentage 
(i.e., that a provided answer by a mechanism is the real, truthful answer). The 
lower bound moves the confidence in the opposite direction and represents the 
best-case scenario for a respondent. Based on an observed output of a mecha-
nism (i.e., a “no” answer in randomized response), the attacker may lose confi-
dence in a guess (e.g., you thought there was a 50% chance of something 
happening, but when seeing a particular output value, your confidence drops to 
25%).154 Another way to think of these two boundaries is that not all answers 
are equal, some answers may be more likely than others, and therefore an at-
tacker’s confidence may change depending on the observed output. This change 
occurs because of how the mechanism is built. 
 To practicalize this dance of probabilities,155 imagine you owned a crystal 
ball which tells you whether it will rain tomorrow: yes or no. Unfortunately, 
because the ball is magical, it is regulated, and you are only allowed to access 
predictions from the ball which have been sanitized using differential privacy. 
Further assume that you know the mechanism the crystal ball uses has an epsilon 
value of 1.098. Given that there is, at baseline, a 50% chance that it will rain 
tomorrow, if your crystal ball answers “yes,” then you can be 75% confident 
that it will rain tomorrow—and this might be high enough for you to carry an 
umbrella. The output of the mechanism, even though differential privacy is be-
ing used, greatly impacted your decision to carry an umbrella.  
 On the other hand, assume the crystal ball were using a (.08)-differentially 
private mechanism to sanitize its future-predicting outputs.156 If you had an a 
priori guess that it would rain tomorrow, 50%, and the crystal ball said “yes”—
i.e., the same setup from before, with a revised epsilon value—then you would 
only have gained a 2% boost in confidence. You are now able to say there is a 
52% chance of rain tomorrow—and that might not be high enough for you to 
take an umbrella. In other words, learning the output of this particular (.08)-
differentially private mechanism does very little for your choice in umbrella en-
cumbrance.  

 
 153. While the initial suspicion’s value depends on the type of question being asked (e.g., a 
binary yes or no question or an ordinal definitely, probably, equally likely question) the updated 
suspicion’s value depends on epsilon. See infra Section III.C.  
 154. This work focuses on the upper bound because it represents the best-case scenario for an 
attacker, allowing us to make more concrete statements which cover all possible outputs from a 
mechanism.  
 155. These are loose terms because the random-age mechanism does not have the same epsilon 
value as Algorithm 2 nor does it have the same initial suspicion (i.e., there is not a binary “yes” or 
“no” answer, but rather a range of numbers that would be provided by the mechanism).  
 156. See also Vito D’Orazio et al., Differential Privacy for Social Science Inference, Paper 
Presented at the Summer Meetings of the Society for Political Methodology (July 24, 2015), http:// 
www.sas.rochester.edu/psc/polmeth/papers/Dorazio_Honaker_King.pdf [https://perma.cc/95MS-
Y24L] (showing how various epsilon values affect the attacker’s best-guess scenario: (100 * 50) / 
(50 + e^(-(ln(3)))(100-50)) = 75% as the updated suspicion value, assuming an initial suspicion of 
50% and a epsilon value of ~1.098).  
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 This fluidity in confidence is what must be translated into legal language. 
At a high level, lower epsilons mean that the data provided by a mechanism is 
more sanitized, and a statute that is highly sensitive to the risk of a privacy loss 
(i.e., risk of reidentification) would be more likely to approve the mechanism’s 
outputs. However, there are a few important nuances not captured by such a 
cursory view. Three options may exist for the accurate and portable packaging 
of a mechanism’s risk of reidentification.157 Each of these options is discussed 
in turn. 

a. Epsilon Alone  

 One possibility for translating a mechanism’s legal risk is simply using ep-
silon alone. On the positive side, this approach places the focus on an easily 
adjustable quantity, allowing simple changes in epsilon to reposition the legal 
viewpoint of a mechanism’s sanitization abilities. The downside, however, is 
that this approach is not very granular. Low epsilons may be considered more 
private, as “small [epsilons] are happy epsilons,” but distinguishing between an 
epsilon of .01 versus .05 versus 1.0 would be practically difficult.158 At the same 
time, this could impact a decision by a court given that not all data are created 
equal, and the purposes of data exploration are also not equal (i.e., some objec-
tives are more worthwhile than others).159 If a court has trouble distinguishing 
between “small” epsilons, then it could lead to permissible sharing when the risk 
is, in reality, too high.  
 Additionally, there is no context provided when considering an epsilon 
value by itself, which may produce a rubber-stamping effect on certain mecha-
nisms. The quantity being assessed here should be the mechanism’s ability to 
provide an attacker with a lot or a little information. Simply looking at epsilon 
alone does not provide a sense for how much information is being gained by the 
attacker. Indeed, an epsilon value of 1.098 may seem low, but comports with a 
25% boost in confidence when observing some outputs. Depending on the par-
ticular scenario and an initial suspicion probability, a 25% boost could be an 
untenable amount of privacy loss. Therefore, epsilon alone is likely a nonideal 
fit for a legally portable understanding of differential privacy.  

b. Upper Bounds 

 A second option for a legal comparator may be to consider the upper bound 
produced by a mechanism (e.g., the 75% in Algorithm 2). This approach has the 
benefit of capturing the worst-case scenario for any users’ data that may be in 

 
 157. True enough, there are likely many more options than this. We would urge more technical 
work to look into the guess difference and assess other viable options for identifying a proxy value 
for reidentification risk.  
 158. Dwork et al., supra note 122, at 7–8; see also NEAR & ABUAH, supra note 130, at 19 
(“How should we set 𝜖 to prevent bad outcomes in practice? Nobody knows. The general consensus 
is that 𝜖 should be around 1 or smaller, and values of 𝜖 above 10 probably don’t do much to protect 
privacy—but this rule of thumb could turn out to be very conservative.”). 
 159. Dwork et al., supra note 122, at 8. For example, a social media company exporting all of 
its data to learn how to best increase click counts is an in-kind difference to a hospital releasing 
health records to help patients who suffer from a particular medical illness.  
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the dataset. As not all answers provided by a mechanism carry the same amount 
of risk (e.g., in the randomized response mechanism discussed in Section III.A 
above, observing a “yes” answer carried the most risk, with an upper bound of 
75%), this quantity appropriately captures all possible output, best case and 
worst case for the attacker.  
 The downside to this approach, however, is that only the upper limit is taken 
into consideration. In this way, this measurement may oversell the adversary, 
leading to a court being more wary of a situation that presents less risk than 
perceived. For example, at an initial suspicion level of 75% and an epsilon value 
of one, the attacker ends with an 89.08% upper bound percentage.160 Although 
75% is fairly high to begin with, the epsilon value being used here is in some 
ways low. Despite this, a nearly 90% upper bound probability is unlikely to be 
approved by a court looking to protect a user’s data.  
 In summary, regardless of how it may be beneficial to consider the worst-
case scenario given that we would be matching this number with the maximum 
risk permitted by a statute, this comparator ignores important context like a pri-
ori guessing ability, which provides useful context for a court to consider. For 
this reason, the upper bounds are less likely to be the best fit for the type of legal 
comparator we are looking for.  

