PROJECT MANUAL
FOR
THE REESE
ProBAR Offices
2nd Floor
202 South First Street
Harlingen, Texas 78550

CLIENT/OWNER: AMERICAN BAR ASSOCIATION | PROBAR PROJECT
1050 Connecticut Ave. NW, Suite 400
Washington, DC 20036
956-368-4139 voice

REESE PLAZA DEVELOPMENT, LLC
4901 East Grimes,
Harlingen, Texas 78550
956-428-4636 voice

ARCHITECT OF RECORD: MEGAMORPHOSIS, INC.
324 West Van Buren
Harlingen, Texas 78550
956-428-1779 voice
956-425-5886 facsimile

MEP ENGINEER: ETHOS ENGINEERING
119 W. Van Buren, Ave Ste.101
Harlingen, Texas 78550
956-230-3435 voice
956-720-0830 facsimile

DATE: August 16, 2019
1.1 PROJECT MANUAL VOLUME

A. Project: The Reese ProBAR Finish Out.

B. Owner: Reese Plaza Development, LLC | American Bar Association / ProBAR Project

C. Harlingen, Texas. 78550

D. Architect Project No. 1804

E. megamorphosis

F. John Pearcy, AIA.

G. 324 West Van Buren.

H. Harlingen, Texas 78550

I. Phone: 956-428-1779.

J. Fax: 956-425-5886.

K. Email: john@megamorphosisdesign.net

L. Issued: August 16, 2019

END OF DOCUMENT 000101
1.1 DESIGN PROFESSIONALS OF RECORD

A. Architect:
 1. John Pearcy.
 2. Registered Architect - State of Texas License # 19005
 3. Responsible for Divisions 01-32 Sections except where indicated
 as prepared by other design professionals of record.

B. Mechanical & Plumbing Engineer:
 1. Cesar A. Gonzalez, P.E.
 2. Registered Engineer - State of Texas #108611
 3. Responsible for Sections: Divisions 21, 22, 23

C. Electrical Engineer:
 1. Ray Peynado, P.E.
 2. Registered Engineer - State of Texas #108611
 3. Responsible for Sections: Divisions 26
DOCUMENT 000110

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td>000001</td>
<td>Title Page</td>
</tr>
<tr>
<td>000101</td>
<td>Project Title Page</td>
</tr>
<tr>
<td>000107</td>
<td>Seals Page</td>
</tr>
<tr>
<td>000110</td>
<td>Table of Contents</td>
</tr>
<tr>
<td>001116</td>
<td>Invitation to Submit Competitive Sealed Proposals</td>
</tr>
<tr>
<td>002113</td>
<td>Instructions to Bidders/Proposers</td>
</tr>
<tr>
<td>002300</td>
<td>Ranking Criteria</td>
</tr>
<tr>
<td>002600</td>
<td>Procurement Substitution Procedures</td>
</tr>
<tr>
<td>004113</td>
<td>Proposal Form- Stipulated Sum (Single-Prime Contract)</td>
</tr>
<tr>
<td>006000</td>
<td>Project Forms</td>
</tr>
<tr>
<td>○ AIA Document A101 Standard for Agreement between Owner and Contractor</td>
<td></td>
</tr>
<tr>
<td>○ AIA Document A201 General Conditions of the Contract for Construction</td>
<td></td>
</tr>
<tr>
<td>DIVISION 01 - GENERAL REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td>011000</td>
<td>Summary</td>
</tr>
<tr>
<td>012100</td>
<td>Allowances</td>
</tr>
<tr>
<td>012300</td>
<td>Alternates</td>
</tr>
<tr>
<td>012500</td>
<td>Substitution Procedures</td>
</tr>
<tr>
<td>012600</td>
<td>Contract Modification Procedures</td>
</tr>
<tr>
<td>012900</td>
<td>Payment Procedures</td>
</tr>
<tr>
<td>013100</td>
<td>Project Management and Coordination</td>
</tr>
<tr>
<td>013200</td>
<td>Construction Progress Documentation</td>
</tr>
<tr>
<td>013300</td>
<td>Submittal Procedures</td>
</tr>
<tr>
<td>014000</td>
<td>Quality Requirements</td>
</tr>
<tr>
<td>015000</td>
<td>Temporary Facilities and Controls</td>
</tr>
<tr>
<td>016000</td>
<td>Product Requirements</td>
</tr>
<tr>
<td>017300</td>
<td>Execution</td>
</tr>
<tr>
<td>017700</td>
<td>Closeout Procedures</td>
</tr>
<tr>
<td>017823</td>
<td>Operation and Maintenance Data</td>
</tr>
<tr>
<td>017839</td>
<td>Project Record Documents</td>
</tr>
<tr>
<td>017900</td>
<td>Demonstration & Training</td>
</tr>
<tr>
<td>019113</td>
<td>General Commissioning</td>
</tr>
<tr>
<td>DIVISION 02 - EXISTING CONDITIONS</td>
<td>Not Used</td>
</tr>
<tr>
<td>DIVISION 03 - CONCRETE</td>
<td>Not Used</td>
</tr>
<tr>
<td>DIVISION 04 - MASONRY</td>
<td>Not Used</td>
</tr>
<tr>
<td>DIVISION 05 - METALS</td>
<td>054000 Cold-Formed Metal Framing</td>
</tr>
<tr>
<td>DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES</td>
<td>061600 Sheathing</td>
</tr>
<tr>
<td></td>
<td>062023 Interior Finish Carpentry</td>
</tr>
<tr>
<td></td>
<td>064116 Plastic Laminate Clad Architectural Cabinets</td>
</tr>
<tr>
<td>DIVISION 07 - THERMAL AND MOISTURE PROTECTION</td>
<td>072100 Thermal Insulation</td>
</tr>
<tr>
<td></td>
<td>072519 Exterior Insulation and Finish System (EIFS)</td>
</tr>
<tr>
<td></td>
<td>078413 penetration Firestopping</td>
</tr>
</tbody>
</table>
NUMBER | TITLE
---|---
079200 | Joint Sealants

DIVISION 08 - OPENINGS
081113 | Hollow Metal Doors and Frames
081213 | Hollow Metal Frames
081216 | Interior Aluminum Doors and Frames
081416 | Flush Wood Doors
084113 | Aluminum Framed Storefront
084123 | Fire Rated Glass and Framing Systems
087100 | Finish Hardware
088000 | Glazing

DIVISION 09 – FINISHES
092900 | Gypsum Board
093000 | Tiling
095113 | Suspended Acoustical Ceiling
096513 | Resilient Base and Accessories
096519 | Resilient Tile Flooring
096813 | Tile Carpeting
099000 | Painting
099300 | Staining and Transparent Finishing
099666 | Clear Dry Erase Coatings

DIVISION 10 - SPECIALTIES
101400 | Signage
102800 | Toilet and Bath Accessories
104413 | Fire Extinguisher Cabinets
104416 | Fire Extinguishers

DIVISION 11 – EQUIPMENT
Not Used

DIVISION 12 - FURNISHINGS
123661.19 | Quartz Agglomerate Countertops

DIVISION 13 - SPECIAL CONSTRUCTION
Not Applicable

DIVISION 14 - CONVEYING DEVICES
Not Applicable

DIVISION 21 - FIRE SUPPRESSION
210517 | Sleeves and Sleeve Seals
210518 | Fire-Suppression Escutcheons Plates
211313 | Wet-Pipe Sprinkler Systems

DIVISION 22 - PLUMBING
220010 | Summary of Plumbing Work
220517 | Sleeves and Sleeve Seals for Plumbing Piping
220518 | Escutcheons for Plumbing Piping
220519 | Meters and Gauges for Plumbing
220523 | General-Duty Valves for Plumbing Piping
220529 | Hangers and Supports for Plumbing Piping and Equipment
220548.13 | Vibration Controls for Plumbing Piping and Equipment
220553 | Identification for Plumbing Piping and Equipment
220719 | Plumbing Piping Insulation
221116 | Domestic Water Piping
221119 | Domestic Water Piping Specialties

TABLE OF CONTENTS
Megamorphosis, Inc.
<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>221316</td>
<td>Sanitary Waste and Vent Piping</td>
</tr>
<tr>
<td>221319</td>
<td>Sanitary Waste and Vent Piping Specialties</td>
</tr>
<tr>
<td>224000</td>
<td>Plumbing Fixtures</td>
</tr>
</tbody>
</table>

DIVISION 23 - HEATING, VENTILATION, AND AIR CONDITIONING

- 230010 Summary of Mechanical Work
- 230513 Common Motor Requirements for HVAC Equipment
- 230516 Expansion Fittings and Loops for HVAC Piping
- 230517 Sleeves and Sleeve Seals for HVAC Piping
- 230518 Escutcheons for HVAC Piping
- 230519 Meters and Gauges for HVAC Piping
- 230523 Valves for HVAC Piping
- 230529 Hangers and Supports for HVAC Piping and Equipment
- 230548.13 Vibration Controls for HVAC Piping and Equipment
- 230553 Identification for HVAC Piping and Equipment
- 230593 Testing, Adjusting, and Balancing for HVAC
- 230713 Duct Insulation
- 230719 HVAC Piping Insulation
- 230800 Commissioning of HVAC
- 230900 Instrumentation and Controls for HVAC
- 230993 Sequence of Operations for HVAC Controls
- 232113 Hydronic Piping
- 232116 Hydronic Piping Specialties
- 232513 Water Treatment for Closed-Loop Hydronic Systems
- 233113 Metal Ducts
- 233300 Air Duct Accessories
- 233423 HVAC Power Ventilators
- 233713 Diffusers, Registers, and Grilles
- 238146 Water Source Unitary Heat Pumps

DIVISION 26 - ELECTRICAL

- 260010 Summary of Electrical Work
- 260519 Low-Voltage Electrical Power Conductors and Cables
- 260526 Grounding and Bonding for Electrical Systems
- 260529 Hanger and Supports for Electrical Systems
- 260533 Raceway and Boxes for Electrical Systems
- 260536 Cable Trays for Electrical Systems
- 260544 Sleeves and Sleeve Seals for Electrical Raceways and Cabling
- 260553 Identification for Electrical Systems
- 260923 Lighting Control Devices
- 262200 Low Voltage Transformers
- 262416 Panelboards
- 262726 Wiring Devices
- 262816 Enclosed Switches and Circuit Breakers
- 265116 Interior Lighting
- 265219 Emergency and Exit Lighting
- 265621 Exterior Lighting
- 267210 Fire Alarm System
- 269750 Voice & Data Communications

DIVISION 31 - EARTHWORK

Not Used

DIVISION 33 – UTILITIES

Not Used

END OF TABLE OF CONTENTS
TABLE OF CONTENTS
MEP SPECIFICATIONS FOR THE REESE PROBAR LEASE SPACE – LEVELS 1 & 2, HARLINGEN, TX
August 16, 2019

DIVISION 1: GENERAL
019113 General Commissioning

DIVISION 21: FIRE SUPPRESSION
210517 Fire Suppression Sleeves and Seals
210518 Fire Suppression Escutcheon Plates
211313 Wet Pipe Sprinkler System

DIVISION 22: PLUMBING
220010 Summary of Plumbing Work
220517 Sleeves and Sleeve Seals for Plumbing Piping
220518 Escutcheons for Plumbing Piping
220519 Meters and Gauges for Plumbing Piping
220523 General-Duty Valves for Plumbing Piping
220529 Hangers and Supports for Plumbing Piping and Equipment
220548.13 Vibration Controls for Plumbing Piping and Equipment
220553 Identification for Plumbing Piping and Equipment
220719 Plumbing Piping Insulation
221116 Domestic Water Piping
221119 Domestic Water Piping Specialties
221316 Sanitary Waste and Vent Piping
221319 Sanitary Waste and Vent Piping Specialties
224000 Plumbing Fixtures
DIVISION 23: HEATING, VENTILATION, AND AIR-CONDITIONING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>230010</td>
<td>Summary of Mechanical Work</td>
</tr>
<tr>
<td>230513</td>
<td>Common Motor Requirements for HVAC Equipment</td>
</tr>
<tr>
<td>230516</td>
<td>Expansion Fittings and Loops for HVAC Piping</td>
</tr>
<tr>
<td>230517</td>
<td>Sleeves and Sleeve Seals for HVAC Piping</td>
</tr>
<tr>
<td>230518</td>
<td>Escutcheons for HVAC Piping</td>
</tr>
<tr>
<td>230519</td>
<td>Meters and Gauges for HVAC Piping</td>
</tr>
<tr>
<td>230523</td>
<td>Valves for HVAC Piping</td>
</tr>
<tr>
<td>230529</td>
<td>Hangers and Supports for HVAC Piping and Equipment</td>
</tr>
<tr>
<td>230548.13</td>
<td>Vibration Controls for HVAC Piping and Equipment</td>
</tr>
<tr>
<td>230553</td>
<td>Identification for HVAC Piping and Equipment</td>
</tr>
<tr>
<td>230593</td>
<td>Testing, Adjusting, and Balancing for HVAC</td>
</tr>
<tr>
<td>230713</td>
<td>Duct Insulation</td>
</tr>
<tr>
<td>230719</td>
<td>HVAC Piping Insulation</td>
</tr>
<tr>
<td>230800</td>
<td>Commissioning of HVAC</td>
</tr>
<tr>
<td>230900</td>
<td>Instrumentation and Controls for HVAC</td>
</tr>
<tr>
<td>230993</td>
<td>Sequence of Operations for HVAC Controls</td>
</tr>
<tr>
<td>232113</td>
<td>Hydronic Piping</td>
</tr>
<tr>
<td>232116</td>
<td>Hydronic Piping Specialties</td>
</tr>
<tr>
<td>232513</td>
<td>Water Treatment for Closed-Loop Hydronic Systems</td>
</tr>
<tr>
<td>233113</td>
<td>Metal Ducts</td>
</tr>
<tr>
<td>233300</td>
<td>Air Duct Accessories</td>
</tr>
<tr>
<td>233423</td>
<td>HVAC Power Ventilators</td>
</tr>
<tr>
<td>233713</td>
<td>Diffusers, Registers, and Grilles</td>
</tr>
<tr>
<td>238146</td>
<td>Water Source Unitary Heat Pumps</td>
</tr>
</tbody>
</table>