c. Guess Difference 

 A final possibility is to use what we deem the guess difference. The guess 
difference is the difference between the initial suspicion and the upper bound; 
in short, taking out what the attacker already knew and only keeping what was 
learned from the algorithm’s output in the best-case scenario for the attacker. 
For example, an initial suspicion of 50% with epsilon 1.098 (i.e., Algorithm 2) 
produces an upper bound of 75%; therefore, we have a guess difference of 25%, 
the difference between the initial suspicion and the upper bound.  
 This approach allows us to take into consideration the fact that some ques-
tions are more privacy sensitive than others by relying on the upper bound, but 
tempers this by removing the default guessability of a query. To be sure, in this 
way, the guess difference may undersell the attacker’s overall guessing ability. 
For instance, it might seem odd that a high initial suspicion and low epsilon 
value nonetheless produces a low guess difference score, despite the fact that 
the attacker had a high likelihood of guessing initially and that guess was only 
made stronger after seeing the output of a mechanism.161 Looking closely at the 
aims of differential privacy, however, shows that this is likely a moot point.  
 Differential privacy does not concern itself with information not gleaned 
via the dataset.162 Imagine that an individual who has a particular disease par-

 
 160. See D’Orazio et al., supra note 156, at 7.  
 161. It would seem that differential privacy is not protecting the output given the high initial 
guessing ability of the attacker, and the guess difference score would obscure this understanding 
because it produced a low value. 
 162. This is an adaptation of the example provided by Dwork and Roth. See Dwork & Roth, 
supra note 1, at 215–16 (“A medical database may teach us that smoking causes cancer, affecting 
an insurance company’s view of a smoker’s long-term medical costs. Has the smoker been harmed 
by the analysis? Perhaps—his insurance premiums may rise, if the insurer knows he smokes. He 
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ticipates in an experimental drug study where the data from the study is pro-
tected using differential privacy. Further imagine that the published results of 
the study are that the experimental drug increased life expectancy rates by one 
year. Would we say that differential privacy failed to protect this individual if 
the individual’s insurance rates are increased after the insurance provider learns 
of this exact study and its conclusion? No.  
 The insurance company learned from the broad result published by the 
study, which differential privacy does not claim to protect. If, on the other hand, 
the insurance provider increased the individual’s rates after querying the dataset 
and coming up with some confidence level that the individual was “in” this da-
taset, meaning the individual had the potentially life-threating disease, then we 
would say that differential privacy failed to protect the individual. Differential 
privacy allows us to draw hard lines around how much the insurance company 
may learn from the data—and guess difference captures that ability. For in-
stance, we may say that the insurance company will never be able to increase a 
blind guess likelihood by more than 2%; a blind guess that this individual is a 
smoker cannot be confirmed by querying the data because the likelihood that 
that guess is correct will never be increased by more than 2%, no matter what 
result is found in the dataset. Stated otherwise, it would be illogical to conclude, 
based on the results of any query on this dataset—which the individual is in fact 
“in”—that the individual’s rates should be increased. The insurance company 
may nonetheless increase the individual’s rates, but would not be basing this 
decision on a reliable fact learned from the dataset.  
 Overall, the guess difference approach provides a singular, but context-
filled legal comparator. This quantity highlights differences in risk when epsilon 
is small, allowing a court to meaningfully interpret the .01 to .05 to 1.0 epsilon 
range, it incorporates the worst-case scenario for any user who is in a dataset, 
by working with the upper bound set by a particular epsilon value, and it accords 
with preexisting considerations of reidentification risk, as discussed further in 
Section IV.A below. Therefore, we conclude that out of the three options dis-
cussed above, guess difference should be the quantity used to interpret the san-
itization abilities of an ε-differentially private mechanism from a legal vantage. 
The following Section generalizes the guess difference as a proxy for a mecha-
nism’s risk of reidentification.  

C. Step One: Reidentification Risk vis-à-vis the Guess Difference 
 Taking these options together leads to the conclusion that guess difference 
is the most appropriate legal comparator—guess difference may be considered 
a proxy value for the reidentification risk a mechanism encumbers. This option 
adequately balances the attacker’s best-case scenario, but tempers that confi-

 
may also be helped—learning of his health risks, he enters a smoking cessation program. Has the 
smoker’s privacy been compromised? It is certainly the case that more is known about him after the 
study than was known before, but was his information ‘leaked’? Differential privacy will take the 
view that it was not, with the rationale that the impact on the smoker is the same independent of 
whether or not he was in the study. It is the conclusions reached in the study that affect the smoker, 
not his presence or absence in the data set.”). 
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dence with the a priori guessability of the query. In this way, the measurement 
does not oversell or undersell the sanitization abilities of a mechanism. This 
metric will therefore form step one of our two-step test permitting the compari-
son between what differential privacy provides and data-protecting regulation 
mandates. 

1. Epsilon Visualized 
 With that in mind, we may visualize a range of popular epsilon values in 
terms of the guess difference each mechanism provides: 
 

 
Figure 6. Guess Difference Visualized163 

 
 163. This image is a modified version of a figure found in Dr. Desfontaines’s dissertation. See 
Desfontaines, supra note 152 (adapted from fig. 2.2). An epsilon value of .08 has a 2% guess dif-
ference assuming an initial suspicion of 50%. This is found by taking the initial suspicion (assumed 
here at .5) and subtracting it from the updated suspicion (equated with epsilon set at .08, for a value 
of .52), in the appropriate order. The result is .52-.5=.02. Likewise, an epsilon value of 1.098 has a 
25% guess difference. This is found by taking the initial suspicion (assumed here at .5) and sub-
tracting it from the updated suspicion (equated with epsilon set at 1.098, for a value of .75). The 
result is .75-.5=.25. This simple analysis may be applied to any epsilon value as long as the initial 

U
pd

at
ed

 S
us

pi
ci

on

Initial Suspicion

  1.098

2% Guess Difference

Epsilon (ε)