DIVISION 26: ELECTRICAL

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>260010</td>
<td>Summary of Electrical Work</td>
</tr>
<tr>
<td>260519</td>
<td>Low-Voltage Electrical Power Conductors and Cables</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
</tr>
</tbody>
</table>
260529 Hangers and Supports for Electrical Systems
260533 Raceways and Boxes for Electrical Systems
260536 Cable Trays for Electrical Systems
260544 Sleeves and Sleeve Seals for Electrical Raceways and Cabling
260553 Identification for Electrical Systems
260923 Lighting Control Devices
262200 Low-Voltage Transformers
262416 Panelboards
262726 Wiring Devices
262816 Enclosed Switches and Circuit Breakers
265116 Interior Lighting
265219 Emergency and Exit Lighting
265621 Exterior Lighting
267210 Fire Alarm
269750 Voice & Data Communication

DRAWINGS

M-2.1 MECHANICAL GENERAL NOTES, LEGEND, & ABBREVIATIONS
M-3.1 MECHANICAL PLAN – LEVEL 1
M-3.2 MECHANICAL PLAN – LEVEL 2
M-4.1 MECHANICAL PIPING PLAN – LEVEL 1
M-4.2 MECHANICAL PIPING PLAN – LEVEL 2
M-4.3 MECHANICAL PIPING DETAILS
M-5.1 MECHANICAL SCHEDULES
M-5.2 MECHANICAL DETAILS

E-2.1 ELECTRICAL SYMBOLS LEGEND & ABBREVIATIONS
E-3.1 LIGHTING PLAN – LEVEL 1
E-3.2 LIGHTING PLAN – LEVEL 2
E-4.1 ELECTRICAL PLAN – LEVEL 1
E-4.2 ELECTRICAL PLAN – LEVEL 2
E-5.1 ELECTRICAL SCHEDULES & IMAGES
E-6.1 ELECTRICAL RISER DIAGRAM
E-7.1 ELECTRICAL PANEL SCHEDULES
E-8.1 ELECTRICAL DETAILS
P-2.1 PLUMBING PLAN – LEVEL 1
P-2.2 PLUMBING PLAN – LEVEL 2
P-3.1 WASTE & VENT PLAN – LEVEL 1
P-3.2 WASTE & VENT PLAN – LEVEL 2
P-4.1 PLUMBING SCHEDULES
P-4.2 PLUMBING DETAILS

Date: 08/16/2019
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
</tr>
</thead>
</table>

END OF TABLE OF CONTENTS
1.1 PROJECT INFORMATION

A. Notice to Proposers: Qualified proposers are invited to submit Competitive Sealed Proposals (CSP) for Project as described in this Document according to the Instructions to Proposers.

1. Project Location: 202 South First Street, Harlingen, Texas 78550.

2. Owner: Reese Plaza Development, LLC | American Bar Association / ProBAR Project

3. Owner’s Representative: Mr. Todd Aune, CTO, Inc., 4901 East Grimes, Harlingen, Texas 78550 (956) 428-4636. | Ms. Kimi Jackson, ProBAR 202 E Jackson, Harlingen, Texas 78550

C. Architect: megamorphosis, inc. 324 West Van Buren, Harlingen, Texas 78550 (945) 428-1779.

1. Project Description: Tenant Finish out for levels two and portion of level one of the Reese, Approximately 17,040 square foot per floor. Improvements consist of installation of all mechanical, electrical and plumbing fixtures and connections to utilities. Installation of all partitions and finish materials. Fabrication of all millwork and countertops. Installation of all doors, hardware, interior signage and all work as reflected in the construction drawings and specifications. (Construction Documents)

D. Construction Contract: Proposals will be received for the following Work:

1. General Contract (all trades).

1.2 CSP SUBMITTAL AND OPENING

A. Owner will receive sealed CSP’s until the time and date at the location indicated below. Owner will consider CSP’s prepared in compliance with the Instructions issued by Owner, and delivered as follows:

1. Proposal Date: August 30, 2019.
2. Proposal Time: 4:00 p.m., local time.
3. Location: Megamorphosis, inc 324 West Van Buren, Harlingen, Texas 78550
4. Proposals will be thereafter publicly opened and read aloud.

1.3 PREPROPOSAL CONFERENCE

A. A preproposal conference for all proposers will be held at the project site 202 South First Street, Harlingen, Texas on August 26, 2019 @ 10:00 a.m., local time. Invited proposers are strongly encouraged to attend.

1.4 DOCUMENTS

A. Digital Download: A link has been included in the Invitation To CSP email.
1.5 PROPOSER'S QUALIFICATIONS

A. Proposers have been prequalified by Owner/Architect.

B. Proposals will be evaluated and ranked according to the Ranking Criteria included herein

END OF DOCUMENT 001116
Instructions to Bidders

for the following Project:
(Name, location, and detailed description)

«ProBAR at The Reese - Level 2 and 1»
«The Reese
202 S 1st Street
Harlingen, TX 78550»
«Tenant Improvements for interior of level two and portion of level one»

THE OWNER:
(Name, legal status, address, and other information)

«ABA - ProBAR | The Reese Development»
«»
«»
«»

THE ARCHITECT:
(Name, legal status, address, and other information)

«megamorphosis, General Corporation»
«324 West Van Buren Ave
Harlingen, Texas 78550»
«Telephone Number: 956.428.1779»
«Fax Number: 956.425.5886»

TABLE OF ARTICLES

1 DEFINITIONS
2 BIDDER’S REPRESENTATIONS
3 BIDDING DOCUMENTS
4 BIDDING PROCEDURES
5 CONSIDERATION OF BIDS
6 POST-BID INFORMATION
7 PERFORMANCE BOND AND PAYMENT BOND
8 ENUMERATION OF THE PROPOSED CONTRACT DOCUMENTS

ELECTRONIC COPYING of any portion of this AIA® Document to another electronic file is prohibited and constitutes a violation of copyright laws as set forth in the footer of this document.
ARTICLE 1 DEFINITIONS
§ 1.1 Bidding Documents include the Bidding Requirements and the Proposed Contract Documents. The Bidding Requirements consist of the advertisement or invitation to bid, Instructions to Bidders, supplementary instructions to bidders, the bid form, and any other bidding forms. The Proposed Contract Documents consist of the unexecuted form of Agreement between the Owner and Contractor and that Agreement’s Exhibits, Conditions of the Contract (General, Supplementary and other Conditions), Drawings, Specifications, all Addenda, and all other documents enumerated in Article 8 of these Instructions.

§ 1.2 Definitions set forth in the General Conditions of the Contract for Construction, or in other Proposed Contract Documents apply to the Bidding Documents.

§ 1.3 Addenda are written or graphic instruments issued by the Architect, which, by additions, deletions, clarifications, or corrections, modify or interpret the Bidding Documents.

§ 1.4 A Bid is a complete and properly executed proposal to do the Work for the sums stipulated therein, submitted in accordance with the Bidding Documents.

§ 1.5 The Base Bid is the sum stated in the Bid for which the Bidder offers to perform the Work described in the Bidding Documents, to which Work may be added or deleted by sums stated in Alternate Bids.

§ 1.6 An Alternate Bid (or Alternate) is an amount stated in the Bid to be added to or deducted from, or that does not change, the Base Bid if the corresponding change in the Work, as described in the Bidding Documents, is accepted.