2.0

1.5

5.0

0.3

0.5

0.4

0.2

25% Guess Difference

1.0

0.08

0.
1 .0

3

ε =

ε =

0.9

0.8

0.75

0.7

0.6

0.52
0.5

0.4

0.3

0.2

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9



 ε-Differential Privacy, and a Two Step 
 

 
SPRING 2023 305 

 
 Figure 6 shows epsilon values (i.e., the curved lines) ranged .03 to 5, with 
smaller epsilon values found closer the thick black diagonal line. The diagonal 
line, as discussed in Section III.B.2 above, may be thought of as the home base 
for an inquiry when visualizing a mechanism this way (i.e., nothing is learned 
from initial suspicion to updated suspicion—perfect privacy164).  
 To find a guess difference using Figure 6,165 first locate an initial suspicion 
value provided by a mechanism along the x axis (i.e., along the bottom).166 Then, 
take note of the epsilon value of the mechanism under consideration. Each ep-
silon value is associated with a resulting line drawn across the top half and bot-
tom half of the figure (upper and lower bound, respectively). This line may be 
called the epsilon line.167 Trace the initial suspicion value along the x axis ver-
tically until you hit the thick black diagonal line. Take note of this point (what 
may be called home base) and then keep tracing it until you cross the epsilon 
line. The point where the epsilon line meets the vertical line drawn by the initial 
suspicion value is called updated suspicion. Guess difference is equated by sub-
tracting the update suspicion number from the home base position (i.e., where 
the initial suspicion line meets the thick black horizontal line). As an example, 
in Figure 6, we can see that the initial suspicion of .5 meets the epsilon line at 
.52 when using an epsilon value of .08. This would be a guess difference of .02 
or 2%.  
 Overall, one can visually see the guess difference by looking at the distance 
between thick black horizontal line in that home base position and then measur-
ing to the updated suspicion value. As a whole, this visualization allows us to 
see how larger values of epsilon affect the guess difference, with an epsilon 
value of 1.098 being much farther from the diagonal line than the .03 or .08 
epsilon values.  

 
and updated suspicion values are also known. See also D’Orazio et al., supra note 156, at 5–8 (same, 
providing a table of upper bounds for a sampling of epsilon and initial suspicion values).  
 164. This illustration also allows us to easily see that higher epsilon values are “less private”—
privacy degrades as we move away from the thick black diagonal line.  
 165. This conceptualization of guess difference is intuitive for a Bayesian analysis of random-
ized response, but other scenarios using differentially private mechanisms exist, such as aggregate 
statistics. For more detail, see D’Orazio et al., supra note 156, at 5–8 (“Table 1 shows the effect of 
different epsilon values on our belief that [a provided answer is the “real” answer (i.e., T = 1)]. The 
left column is our prior belief that T = 1. Each column to the right contains an upper bound on our 
updated belief having learned [the output of the mechanism]. For example, if there is a 99% chance 
of John’s political affiliation being known, and then we learn [the mechanism’s output] with an 
epsilon of 0.5, then our belief about John’s political affiliation can become at most 99.39%.”); see 
also supra note 146 and accompanying text.  
 166. This percentage is given based on the particular issue being solved with the differentially 
private algorithm. 
 167. Flatter epsilon lines denote lower epsilon values while more curved lines denote higher 
epsilon values. This occurs because lower epsilon values do not provide as much of a boost in con-
fidence as higher epsilon values do.  
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2. Takeaways 
 Assessing an ε-differentially private mechanism from a legal vantage may 
be easily accomplished by considering the guess difference—what may be 
deemed the risk of reidentification a mechanism accommodates. This value is 
found by knowing: (1) the epsilon value associated with the mechanism; (2) the 
initial suspicion value provided by a mechanism (i.e., likelihood of guessing a 
“real” output without seeing a mechanism’s output); and (3) the updated suspi-
cion value of the upper bound of a mechanism. When subtracting out the initial 
suspicion from the updated suspicion, derived using the updated suspicion and 
epsilon value, we arrive at the guess difference; essentially, the risk of reidenti-
fication a mechanism permits. From an attacker’s perspective, we can guarantee 
that there is no more than a guess difference chance that an attacker will be able 
to take the output of a mechanism and say: “This is the real answer.”168 
 Step one adds context to a mechanism and provides a legally framed bench-
mark that may be measured against to a variety of statutes to assess whether the 
mechanism produces private-enough data to permit sharing. The next Part in-
troduces the legal corollary against which the guess difference is measured: a 
statute’s threshold for reidentification risk.  

IV. STEP TWO 
 The following Part examines step two: a statute’s maximum allowance for 
reidentification risk. Step two, practically, requires a statute-by-statute inspec-
tion which is in many ways lackluster when attempted from the armchair. That 
said, an argument about why the risk of reidentification is at the heart of all data 
protective statutes (i.e., the applicability of step two), and why the quantity dis-
cussed in step one speaks the same language as step two will be necessary. Fol-
lowing these two arguments, we look at how HIPAA may be interpreted under 
the two-step test. 

A. Statutory Privacy 
 Wearing a legal hat while considering the implications of differential pri-
vacy gives rise to two primary obstacles.169 First, statutes regulating data do not 
speak in terms of a measurable privacy loss. Instead, shareable data is protected 
under explicate terms like “remove 𝑛 identifiers” or ambiguous terms like “re-
move any information which could lead to identification.” Regardless of the 
phrasing, however, both terms belie what sits at bottom: protection against the 
risk of reidentification. Second, when a statute does find itself associated with a 
measurable reidentification risk, one which sets the bar for permissible data 
sharing, the end result has been, in many ways, meaningless—the permissible 

 
 168. We discuss the two-step test in regard to the query-type interaction with a differentially 
private mechanism, although other forms of differential privacy exist. See supra note 146 and ac-
companying text.  
 169. For an overview of differential privacy and policy issues, see generally Vitaly Feldman 
et al., Differential Privacy: Issues for Policymakers, SIMONS INST. (June 29, 2020), https://simons. 
berkeley.edu/news/differential-privacy-issues-policymakers [https://perma.cc/Y76S-GZMH]. 
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risk changes depending on the question being asked and the invention of novel, 
adversarial techniques, not to mention how these approaches are difficult to ap-
ply across a variety of statutes. For these reasons, before illustrating how our 
two-step test would stack up against a statute, it is necessary to: (1) illustrate 
how the risk of reidentification is at the heart of all statutes built to protect data; 
and (2) evidence how and why current measurements of reidentification risk fall 
short. 

1. The Heart of Statutory Privacy 
 When drafting a statute intended to protect data, a common approach is to 
hinge that protection on the definition of PII.170 It is impermissible to share PII, 
but permissible to share non-PII. VPPA’s prohibition on sharing “information 
which identifies a person” or COPPA’s prohibition on sharing “individually 
identifiable information about an individual collected online” are par for the 
course. This is true even for regulations which seem to swallow any and all 
data—for example, the GDPR.171 
 The difficulty with sharing data while trying to comply with these regula-
tions, however, is that it creates a red herring, a “find-the-gaps” exercise that 
obfuscates the intent of the regulation. The exercise plays out like this172: it is 
permissible to share data as long as the data does not include a specific set of 
attributes that could, would, or do link to an identity173 or it is permissible to 
share data as long as the actors (i.e., a specific type of entity174 which is regu-
lated, as opposed to an unregulated entity) or substance (i.e., a specific type of 
data which is regulated, as opposed to unregulated data175) are not subject to the 
law. Unfortunately, this exercise provides seemingly simple answers (i.e., look 
for the gaps when trying to share protected data) which break when considering 
far reaching statutes like the GDPR.  

 
 170. This is true at least when it comes to regulation in the United States. Countries outside of 
the United States use a variety of other terms, such as “personal data.” See generally W. Gregory 
Voss & Kimberly A. Houser, Personal Data and the GDPR: Providing a Competitive Advantage 
for U.S. Companies, 56 AM. BUS. L.J. 287, 292 (2019) (discussing PII and “personal data”). 
 171. See Regulation (EU) 2016/679 of the European Parliament and the Council of 27 April 
2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on 
the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection 
Regulation), 2016 O.J. (L 119) 1 [hereinafter GDPR]. 
 172. See generally Stacey A. Tovino, Not so Private, 71 DUKE L.J. 985, 990–91, 1000–19 
(2022) (focusing on health data).  
 173. See COPPA, Children’s Online Privacy Protection Act, 15 U.S.C. § 6501(8) (2017); see 
also C.F.R § 164.514 (2018) (HIPAA safe harbor stripping provision).  
 174. See FERPA, Family Educational Rights and Privacy, 34 C.F.R. §§ 99.3, 99.1(a) (2014) 
(“[T]his part applies to an educational agency or institution to which funds have been made available 
under any program administered by the Secretary if (1) [t]he educational institution provides edu-
cational services or instruction, or both, to students; or (2) [t]he educational agency is authorized to 
direct and control public elementary or secondary, or postsecondary educational institutions.”).  
 175. See id.; see also Elana Zeide, Student Privacy Principles for the Age of Big Data: Moving 
Beyond FERPA and FIPPS, 8 DREXEL L. REV. 339, 359 n. 102 (2016) (online corrected) (“A sig-
nificant amount of potentially sensitive student information falls outside the statute’s protection due 
to narrow definitions of what constitutes PII maintained in a student’s education record and an ex-
clusion for institutionally-defined ‘directory information.’”).  
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 The GDPR’s reach on regulated data is one of the broadest, swallowing any 
data “relating to an identified or identifiable natural person.”176 This means that, 
absent statutorily prescribed exceptions, data may not be shared.177 Even pseu-
donymized data (i.e., data which has undergone privacy-protective measures, 
but which may nonetheless be joined with auxiliary information and lead to the 
identification of a person) is unshareable without statutory proscriptions like 
consent and minimization. The regulatory line does stop, however, at anony-
mized data: “The principles of data protection should therefore not apply to 
anonymous information [i.e.,] . . . personal data rendered anonymous in such a 
manner that the data subject is not or no longer identifiable.”178 This statement 
highlights the core issue: How much sanitization is enough; when is data anon-
ymized to the point where the individuals it describes are no longer identifiable? 
In some light, the GDPR’s anonymization requirement may seem impossible—
100% anonymization would require 0% utility in certain use cases.179  
 That the GDPR’s reach stops short of anonymized data highlights the im-
petus behind finding the gaps—the gaps highlight permissibly shareable areas 
because these are areas the drafters felt needed little or no privacy protection. 
These are areas where there is little or no risk of a privacy loss, a reidentification. 
Stated otherwise, regulating the risk of privacy loss sits on a spectrum. Along 
this spectrum are those sanitization techniques which produce mitigated, but not 
eliminated, privacy loss (i.e., pseudonymized), and also those techniques which 
reduce the risk of privacy loss to the point where it is merely theoretical (i.e., 
anonymization).180 To be sure, no method of data release is completely risk 
free,181 even differential privacy. Nonetheless, all data protective statutes do reg-

 
 176. See GDPR, supra note 171, art. 4(1). Uncommonly for a data protective statute, the 
GDPR considers inferences as regulated data, inferences which may not even be correct. See id.  
 177. If all or most data arguably relates to an identifiable person (i.e., the database of ruin) 
then there are few if any carveouts for unregulated data. See supra note 53 and accompanying text. 
 178. See GDPR, supra note 171, Recital 26.  
 179. See Morgan Lewis, The eData Guide to GDPR: Anonymization and Pseudonymization 
Under the GDPR, JDSUPRA (Dec. 9, 2019), https://www.jdsupra.com/legalnews/the-edata-guide-to-
gdpr-anonymization-95239/#_ftn14 [https://perma.cc/QKC3-NF39] (discussing cases concerning 
the line between anonymization and pseudonymization).  
 180. Indeed, if data is useful at all, then it has a nonzero risk privacy loss when released. See 
DATA PROTECTION COMM’N, GUIDANCE NOTE: GUIDANCE ON ANONYMISATION AND 
PSEUDONYMISATION 1, 7 (June 2019), https://www.dataprotection.ie/sites/default/files/uploads/ 
2019-06/190614%20Anonymisation%20and%20Pseudonymisation.pdf [https://perma.cc/Z9MB-
9VXT] (“It is not possible to say with certainty that an individual will never be identified from a 
dataset which has been subjected to an anonymisation process.”); see also id. at 3 (“There is a lot of 
research currently underway in the area of anonymisation, and knowledge about the effectiveness 
of various anonymisation techniques is constantly changing. It is therefore impossible to say that a 
particular technique will be 100% effective in protecting the identity of data subjects . . . .”); Lewis, 
supra note 179, (discussing how GDPR operates on the difference between “anonymous” data and 
“pseudonymous” data). That said, the risk is to such a degree that it becomes minutia. 
 181. This is formally known as the Fundamental Law of Information Recovery. See, e.g., 
Dwork et al., supra note 122, at 2 (“A compendium of results, colloquially known as the Funda-
mental Law of Information Recovery, tells us that overly accurate answers to too many questions 
can destroy any reasonable notion of privacy.”); Dinur & Nissim, supra note 118, at 204 (“We show 
that any database algorithm that is within o(√n) perturbation, is non private with respect to polyno-
mial time adversaries. More accurately, we show that whenever the perturbation is smaller than √n, 
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ulate risk, the “risk” (i.e., the spectrum) of identifying individuals within a da-
taset. PII is merely a proxy describing that reidentification risk—so to, as we 
introduce, is the guess difference, albeit a technical understanding of that risk.  
 A good way to measure this spectrum is to waypost the ease at which 
reidentification occurs, the point at which anyone can point at a record and say 
“I know who that is.”182 Raw data would be at one end of the spectrum183 and 
anonymized data would be at the other, with pseudonymized data and data with 
𝑛 stripped identifiers (e.g., HIPAA) lying closer to anonymized data. That an 
individual has been identified, regardless of where this occurs along the spec-
trum, means there is no additional loss that might occur; it is merely the question 
of how likely released data could reach that point, and this is what statutes reg-
ulate—where on the spectrum the to-be-released data must fall.  
 This theme is not without support from the courts. In Pub. Citizen Health 
Research Grp. v. Pizzella, when discussing plaintiff’s argument that an OSHA 
requirement that was more privacy protective than its incumbent was not suffi-
ciently justified by the record, the court found ample support for the new regu-
lations because the risk of reidentification under the previous requirements was 
too high.184 In other words, OSHA’s position on requiring further privacy pro-
tections was reasonable because of the ultimate harm OSHA sought to protect 
against, reidentification.185  
 Furthermore, several courts focus directly on reidentification risk when 
considering what a statute requires to release protected—but sanitized—data. 
Partially, this comes from HIPAA’s statutory language that strikes very close to 
the risk of reidentification (e.g., “the risk is very small that the information could 
be used . . . to identify an individual”186), but courts have also come to this con-
clusion on their own. In Sander v. Superior Court, when discussing whether 
records could be released pursuant to a FOIA-themed statute, the court made its 
determination in large part based on the risk of reidentification that a release 
would incur; in Setinberg v. CVS, the court, when providing guidance on 
whether the sharing of deidentified, but possibly reidentified, records would be 
permissible under HIPAA, found that assessment by an expert about the 
reidentification risk the released records bore would be necessary; and in Cohan 