§ 1.7 A Unit Price is an amount stated in the Bid as a price per unit of measurement for materials, equipment, or services, or a portion of the Work, as described in the Bidding Documents.

§ 1.8 A Bidder is a person or entity who submits a Bid and who meets the requirements set forth in the Bidding Documents.

§ 1.9 A Sub-bidder is a person or entity who submits a bid to a Bidder for materials, equipment, or labor for a portion of the Work.

ARTICLE 2 BIDDER’S REPRESENTATIONS
§ 2.1 By submitting a Bid, the Bidder represents that:
.1 the Bidder has read and understands the Bidding Documents;
.2 the Bidder understands how the Bidding Documents relate to other portions of the Project, if any, being bid concurrently or presently under construction;
.3 the Bid complies with the Bidding Documents;
.4 the Bidder has visited the site, become familiar with local conditions under which the Work is to be performed, and has correlated the Bidder’s observations with the requirements of the Proposed Contract Documents;
.5 the Bid is based upon the materials, equipment, and systems required by the Bidding Documents without exception; and
.6 the Bidder has read and understands the provisions for liquidated damages, if any, set forth in the form of Agreement between the Owner and Contractor.

.7 Bidder will ensure that all Sales Tax for material and labor is contained within the General Contractor’s amounts - SUBCONTRACTORS TO EXCLUDE SALES TAX, G.C. TO INCLUDE SALES TAX FOR MATERIAL AND LABOR ON THE TOTAL CONTRACT AMOUNT.

ARTICLE 3 BIDDING DOCUMENTS
§ 3.1 Distribution
§ 3.1.1 Bidders shall obtain complete Bidding Documents, as indicated below, from the issuing office designated in the advertisement or invitation to bid, for the deposit sum, if any, stated therein.

(Indicate how, such as by email, website, host site/platform, paper copy, or other method Bidders shall obtain Bidding Documents.)
§ 3.1.2 Any required deposit shall be refunded to Bidders who submit a bona fide Bid and return the paper Bidding Documents in good condition within ten days after receipt of Bids. The cost to replace missing or damaged paper documents will be deducted from the deposit. A Bidder receiving a Contract award may retain the paper Bidding Documents, and the Bidder’s deposit will be refunded.

§ 3.1.3 Bidding Documents will not be issued directly to Sub-bidders unless specifically offered in the advertisement or invitation to bid, or in supplementary instructions to bidders.

§ 3.1.4 Bidders shall use complete Bidding Documents in preparing Bids. Neither the Owner nor Architect assumes responsibility for errors or misinterpretations resulting from the use of incomplete Bidding Documents.

§ 3.1.5 The Bidding Documents will be available for the sole purpose of obtaining Bids on the Work. No license or grant of use is conferred by distribution of the Bidding Documents.

§ 3.2 Modification or Interpretation of Bidding Documents

§ 3.2.1 The Bidder shall carefully study the Bidding Documents, shall examine the site and local conditions, and shall notify the Architect of errors, inconsistencies, or ambiguities discovered and request clarification or interpretation pursuant to Section 3.2.2.

§ 3.2.2 Requests for clarification or interpretation of the Bidding Documents shall be submitted by the Bidder in writing and shall be received by the Architect at least seven days prior to the date for receipt of Bids.

§ 3.3 Substitutions

§ 3.3.1 The materials, products, and equipment described in the Bidding Documents establish a standard of required function, dimension, appearance, and quality to be met by any proposed substitution.

§ 3.3.2 Substitution Process

§ 3.3.2.1 Written requests for substitutions shall be received by the Architect at least ten days prior to the date for receipt of Bids. Requests shall be submitted in the same manner as that established for submitting clarifications and interpretations in Section 3.2.2.

§ 3.3.2.2 Bidders shall submit substitution requests on a Substitution Request Form if one is provided in the Bidding Documents.

§ 3.3.2.3 If a Substitution Request Form is not provided, requests shall include (1) the name of the material or equipment specified in the Bidding Documents; (2) the reason for the requested substitution; (3) a complete description of the proposed substitution including the name of the material or equipment proposed as the substitute, performance and test data, and relevant drawings; and (4) any other information necessary for an evaluation. The request shall include a statement setting forth changes in other materials, equipment, or other portions of the Work, including changes in the work of other contracts or the impact on any Project Certifications (such as LEED), that will result from incorporation of the proposed substitution.

§ 3.3.3 The burden of proof of the merit of the proposed substitution is upon the proposer. The Architect’s decision of approval or disapproval of a proposed substitution shall be final.

§ 3.3.4 If the Architect approves a proposed substitution prior to receipt of Bids, such approval shall be set forth in an Addendum. Approvals made in any other manner shall not be binding, and Bidders shall not rely upon them.
§ 3.3.5 No substitutions will be considered after the Contract award unless specifically provided for in the Contract Documents.

§ 3.4 Addenda
§ 3.4.1 Addenda will be transmitted to Bidders known by the issuing office to have received complete Bidding Documents.

(Indicate how, such as by email, website, host site/platform, paper copy, or other method Addenda will be transmitted.)

« Distributed by email »

§ 3.4.2 Addenda will be available where Bidding Documents are on file.

§ 3.4.3 Addenda will be issued no later than four one days prior to the date for receipt of Bids, except an Addendum withdrawing the request for Bids or one which includes postponement of the date for receipt of Bids.

§ 3.4.4 Prior to submitting a Bid, each Bidder shall ascertain that the Bidder has received all Addenda issued, and the Bidder shall acknowledge their receipt in the Bid.

ARTICLE 4 BIDDING PROCEDURES
§ 4.1 Preparation of Bids/Proposals
§ 4.1.1 Bids/Proposals shall be submitted on the forms included with or identified in the Bidding Documents. Specific responses to each of the included Ranking Criteria shall be clearly provided. Proposers should understand that any Criteria that is not clearly or completely responded to may result in zero points for that item.

§ 4.1.2 All blanks on the bid form shall be legibly executed. Paper bid forms shall be executed in a non-erasable medium.

§ 4.1.3 Sums shall be expressed in both words and numbers, unless noted otherwise on the bid form. In case of discrepancy, the amount entered in words shall govern.

§ 4.1.4 Edits to entries made on paper bid forms must be initialed by the signer of the Bid.

§ 4.1.5 All requested Alternates shall be bid. If no change in the Base Bid is required, enter “No Change” or as required by the bid form.

§ 4.1.6 Where two or more Bids for designated portions of the Work have been requested, the Bidder may, without forfeiture of the bid security, state the Bidder’s refusal to accept award of less than the combination of Bids stipulated by the Bidder. The Bidder shall neither make additional stipulations on the bid form nor qualify the Bid in any other manner.

§ 4.1.7 Each copy of the Bid shall state the legal name and legal status of the Bidder. As part of the documentation submitted with the Bid, the Bidder shall provide evidence of its legal authority to perform the Work in the jurisdiction where the Project is located. Each copy of the Bid shall be signed by the person or persons legally authorized to bind the Bidder to a contract. A Bid by a corporation shall further name the state of incorporation and have the corporate seal affixed. A Bid submitted by an agent shall have a current power of attorney attached, certifying the agent’s authority to bind the Bidder.

§ 4.1.8 A Bidder shall incur all costs associated with the preparation of its Bid.