 
a polynomial number of queries can be used to efficiently reconstruct a ‘good’ approximation of the 
entire database.”). In more simple terms, what Dinur and Nissim found was that revealing anything 
useful about a dataset, on an ongoing basis, will eventually destroy any privacy that may have been 
found in the dataset in the first place—and the point at which all privacy is destroyed occurs sooner 
than you might think. Id. 
 182. See also supra Section III.B.1 (describing reidentification risk in terms of step one).  
 183. A caveat is needed here given that not all data is easily attributable to a person.  
 184. See, e.g., Pub. Citizen Health Rsch. Grp. v. Pizzella, 513 F. Supp. 3d 10, 25–26 (D.D.C. 
Jan. 11, 2021). 
 185. See id. (“OSHA determined that ‘even if PII could be completely removed from the data, 
concerns about re-identification would remain.’ Moreover, the Revised Rule states that ‘particularly 
in a small town,’ information like ‘what was the employee doing just before the incident occurred, 
what happened, and what was the injury or illness’ could allow re-identification.” (citing F84 Fed. 
Reg. 384)). 
 186. See C.F.R § 164.514.  
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v. Ayabe, the court interpreted HIPAA’s expert-deemed safe harbor to rest on a 
determination that the reidentification risk was “very small.”187 
 In summary, statutes protecting data are foundationally regulating the risk 
of reidentification. Statutes may go about this task with a variety of artisanal 
linguistic options, but the core of what is being regulated is privacy loss, which 
may be quantifiably expressed as the risk or likelihood of reidentification.188 
The more privacy sensitive a statute, the less risk is tolerated; the less privacy 
sensitive a statute is, the more risk is tolerated. The next question, therefore, 
concerns the permissible level of risk, quantitively, that a statute allows. Here, 
unfortunately, despite seeming clarity, we find an unworkable standard. 

2. Moving Targets 
 Statutes like HIPAA, which have been subjected to a fair amount of tech-
nical interpretation regarding whether data is “sanitized enough” to meet the 
statute’s reidentification risk threshold, have fallen into a rut when it comes to 
defining permissible reidentification risk. The crux of this rut centers on how 
the technical literature has acquiesced to a definition of reidentification that was 
stated loosely at first, but which has, over time, grown to take on a meaning of 
its own. In turn, this definition has worked its way into the courts as fact. The 
incorrect statement looks like this: HIPAA allows for data to be released if there 
is a .04% to 25% risk of reidentification.189 
 To begin, only two ways exist to release regulated data under HIPAA. The 
first option is for a data steward to strip the record of a series of explicit attrib-

 
 187. See Sander v. Superior Ct., 26 Cal. App. 5th 651, 660, 237 Cal. Rptr. 3d 276, 283, 2018 
Cal. App. LEXIS 755, at *13, 2018 WL 4024906 (Cal. App. 1st Dist. Aug. 23, 2018); Steinberg v. 
CVS Caremark Corp., 899 F. Supp. 2d 331, 335–37 (E.D. Pa. 2012); Cohan v. Ayabe, 132 Haw. 
408, 424, 322 P.3d 948, 964, 2014 Haw. LEXIS 95, at *52–53, 2014 WL 783132 (Haw. Feb. 27, 
2014).  
 188. For a discussion of how a reidentification may come about, see Michelle N. Meyer, 
Reflections of a Re-Identification Target, Part I: Some Information Doesn’t Want To Be Free, FAC. 
LOUNGE (May 24, 2013), https://www.thefacultylounge.org/2013/05/reflections-of-a-re-identifi 
cation-target-part-i-some-information-doesnt-want-to-be-free.html [https://perma.cc/N7U9-4VCK] 
(“I wanted to donate my genotype and phenotype data to a project committed to open access research 
. . . . With a little digging, I learned that there had in fact been two re-identification demonstrations 
involving the PGP. . . . Latanya Sweeney used the algorithm based on zip code, birth date, and 
gender that she made famous in her 1997 re-identification of Massachusetts Governor Bill Weld—
and also read some participants’ names directly from their decompressed 23andMe files. And Yaniv 
Erlich used the algorithm based on Y-chromosome data and surnames that he published in Science 
earlier this year. . . . After a little more digging, I found the paper in which Latanya reported her 
algorithm. Once I had the chance to read about it and to compare it to the information I had provided 
in my PGP profile page, I concluded with about 99.9% certainty that I was not among those who 
had been reidentified by either attack: I had not provided all of the information used in Latanya’s 
algorithm. Heeding the PGP’s own pop-up warning, I had scrubbed my 23andMe file of my name 
before uploading it (although I leave room for a 0.1% chance that I somehow did not thoroughly 
scrub it).”) (emphasis added).  
 189. No, 25% is not a typo. The range is embarrassingly large, as noted in notes 194–196, 
because the measurement of how to calculate that risk keeps changing, along with the datasets un-
derlying each calculation. See, e.g., Sweeney et al., supra note 92; see also Tovino, supra note 172, 
at 996 (discussing reidentification rates in the 3–10% range). 
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utes like name, email address, and social security number.190 The second is to 
rely on an expert to certify that “the risk is very small that the information could 
be used, alone or in combination with other reasonably available information, 
by an anticipated recipient to identify an individual who is a subject of the in-
formation.”191 To be sure, neither of these options mentions a number between 
.01 to 25; yet, a short survey on what “very small” means to a statistical audience 
would draw that conclusion: “Based on the nationally accepted standard of re-
identification risk no greater than . . . 0.04”192 and “[w]hen the redacted data 
contained the exact birth year, as allowed by HIPAA Safe Harbor, we correctly 
identified [25 percent in a subsection of the dataset] . . . . In comparison, earlier 
studies found unique re-identification rates in data that adhered to the level pre-
scribed by HIPAA Safe Harbor to be much lower, namely 0.013 percent and 
0.04 percent.”193 In these examples, researchers are taking it as a fact that 
HIPAA requires some level of reidentification risk to permissibly share data. 
This alone is not a problem, and accords with the two-step approach we argue 
for in this Article. The problem occurs, however, because of how that reidenti-
fication risk is being calculated—the number keeps changing.  
 These percentages come from attempts to read hard numbers into HIPAA, 
but with non-futureproof methods. The original idea was to scrub records pur-
suant to HIPAA’s safe harbor provision (i.e., remove the series of 𝑛 identifiers), 
check how many resulting records were nonetheless unique, and then report that 
number as the inferred reidentification risk. The argument would go like this: 
this data release is permissible because it is the same level of sanitization that is 
accepted under HIPAA’s explicit safe harbor provision.  
 Professor Sweeney debuted this method over two decades ago, finding that 
“0.04% . . . of the population of the United States is likely to be uniquely iden-
tified by values of {gender, year of birth, ZIP}.”194 Since then, a line of work 
has sprung up reapplying the approach—but the numbers have changed drasti-
cally over time, ranging anywhere from 0.01%195 to 25%.196 The reason for this 
moving target is owed to a property of differential privacy that is not found in 
assessments of uniqueness-based metrics like the .04% rule—futureproof.  

 
 190. The stripping of 17 identifiers (plus a catchall) is the second. C.F.R § 164.514(b)(2). 
 191. Id. (emphasis added). To be sure, the most promising option is the second, in that it is 
flexible to the times (i.e., a sledge hammer of deidentification may not be needed, though this is the 
only option for the second safe harbor) and adequately assures privacy (i.e., a “person with appro-
priate knowledge” must make this determination). See id. § (b).  
 192. Victor Janmey & Peter L. Elkin, Re-Identification Risk in HIPAA De-Identified Datasets: 
The MVA Attack, in AMIA ANNUAL SYMPOSIUM PROCEEDINGS 1329, 1329 (2018).  
 193. Sweeney et al., supra note 92, at 2. 
 194. Latanya Sweeney, Simple Demographics Often Identify People Uniquely (Carnegie 
Mellon Univ., Data Privacy Working Paper No. 3, 2000), https://dataprivacylab.org/projects/ 
identifiability/paper1.pdf [https://perma.cc/Y8G5-7K7Q].  
 195. See Kathleen Benitez & Bradley Malin, Evaluating Re-Identification Risks with Respect 
to the HIPAA Privacy Rule, 17 J. AM. MED. INFO.. ASSO’N 169, 169 (2009) (“The percentage of a 
state’s population estimated to be vulnerable to unique re-identification (i.e., g = 1) when protected 
via Safe Harbor and Limited Datasets ranges from 0.01% to 0.25% . . . .” ). 
 196. See Sweeney et al., supra note 92, at 51 (“The number of correct re-identifications found 
in the HIPAA Safe Harbor–compliant data having exact year of birth is remarkable (25 percent 
uniquely and correctly re-identified by name).”). 
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 Differential privacy, in assuming the worst-case scenario for privacy, con-
siders all information that is currently available or may be available in the future. 
This is why the definition of differential privacy focuses on the two versions of 
the mechanism’s input which differ in a small way. This is also why differential 
privacy, according to some, is like using a sledgehammer to crack a nut (i.e., a 
great loss of utility at the gain of privacy).  
 Yes, differential privacy is in some ways excessive, but this property also 
allows differential privacy to make guarantees in perpetuity. The .04% rule, on 
the other hand, only looks to the narrow situation of a particular identifier-strip-
ping provision and a particular (unique ⁄ total) equation. Using vague definitions 
“unique” and “total” means the resulting calculation will oscillate as definitions 
change over time. Moreover, this equation was written for HIPAA as an inter-
pretation of the identifier-stripping provision; statutes which lack such a provi-
sion would require additional inferential leaps to make the argument that the 
equation generalizes. 
 Ultimately, however, despite the reasons why this approach may be ill-
suited for statutory interpretation and why better solutions might exist, the ap-
proach is nonetheless making its way into the judicial branch. As seen in the 
Sanders case, one of the only cases to debate methods of data sanitization in 
terms of what level of sanitization is required by a statute, the court held in dicta 
that any proposed method of sanitization, as offered by the Plaintiff to access 
Bar admissions data, warranted too high a risk of reidentification—when meas-
ured against the HIPAA standard of “.02% to .22%.”197 Though not preceden-
tial, the reasoning is persuasive, suggesting that other courts may follow suit in 
trying to apply a unique-record-count fraction as a proxy for risk of reidentifi-
cation.  
 This is wrong. What should a court do if tomorrow the target is moved from 
.02% to 2%? Yesterday’s sanitization method may have failed, but ex post facto, 
it succeeds; the meaning of the risk of reidentification, as a result, is diluted. A 
better definition of risk of reidentification is needed; differential privacy’s 
“guess difference” is needed.  
 In summary, current methods of analyzing the risk of reidentification point 
in the right direction, but fall short. A better approach is to rely on differential 
privacy for its futureproof property. In this way, the legal comparator introduced 
in Section III.C will hold despite any number of auxiliary pieces of information 
which come to the fore, and despite new attacks which attempt to pierce pri-
vacy’s veil.  

B. Step Two: A Statute’s Measurement  
 Given that (1) all privacy-protective statutes, at bottom, aim to regulate the 
risk of reidentification; and (2) the risk of reidentification may be understood as 
the “guess difference” value, the next question to ask is: What amount of 
reidentification risk does a particular statute permit? Due to statutory diversity, 

 
 197. Sander v. State Bar of California, No.CPF-08-508880, *21–22 (Nov. 7, 2016) (on file 
with author). 
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it would be shallow to argue for a definitive and generalizable answer in an 
Article like this. Instead, the Article provides a hypothetical revolving around 
HIPAA, discussing what likely risk the statute tolerates and what likely settings 
of epsilon would meet that risk threshold.  
 Consider a set of publicly accessible hospital records and a sample query: 
“How many individuals in this dataset have Crohn’s disease.” Further imagine 
that the interaction with this dataset is filtered through a differentially private 
algorithm (i.e., the query mode of differential privacy198), hence the reason it is 
publicly accessible. To be sure, raw data is transformed into noisy data before 
its receipt by the individual making the query.  
 For concreteness, the below table visualizes this information, both with a 
real answer of one and a real answer of 5,000; either one individual in the dataset 
has Crohn’s disease or 5,000 do (i.e., consider this the ground truth). Both epsi-
lon values, .08 and 1.098 (see Figure 6, visualizing epsilon values and guess 
difference), are compared across a sampling of ten possible answers a mecha-
nism might provide, with averages noted in the last row. The data has been “post 
processed” by rounding to positive, whole numbers, and the Laplace method 
was used to generate noise.199  

 
 Real Answer: 1  Real Answer: 5,000 
 ε = 0.08 ε = 1.098  ε = 0.08 ε = 1.098 

1: 23 1  5,014 5,000 
2: 3 2  5,003 5,000 
3: 8 1  4,994 5,001 
4: 12 1  5,020 4,999 
5: 2 2  4,970 4,999 
6: 1 2  5,000 5,000 
7: 2 1  4,983 5,000 
8: 9 1  4,996 4,998 
9: 12 0  4,993 5,000 

10: 3 1  5,005 5,000 
Average 4 1  4,998 5,000 

Table 4. Epsilon Affecting Differentially Private Queries200 

Would a mechanism using an epsilon value of .08, assuming this particular data 
setup, and answering this particular question, run afoul of HIPAA?  