§ 4.2 Bid Security
§ 4.2.1 Each Bid shall be accompanied by the following bid security:

« Bid Bond or Cashier’s check for 5% of total CSP amount. »

§ 4.2.2 The Bidder pledges to enter into a Contract with the Owner on the terms stated in the Bid and shall, if required, furnish bonds covering the faithful performance of the Contract and payment of all obligations arising thereunder. Should the Bidder refuse to enter into such Contract or fail to furnish such bonds if required, the amount of the bid security shall
be forfeited to the Owner as liquidated damages, not as a penalty. In the event the Owner fails to comply with Section 6.2, the amount of the bid security shall not be forfeited to the Owner.

§ 4.2.3 If a surety bond is required as bid security, it shall be written on AIA Document A310™, Bid Bond, unless otherwise provided in the Bidding Documents. The attorney-in-fact who executes the bond on behalf of the surety shall affix to the bond a certified and current copy of an acceptable power of attorney. The Bidder shall provide surety bonds from a company or companies lawfully authorized to issue surety bonds in the jurisdiction where the Project is located.

§ 4.2.4 The Owner will have the right to retain the bid security of Bidders to whom an award is being considered until (a) the Contract has been executed and bonds, if required, have been furnished; (b) the specified time has elapsed so that Bids may be withdrawn; or (c) all Bids have been rejected. However, if no Contract has been awarded or a Bidder has not been notified of the acceptance of its Bid, a Bidder may, beginning 60 days after the opening of Bids, withdraw its Bid and request the return of its bid security.

§ 4.3 Submission of Bids

§ 4.3.1 A Bidder shall submit its Bid as indicated below:
(In indicate how, such as by website, host site/platform, paper copy, or other method Bidders shall submit their Bid.)

"Three (3) Paper Copy delivered to Architect's office, one marked 'original' and two marked 'copy'"

§ 4.3.2 Paper copies of the Bid, the bid security, and any other documents required to be submitted with the Bid shall be enclosed in a sealed opaque envelope. The envelope shall be addressed to the party receiving the Bids and shall be identified with the Project name, the Bidder’s name and address, and, if applicable, the designated portion of the Work for which the Bid is submitted. If the Bid is sent by mail, the sealed envelope shall be enclosed in a separate mailing envelope with the notation “SEALED BID PROPOSAL ENCLOSED” on the face thereof.

§ 4.3.3 Bids shall be submitted by the date and time and at the place indicated in the invitation to bid. Bids submitted after the date and time for receipt of Bids, or at an incorrect place, will not be accepted.

§ 4.3.4 The Bidder shall assume full responsibility for timely delivery at the location designated for receipt of Bids.

§ 4.3.5 A Bid submitted by any method other than as provided in this Section 4.3 will not be accepted.

§ 4.4 Modification or Withdrawal of Bid

§ 4.4.1 Prior to the date and time designated for receipt of Bids, a Bidder may submit a new Bid to replace a Bid previously submitted, or withdraw its Bid entirely, by notice to the party designated to receive the Bids. Such notice shall be received and duly recorded by the receiving party on or before the date and time set for receipt of Bids. The receiving party shall verify that replaced or withdrawn Bids are removed from the other submitted Bids and not considered. Notice of submission of a replacement Bid or withdrawal of a Bid shall be worded so as not to reveal the amount of the original Bid.

§ 4.4.2 Withdrawn Bids may be resubmitted up to the date and time designated for the receipt of Bids in the same format as that established in Section 4.3, provided they fully conform with these Instructions to Bidders. Bid security shall be in an amount sufficient for the Bid as resubmitted.

§ 4.4.3 After the date and time designated for receipt of Bids, a Bidder who discovers that it made a clerical error in its Bid shall notify the Architect of such error within two days, or pursuant to a timeframe specified by the law of the jurisdiction where the Project is located, requesting withdrawal of its Bid. Upon providing evidence of such error to the reasonable satisfaction of the Architect, the Bid shall be withdrawn and not resubmitted. If a Bid is withdrawn pursuant to this Section 4.4.3, the bid security will be attended to as follows:
(State the terms and conditions, such as Bid rank, for returning or retaining the bid security.)

"At Owner's discretion, no penalty or forfeiture of Bid Bond Amount"
ARTICLE 5 CONSIDERATION OF BIDS
§ 5.1 Opening of Bids
If stipulated in an advertisement or invitation to bid, or when otherwise required by law, Bids properly identified and received within the specified time limits will be publicly opened and read aloud. A summary of the Bids may be made available to Bidders. Proposals will be reviewed and ranked by the Ranking Committee based on responses to all Ranking Criteria published herein. Please note that ProBAR encourages the engagement of minority-owned, or historically disadvantaged businesses. While no ranking points are specifically assigned to this item, we reserve the right to give preference to Proposers that either are, or contract with companies that meet this description.

§ 5.2 Rejection of Bids
Unless otherwise prohibited by law, the Owner shall have the right to reject any or all Bids.

§ 5.3 Acceptance of Bid (Award)
§ 5.3.1 It is the intent of the Owner to award a Contract to the lowest responsive and responsible Bidder, provided the Bid has been submitted in accordance with the requirements of the Bidding Documents. Unless otherwise prohibited by law, the Owner shall have the right to waive informalities and irregularities in a Bid received and to accept the Bid which, in the Owner’s judgment, is in the Owner’s best interests.

§ 5.3.2 Unless otherwise prohibited by law, the Owner shall have the right to accept Alternates in any order or combination, unless otherwise specifically provided in the Bidding Documents, and to determine the lowest responsive and responsible Bidder on the basis of the sum of the Base Bid and Alternates accepted.

ARTICLE 6 POST-BID INFORMATION
§ 6.1 Contractor’s Qualification Statement
Bidders to whom award of a Contract is under consideration shall submit to the Architect, upon request and within the timeframe specified by the Architect, a properly executed AIA Document A305™, Contractor’s Qualification Statement, unless such a Statement has been previously required and submitted for this Bid.

§ 6.2 Owner’s Financial Capability
A Bidder to whom award of a Contract is under consideration may request in writing, fourteen days prior to the expiration of the time for withdrawal of Bids, that the Owner furnish to the Bidder reasonable evidence that financial arrangements have been made to fulfill the Owner’s obligations under the Contract. The Owner shall then furnish such reasonable evidence to the Bidder no later than seven days prior to the expiration of the time for withdrawal of Bids. Unless such reasonable evidence is furnished within the allotted time, the Bidder will not be required to execute the Agreement between the Owner and Contractor.

§ 6.3 Submittals
§ 6.3.1 After notification of selection for the award of the Contract, the Bidder shall, as soon as practicable or as stipulated in the Bidding Documents, submit in writing to the Owner through the Architect:
.1 a designation of the Work to be performed with the Bidder’s own forces;
.2 names of the principal products and systems proposed for the Work and the manufacturers and suppliers of each; and
.3 names of persons or entities (including those who are to furnish materials or equipment fabricated to a special design) proposed for the principal portions of the Work.
.4 All products with lead times beyond 4 weeks must be submitted within two weeks of Bid Award.

§ 6.3.2 The Bidder will be required to establish to the satisfaction of the Architect and Owner the reliability and responsibility of the persons or entities proposed to furnish and perform the Work described in the Bidding Documents.

§ 6.3.3 Prior to the execution of the Contract, the Architect will notify the Bidder if either the Owner or Architect, after due investigation, has reasonable objection to a person or entity proposed by the Bidder. If the Owner or Architect has reasonable objection to a proposed person or entity, the Bidder may, at the Bidder’s option, withdraw the Bid or submit an acceptable substitute person or entity. The Bidder may also submit any required adjustment in the Base Bid or Alternate Bid to account for the difference in cost occasioned by such substitution. The Owner may accept the adjusted bid price or disqualify the Bidder. In the event of either withdrawal or disqualification, bid security will not be forfeited.
§ 6.3.4 Persons and entities proposed by the Bidder and to whom the Owner and Architect have made no reasonable objection must be used on the Work for which they were proposed and shall not be changed except with the written consent of the Owner and Architect.

ARTICLE 7 PERFORMANCE BOND AND PAYMENT BOND

§ 7.1 Bond Requirements

§ 7.1.1 If stipulated in the Bidding Documents, the Bidder shall furnish bonds covering the faithful performance of the Contract and payment of all obligations arising thereunder.

§ 7.1.2 If the furnishing of such bonds is stipulated in the Bidding Documents, the cost shall be included in the Bid. If the furnishing of such bonds is required after receipt of bids and before execution of the Contract, the cost of such bonds shall be added to the Bid in determining the Contract Sum.

§ 7.1.3 The Bidder shall provide surety bonds from a company or companies lawfully authorized to issue surety bonds in the jurisdiction where the Project is located.

§ 7.1.4 Unless otherwise indicated below, the Penal Sum of the Payment and Performance Bonds shall be the amount of the Contract Sum.

(If Payment or Performance Bonds are to be in an amount other than 100% of the Contract Sum, indicate the dollar amount or percentage of the Contract Sum.)

§ 7.2 Time of Delivery and Form of Bonds

§ 7.2.1 The Bidder shall deliver the required bonds to the Owner not later than three days following the date of execution of the Contract. If the Work is to commence sooner in response to a letter of intent, the Bidder shall, prior to commencement of the Work, submit evidence satisfactory to the Owner that such bonds will be furnished and delivered in accordance with this Section 7.2.1.

§ 7.2.2 Unless otherwise provided, the bonds shall be written on AIA Document A312, Performance Bond and Payment Bond.

§ 7.2.3 The bonds shall be dated on or after the date of the Contract.

§ 7.2.4 The Bidder shall require the attorney-in-fact who executes the required bonds on behalf of the surety to affix to the bond a certified and current copy of the power of attorney.

ARTICLE 8 ENUMERATION OF THE PROPOSED CONTRACT DOCUMENTS

§ 8.1 Copies of the proposed Contract Documents have been made available to the Bidder and consist of the following documents:

.1 AIA Document A101™–2017, Standard Form of Agreement Between Owner and Contractor, unless otherwise stated below.

(Insert the complete AIA Document number, including year, and Document title.)

.2 AIA Document A101™–2017, Exhibit A, Insurance and Bonds, unless otherwise stated below.

(Insert the complete AIA Document number, including year, and Document title.)

.3 AIA Document A201™–2017, General Conditions of the Contract for Construction, unless otherwise stated below.

(Insert the complete AIA Document number, including year, and Document title.)
4. AIA Document E203™–2013, Building Information Modeling and Digital Data Exhibit, dated as indicated below:

(Insert the date of the E203-2013.)

5. Drawings

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
</table>

6. Specifications

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
</table>

7. Addenda:

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
</table>

8. Other Exhibits:

(Insert the date of the E204-2017.)

[] AIA Document E204™–2017, Sustainable Projects Exhibit, dated as indicated below:

(Insert the date of the E204-2017.)

[] The Sustainability Plan:

<table>
<thead>
<tr>
<th>Title</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
</table>

[] Supplementary and other Conditions of the Contract:

<table>
<thead>
<tr>
<th>Document</th>
<th>Title</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
</table>

9. Other documents listed below:

(List here any additional documents that are intended to form part of the Proposed Contract Documents.)

<table>
<thead>
<tr>
<th>Document</th>
<th>Title</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
</table>
DOCUMENT 002113

INSTRUCTIONS TO BIDDERS | PROPOSERS

1.1 INSTRUCTIONS TO BIDDERS | PROPOSERS

A. AIA Document A701, "Instructions to Bidders," is hereby incorporated into the Procurement and Contracting Requirements by reference.

END OF DOCUMENT 002113
RANKING COMMITTEE MEMBERS:
1. Victor Lagos (ProBAR)
2. Delia Avila (ProBAR)
3. Armando Lopez (ProBAR)
4. Chris Alvarado (ProBAR)
5. David Wolf, Project Manager (Davike | ProBAR)
6. Todd Aune (Reese Development)
7. John Pearcy | Doug Junkin (megamorphosis)

EVALUATION CRITERIA
The committee will evaluate and rank each Offeror based on the published criteria and relative weights. The Committee or representative thereof will then proceed to negotiate a contract with the highest-ranking offeror. If negotiations are unsuccessful, the Owner will notify said offeror that negotiations have been terminated and will proceed to negotiate with the next highest ranked Offeror. The Owner will continue this process until acceptable contract terms have been reached. Upon negotiation of a successful contract the committee will present such evidence of finding to the signing authority, which will retain the right to award the committee’s recommendation or reject all bids in their entirety.

CRITERIA/RELATIVE WEIGHTS
Offerors are to provide complete and specific information as requested to all items of the Ranking/Selection criteria. The relative weights (points) for each criterion are noted on the attached Sample Evaluation Sheet at the end of this Section; award of points is dependent on the merits and completeness of information provided.

1.1 QUANTITATIVE CRITERIA – 45%
A. CONSTRUCTION COST – 45 POINTS
 Total of Base Proposal, Add Alternates.
 Lowest proposal receives forty-five (45) points, all other proposals subtract one (1) point for each ten thousand dollar ($10,000) above lowest proposed amount.

1.2 QUALITATIVE CRITERIA – 55%
A. CONSTRUCTION TIME HISTORY – 10 POINTS
 Provide contractual and actual completion date for projects $750,000 or more in construction cost for past 5 years. Explain discrepancies.
 On sliding scale, least days between contractual and actual – 10 points, median = 5 points, most = 1 point.
 Example:
 Project A
 Contractual Completion Date: July 1
 Actual Completion Date: June 1
 Difference: -31 Days (fewer days = more points)
 Project B
 Contractual Completion Date: July 1
 Actual Completion Date: August 1
 Difference: 31 Days (more days = fewer points)

B. SIMILAR PROJECT LIST – 10 POINTS
 Project list of similar scope, complexity and type (especially major renovation) grouped by cost: A) $500,000-$749,999, B) $750,000-$999,999, C) $1 million and over.
 C = 10 points, B = 5 points, A = 1 point.
C. SUBCONTRACTORS – 5 POINTS
Within 24 hours of the Competitive Sealed Proposal Opening submit resumes of subcontractors to be assigned to project. Provide project list of similar scope, complexity and type (especially major renovation) grouped by cost: A) $25,000-$49,999, B) $50,000-74,999, C) $75,000 and over.
C = 5 points, B = 3 points, A = 1 point.

D. PROJECT MANAGEMENT TEAM – 15 POINTS
Provide resumes for all key personnel involved in managing the project (superintendants, project managers, executives, etc.), which shall include, but not be limited to, number of years of experience in their current position and their direct project roles & responsibilities for this project.
On a sliding scale, most qualified = 15 points, median = 8 points, least qualified = 1 point

E. PAST CLIENTS’ SATISFACTION – 5 POINTS
Provide evidence of past clients’ (prior 10 contracts) willingness to re-contract with General Contractor with major subcontractors.
8+ client responses = 5 points, 6-7 client responses = 4 points, 4-5 client responses = 3 points, 2-3 client responses = 2 points, 1 client response = 1 point

F. CONTRACTOR’S SUBSTANTIAL COMPLETION DATE – 10 POINTS
Provide scheduled substantial completion date (not to exceed December 31, 2019).
Earliest date receives ten (10) points, all other proposals subtract one (1) point for each 5 days beyond earliest proposed date.
SAMPLE EVALUATION SHEET
CSP for ProBAR Finish out at The Reese

PROPOSER'S BUSINESS NAME: _____________________

DATE EVALUATED: ____________________

EVALUATOR'S SIGNATURE: ______________________

EVALUATOR PRINT NAME: ______________________

RFQ REVIEW:
Each Vendor will be assigned a score of 1- 4 by each evaluator for each criteria
4 = Very good / Exceeds expectations
3 = Above expectations
2 = Meets expectations
1 = Does not meet expectations
0 = non responsive - **Utilization of 0 by evaluator requires Evaluation Committee’s full consensus.**

<table>
<thead>
<tr>
<th>The Request for qualifications will be evaluated using</th>
<th>Evaluator’s Score</th>
<th>Score if revised</th>
<th>Weighted Weight</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted Quantitative Scoring per the following categories:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. 20 – Firm’s Experience, Reputation, References</td>
<td>X 20 =</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. 15 – Financials & Background</td>
<td>X 15 =</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. 15 – Experience and Reputation of Proposed Project Staff</td>
<td>X 15 =</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. 40 – Cost Consideration</td>
<td>X 40 =</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. 5 - Responsiveness of Proposal</td>
<td>X 5 =</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. 5 – Proposed Subcontractor Team</td>
<td>X 5 =</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

END OF DOCUMENT 002300
1.1 DEFINITIONS

A. Procurement Substitution Requests: Requests for changes in products, materials, equipment, and methods of construction from those indicated in the Procurement and Contracting Documents, submitted prior to receipt of Proposals.

B. Substitution Requests: Requests for changes in products, materials, equipment, and methods of construction from those indicated in the Contract Documents, submitted following Contract award. Substitution requests following Contract award will be completely at the discretion of Owner and Architect. The successful Proposer will be required to provide all materials, equipment, and methods of construction outlined in the Contract Documents at no additional cost unless authorized in writing by Owner or Architect.

1.2 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.3 PROCUREMENT SUBSTITUTIONS

A. Procurement Substitutions, General: By submitting a Proposal, the Proposer represents that its Proposal is based on materials and equipment described in the Procurement and Contracting Documents, including Addenda. Proposers are encouraged to request approval of qualifying substitute materials and equipment when the Specifications Sections list materials and equipment by product or manufacturer name.

B. Procurement Substitution Requests and Substitution Requests will be received and considered by Owner when the following conditions are satisfied, as determined by Architect; otherwise requests will be returned without action:

1. Extensive revisions to the Contract Documents are not required.
2. Proposed changes are in keeping with the general intent of the Contract Documents, including the level of quality of the Work represented by the requirements therein.
3. The request is fully documented and properly submitted.

1.4 SUBMITTALS

A. Procurement Substitution Request or Substitution Requests: Submit to Architect. Request must be made in writing in compliance with the following requirements:

1. Requests for substitution of materials and equipment will be considered if received no later than 5 days prior to date of Proposal opening.
2. Submittal Format: Submit one written Procurement Substitution Request, using form acceptable to Architect.
 a. Identify the product or the fabrication or installation method to be replaced in each request. Include related Specifications Sections and drawing numbers.
 b. Provide complete documentation on both the product specified and the proposed substitute, including the following information as appropriate:
1) Point-by-point comparison of specified and proposed substitute product data, fabrication drawings, and installation procedures.
2) Copies of current, independent third-party test data of salient product or system characteristics.
3) Samples where applicable or when requested by Architect.
4) Detailed comparison of significant qualities of the proposed substitute with those of the Work specified. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
5) Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.
6) Research reports, where applicable, evidencing compliance with building code in effect for Project, from applicable code organization.
7) Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by Owner and separate contractors, which will become necessary to accommodate the proposed substitute.

c. Provide certification by manufacturer that the substitute proposed is equal to or superior to that required by the Procurement and Contracting Documents, and that its in-place performance will be equal to or superior to the product or equipment specified in the application indicated.

d. Proposer, in submitting the Procurement Substitution Request, waives the right to additional payment or an extension of Contract Time because of the failure of the substitute to perform as represented in the Procurement Substitution Request.

B. Architect's Action:

1. Architect may request additional information or documentation necessary for evaluation of the Procurement Substitution Request. Architect will notify all proposers of acceptance of the proposed substitute by means of an Addendum to the Procurement and Contracting Documents.

C. Architect's approval of a substitute during proposing does not relieve Contractor of the responsibility to submit required shop drawings and to comply with all other requirements of the Contract Documents.

END OF DOCUMENT 002600
1.1 PROPOSAL INFORMATION

A. Proposer: ___

B. Project Name: Project Location: The REESE 202 south First Street, Harlingen, Texas 78550

C. Owner: ABA | ProBAR and Reese Plaza Development, LLC

D. Architect: megamorphosis, Inc.

E. Architect Project Number: 1804.

1.2 CERTIFICATIONS AND BASE PROPOSAL

A. Base Proposal, Single-Prime (All Trades) Contract: The undersigned Proposer, having carefully examined the Procurement and Contracting Requirements, Conditions of the Contract, Drawings, Specifications, and all subsequent Addenda, as prepared by megamorphosis, Inc. and Architect’s consultants, having visited the site, and being familiar with all conditions and requirements of the Work, hereby agrees to furnish all material, labor, equipment and services, including all scheduled allowances, necessary to complete the construction of the above-named project, according to the requirements of the Procurement and Contracting Documents, for the stipulated sum of:

1. __ Dollars ($______________).

1.3 SCHEDULE OF ALTERNATES

A. ADD ALTERNATE No.1: Communications, Access Control, Cabling, Surveillance & Security Systems:

1 Add.: __ Dollars ($______________).

B. ADD ALTERNATE No.2: Access Control, Surveillance & Security Systems:

1 Add.: __ Dollars ($______________).

C. ADD ALTERNATE No.3: Audio Visual Systems:

1 Add.: __ Dollars ($______________).

1.4 PRIME SUBCONTRACTORS

A. The following companies shall execute subcontracts for the portions of the Work indicated.

1. Metal Stud/Drywall: __

2. Tiling: __
3. Flooring: __.
4. Painting: __.
5. Plumbing Work: __.
6. HVAC Work: __.
7. Electrical Work: __.
8. Communications Cabling & Security Systems______________________________.

1.5 TIME OF COMPLETION
A. The undersigned Proposer proposes and agrees hereby to commence the Work of the Contract Documents on a date specified in a written Notice to Proceed to be issued by Architect, and shall fully complete the Work by this date: ____________(mo) ______(day), 2019 NOT TO EXCEED DECEMBER 31, 2019.

1.6 ACKNOWLEDGEMENT OF ADDENDA
A. The undersigned Proposer acknowledges receipt of and use of the following Addenda in the preparation of this Proposal:
 1. Addendum No. 1, dated ____________________.
 2. Addendum No. 2, dated ____________________.
 3. Addendum No. 3, dated ____________________.

1.7 CONTRACTOR’S LICENSE
A. The undersigned further states that it is a duly licensed contractor, for the type of work proposed, in the City of Harlingen and that all fees, permits, etc., pursuant to submitting this proposal have been paid in full.

1.8 SUBMISSION OF PROPOSAL
A. Respectfully submitted this _____ day of ____________, 2019.
B. Submitted By_______________________________(Name of proposing firm or corporation).
C. Authorized Signature:_______________________________(Handwritten signature).
D. Signed By:_______________________________(Type or print name).
E. Title:_______________________________(Owner/Partner/President/Vice President).
F. Witness By:_______________________________(Handwritten signature).
G. Attest:_______________________________(Handwritten signature).
H. By:_______________________________(Type or print name).
I. Title:_______________________________(Corporate Secretary or Assistant Secretary).
J. Street Address:__.
END OF DOCUMENT 004113
AGREEMENT made as of the « 5th » day of « September » in the year « 2019 »
(In words, indicate day, month and year.)

BETWEEN the Owner:
((Name, legal status, address and other information))
« The American Bar Association / ProBAR Project » « The Reese Plaza Development llc. »
« 321 N Clark St » « 202 S. 1st St. »
« Chicago, Illinois 60654 » « Harlingen, TX 78550 »
and the Contractor:
((Name, legal status, address and other information))

for the following Project:
((Name, location and detailed description))
« ProBAR at The Reese - Level 2 and 1 »
« The Reese »
« 202 S 1st Street »
« Harlingen, TX 78550 »
« Tenant Improvements for interior of level two and portion of level one »

The Architect:
((Name, legal status, address and other information))
« megamorphosis » « General Corporation »
« 324 West Van Buren Ave »
« Harlingen, Texas 78550 »
« Telephone Number: 956.428.1779 »
« Fax Number: 956.425.5886 »

The Owner and Contractor agree as follows.
TABLE OF ARTICLES

1 THE CONTRACT DOCUMENTS
2 THE WORK OF THIS CONTRACT
3 DATE OF COMMENCEMENT AND SUBSTANTIAL COMPLETION
4 CONTRACT SUM
5 PAYMENTS
6 DISPUTE RESOLUTION
7 TERMINATION OR SUSPENSION
8 MISCELLANEOUS PROVISIONS
9 ENUMERATION OF CONTRACT DOCUMENTS

EXHIBIT A INSURANCE AND BONDS

ARTICLE 1 THE CONTRACT DOCUMENTS
The Contract Documents consist of this Agreement, Conditions of the Contract (General, Supplementary, and other Conditions), Drawings, Specifications, Addenda issued prior to execution of this Agreement, other documents listed in this Agreement, and Modifications issued after execution of this Agreement, all of which form the Contract, and are as fully a part of the Contract as if attached to this Agreement or repeated herein. The Contract represents the entire and integrated agreement between the parties hereto and supersedes prior negotiations, representations, or agreements, either written or oral. An enumeration of the Contract Documents, other than a Modification, appears in Article 9.

ARTICLE 2 THE WORK OF THIS CONTRACT
The Contractor shall fully execute the Work described in the Contract Documents, except as specifically indicated in the Contract Documents to be the responsibility of others.

ARTICLE 3 DATE OF COMMENCEMENT AND SUBSTANTIAL COMPLETION

§ 3.1 The date of commencement of the Work shall be:
(Check one of the following boxes.)
[
] The date of this Agreement.
[
] A date set forth in a notice to proceed issued by the Owner.
[
] Established as follows:

(Insert a date or a means to determine the date of commencement of the Work.)

§ 3.2 The Contract Time shall be measured from the date of commencement of the Work.

§ 3.3 Substantial Completion
§ 3.3.1 Subject to adjustments of the Contract Time as provided in the Contract Documents, the Contractor shall achieve Substantial Completion of the entire Work:
(Check one of the following boxes and complete the necessary information.)
§ 3.3.2 Subject to adjustments of the Contract Time as provided in the Contract Documents, if portions of the Work are to be completed prior to Substantial Completion of the entire Work, the Contractor shall achieve Substantial Completion of such portions by the following dates:

<table>
<thead>
<tr>
<th>Portion of Work</th>
<th>Substantial Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ 3.3.3 If the Contractor fails to achieve Substantial Completion as provided in this Section 3.3, liquidated damages, if any, shall be assessed as set forth in Section 4.5.

ARTICLE 4 CONTRACT SUM

§ 4.1 The Owner shall pay the Contractor the Contract Sum in current funds for the Contractor’s performance of the Contract. The Contract Sum shall be « » ($ « »), subject to additions and deductions as provided in the Contract Documents.

§ 4.2 Alternates

§ 4.2.1 Alternates, if any, included in the Contract Sum:

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ 4.2.2 Subject to the conditions noted below, the following alternates may be accepted by the Owner following execution of this Agreement. Upon acceptance, the Owner shall issue a Modification to this Agreement. (Insert below each alternate and the conditions that must be met for the Owner to accept the alternate.)

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Conditions for Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ 4.3 Allowances, if any, included in the Contract Sum:
(Identify each allowance.)

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Specifications</td>
<td>$55,000.00</td>
</tr>
</tbody>
</table>

§ 4.4 Unit prices, if any:
(Identify the item and state the unit price and quantity limitations, if any, to which the unit price will be applicable.)

<table>
<thead>
<tr>
<th>Item</th>
<th>Units and Limitations</th>
<th>Price per Unit ($0.00)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ 4.5 Liquidated damages, if any:
(Insert terms and conditions for liquidated damages, if any.)

« Owner American Bar Association shall be entitled to recover, and Contractor may be jointly-and-severally liable to pay, the entire rent payment owed to Owner Reese Development for the first and second floor of the leased premises, under the applicable lease agreement, for any period of delay beyond the date of completion identified in Section 3.3.1 »

§ 4.6 Other:
(Insert provisions for bonus or other incentives, if any, that might result in a change to the Contract Sum.)

« »
ARTICLE 5 PAYMENTS
§ 5.1 Progress Payments
§ 5.1.1 Based upon Applications for Payment submitted to the Architect by the Contractor and Certificates for Payment issued by the Architect, the Owner shall make progress payments on account of the Contract Sum to the Contractor as provided below and elsewhere in the Contract Documents.

§ 5.1.2 The period covered by each Application for Payment shall be one calendar month ending on the last day of the month, or as follows:

« »

§ 5.1.3 Provided that an Application for Payment is received by the Architect not later than the «25» day of a month, the Owner shall make payment of the amount certified to the Contractor not later than the «30» day of the «following» month. If an Application for Payment is received by the Architect after the application date fixed above, payment of the amount certified shall be made by the Owner not later than «forty five» («45») days after the Architect receives the Application for Payment.

(Federal, state or local laws may require payment within a certain period of time.)

§ 5.1.4 Each Application for