 
 198. There are many different ways to use differential privacy, but one of the easiest, didacti-
cally, comes from thinking of its use in the query-response mode: you ask a question and a differ-
entially private mechanism returns a sanitized response. See supra note 146 and accompanying text.  
 199. For a further explanation of how these particular numbers may have been derived, see 
infra note 200 and accompanying text.  
 200. The code, which built a “toy” (.08)-differentially private mechanism, is simple to code, 
using the ‘diffprivlib’ Python library, see Holohan et al., supra note 17:  

from diffprivlib.mechanisms import Laplace # IBM’s differential privacy library 
laplace = Laplace(epsilon=.08, sensitivity=1) # alternatively epsilon=1.098 
print(laplace.randomise(1)) # alternatively laplace.randomise(5000) 
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 Pursuant to our two-step test, we first ask what is the risk of reidentification 
(i.e., the guess difference) a (1.098)-differentially private mechanism affords?201 
The answer is 25%, according to Section III.B.2.202 With this in mind, we turn 
to step two, the maximum risk of reidentification a statute permits. Because 
HIPAA would apply here, we may look to the “very small” language found in 
the statute regarding expert-deemed “safe” data release. Is “very small” a term 
typically associated with 25%? If there was a 1/4th chance of rain tomorrow, 
would it be reasonable to call that a “very small” chance? In the balancing act a 
court would engage in, a one fourth chance that an individual is reidentified is 
likely too high for HIPAA. Therefore, this mechanism, with this epsilon value, 
under this statute, would likely not produce legally compliant outputs. 
 If, on the other hand, the epsilon value was .08, would this change the out-
come? In this case, the first step, the guess difference of the (.08)-differentially 
private mechanism, is 2%. An attacker would gain a mere 2% increase in con-
fidence that a provided answer is the real answer; from something like a 50% 
chance that an output is truthful to a 52% chance. The second step would be 
inquiring whether HIPAA’s maximum permitted risk of reidentification is less 
than or equal to 2%. Is this setup likely to be permitted by HIPAA? Yes. Al-
though a court would have to balance the competing interests and risks being 
presented, a 2% chance of reidentification—especially when HIPAA does not 
require a 100% free-from-all-harm guarantee—is likely sufficient. A few points 
from this short hypothetical are notable.  
 For starters, this permittance would cover a .08 epsilon value and lower. 
What this means is that a data steward would be able to interpret a stamp of 
approval on .08 to also mean that .07, .05, or .01 epsilon values are all appropri-
ate. This provides freedom to adjust mechanisms to suit individual use cases 
while maintaining compliance.203 
 Secondly, it is notable that four, the average of the answers provided in the 
.08 epsilon column in Table 4, is fairly removed from the real answer of one. In 
fact, many of the responses in the .08 epsilon column appear to be inaccurate, 
though very privacy preserving. In short, this occurs because our numbers are 

 
 201. A large caveat here is equating a known-truthful answer with a reidentification. That said, 
this practical scenario nonetheless communicates the quantity (i.e., reidentification risk) we are try-
ing to capture with the guess difference proxy. In a more archetypal, yet less realistic case, the 
attacker would know that an individual, Alice, is in the dataset, know that everyone except Alice 
does not have Crohn’s disease, but not know Alice’s status. A reidentification would occur when a 
link is made between Alice and Alice’s data—the output of the mechanism is confirmed to be true. 
With our guess difference proxy, we know that the output of the query may give a boost to the 
attacker’s confidence level up to some threshold. For example, using an epsilon value of 1.098 we 
have a 25% boost (i.e., upper bound) in confidence; the attacker, in this less-realistic example, is 
now 75% confident that Alice has Crohn’s disease. And that confidence is likely to offend HIPAA’s 
“very low” language, there is not a very low chance of a reidentification occurring. Table 4 illus-
trates how, when there is only one individual being considered (i.e., a “real” answer of one), a 1.098 
epsilon setting often returns the “real” answer of one.  
 202. Notably, the adversary would (hopefully) know the epsilon values in this case, given that 
differential privacy is inspectable. See Dwork et al., supra note 122, at 2; see also supra note 79 and 
accompanying text.  
 203. See supra Section II.B.1 (discussing how increased accuracy produces reduced privacy, 
and vice versa).  
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not high enough for differential privacy. If instead the real answer to this ques-
tion were 5,000 then the sampling of likely outputs becomes more practical.204 
These answers appear much closer—yet are still privacy preserved—to the real 
answer.205 This example, therefore, highlights the non-panacea nature of differ-
ential privacy: it is workable only in certain settings with certain assumptions, 
one of which is that large numbers are needed to maintain accuracy in the face 
of the type of noise differential privacy requires. If granular accuracy is a neces-
sity, differential privacy may not be the best tool for the job.206 
 Finally, a likely counterargument would be that using an epsilon value of 
1.098 assuming a real answer of 5,000 nonetheless appears privacy preserving, 
with answers like 4,998 and 4,999. That these responses are possible, however, 
does not affect the type of information an attacker would be learning from view-
ing these responses. A 1.098 epsilon value gives the attacker more assurance 
that any answer provided will be closer to the real answer, a feature we quantify 
with step one’s guess difference. This high guess difference amount is validated 
when we look at the sampling of responses the mechanism would likely provide, 
averaging out to 5,000. Though an arguable position, the knowledge learned by 
the attacker from witnessing outputs with this particular epsilon value is likely 
to lead an attacker to learning too much (according to HIPAA) about how many 
individuals in this dataset have Chron’s disease, making it more likely that 
HIPAA would not approve this type of data sharing. 
 In summary, HIPAA would likely not permit the sharing of data under a 
mechanism using a 1.098 epsilon value, but likely would permit the sharing if 
the mechanism instead used a .08 epsilon value. The risk of reidentification—
guess difference—at 25% is too high for the statute to stomach, but a 2% risk of 
reidentification—a no-greater-than 2% boost in confidence—is likely to see a 
green light. In this way, this mechanism is: (HIPAA, .08)-differentially private. 

C. Grease 
 Finally, it is worth being explicit about a few of the advantages, and limi-
tations, our two-step test provides. True enough, the above analysis permitting 
the sharing of health data using a (.08)-differentially private mechanism is con-
trived. This hypothetical may not, and likely does not, fully comprehend the 
nuances of a legally sufficient207 case if such a case were to arise organically. 
Additionally, the application of mathematical answers to legal questions, and 
particularly mathematical answers to statutory deidentification-type questions, 
has been opposed, including by the U.S. Department of Health and Human Ser-

 
 204. True enough, relying on the outputs to determine the appropriateness of the mechanism 
as compared to a statute is not rigorous, but it does help in understanding. Additionally, these num-
bers would need to be rounded in a post-processing step.  
 205. This is the same concept as was seen in Alice’s random age-generator. Section II.B supra. 
 206. See, e.g., Fredrikson et al., supra note 73, at 27. 
 207. By legally sufficient, the suggestion is as in meeting the requirements for a case such as 
injury in fact, causation, and redressability. See F. Andrew Hessick, Standing, Injury in Fact, and 
Private Rights, 93 CORNELL L. REV. 275 (2008) (discussing standing).  
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vices explicitly,208 and with good reason—ambiguity is often helpful when de-
bating these types of questions.  
 That said, this data is out there; it is being purchased and sold right now. 
Like a spile to a tree, companies are siphoning off profit from personal, sensitive 
data in any and every way that is monetarily feasible. What this means for pri-
vacy is similar to what Deep Blue meant for Kasparov, the game has changed; 
a brave new reality has already taken hold.  
 The surveillance economy should not be ignored by the same statutes that 
seek to protect it, albeit in disjoint dollops. Instead, public policy should directly 
embrace the data-driven economy with the aim to promote clear, black-letter 
guidance. That the above test lacks a dose of justiciability does not offset the 
fact that it allows a data steward to reason about a privacy preserving mechanism 
as it would be measured against a statute—in turn giving rise to compliance-
inspired confidence, something with monumental side effects for societal ad-
vancement, which are worth noting explicitly.  
 For one, this confidence encourages the liquidity of privacy-protective data, 
allowing for breakthroughs in science and technology with reduced privacy 
harms. Second, the test permits clear guidance on exactly how much sanitization 
to require for data sharing to become legal, which has additive incentives when 
paired with the iterative approach to common law. More specifically, when in-
terpreting statutes, assuming no further administrative guidance is offered, the 
law builds on itself iteratively (e.g., the common law is marked with judicial 
precedent developing an understanding in a particular area). In this way, an ep-
silon value applied to a specific statutory situation may be deemed legal, in turn 
offering standard-setting effects. This is the same process that less mechanical 
concepts undergo: under the Fourth amendment, police can conduct a stop and 
frisk of someone on the street if there is reasonable suspicion of criminal activ-
ity, but police cannot conduct a stop and frisk if there is no reasonable suspicion 
of criminal activity. Differential privacy would run similarly: under HIPAA, 
you can release data using an epsilon value of .08, but you cannot release data 
using an epsilon value of 1.098. This would provide guidance to the idea of 
societal decision making in setting epsilon, as Professor Dwork has emphasized 
in her work on epsilon and risk-balancing decisions.209 

 
 208. See, e.g., Guidance Regarding Methods for De-identification of Protected Health 
Information in Accordance with the Health Insurance Portability and Accountability Act (HIPAA) 
Privacy Rule, U.S. DEP’T HEALTH & HUM. SERVS. (Nov. 6, 2015), https://www.hhs.gov/hipaa/for-
professionals/privacy/special-topics/de-identification/index.html [https://perma.cc/7ZBV-9UCN] 
(“There is no explicit numerical level of identification risk that is deemed to universally meet the 
‘very small’ level indicated by the method. The ability of a recipient of information to identify an 
individual (i.e., subject of the information) is dependent on many factors, which an expert will need 
to take into account while assessing the risk from a data set. This is because the risk of identification 
that has been determined for one particular data set in the context of a specific environment may not 
be appropriate for the same data set in a different environment or a different data set in the same 
environment. As a result, an expert will define an acceptable ‘very small’ risk based on the ability 
of an anticipated recipient to identify an individual.”).  
 209. See Dwork et al., supra note 122.  
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 Differential privacy is well equipped to do exactly what it says it will do, 
mathematically speaking. As defined, the concept happily and routinely meets 
the guarantees it espouses—an ε-differentially private algorithm acting on a da-
taset with one gingersnap eaten versus the same algorithm acting on a dataset 
with no gingersnaps eaten produces a very similar output. Assuming you were 
the one who ate the gingersnap, and you knew that anyone could inspect the 
differentially private mechanism’s source code and access its outputs, you may 
be assured that the chance you will be reidentified is low—an e^ε type of low. 
What this means for a cookie-eating regulatory statute, however, is anything but 
well defined.210 
 This Article introduces a novel, two-step test which may be easily applied 
to statutes regulating data. Step one looks at the best-case scenario for an at-
tacker, that is, someone who, ultimately, wants to reidentify the gingersnap-
eating epicure. The result of this first step is a single percentage, a legally com-
parable quantity representing the risk of reidentification an ε-differentially 
private mechanism accommodates. This percentage may then be measured 
against step two—the highest risk of reidentification a statute permits. If step 
one is lower than or equal to step two, the mechanism may be deemed (statute, 
ε)-differentially private. For example, if a court were to deem HIPAA as per-
mitting a no more than a 2% reidentification risk (i.e., setting epsilon at .08, for 
a guess difference of 2%) then a mechanism could be deemed compliant: 
(HIPAA, .08)-differentially private.  
 That this outcome may not perfectly capture the exact percentage the legis-
lature had in mind when it used the “very small” language found in HIPAA is 
beside the point; to be sure, a court, possibly with the help of an expert witness, 
will be able to assess the risks and weigh the benefits of data release given a 
justiciable case. Rather, the true benefit for this type of test lies in its ability to 
provide a black-letter line to data stewards, a line which is able to tout the same 
guarantees differential privacy touts—giving rise to confident, safe, and useful 
data sharing. The law and legislature, in turn, would be well served to grease the 
wheels on this type of compliance-inspired confidence, not continue to hinder 
technological progress by shielding data behind ambiguous requirements with-
out a definitive means of meeting those requirements. 
 

 
 210. Also undefined by differential privacy, though researchers are beginning to make head-
way, is what this means to the gingersnap-eating epicure, and whether this quantification of privacy 
accords with the epicurean’s own standards for privacy. See Cummings et al., supra note 123; see 
also Smart et al., supra note 122.  


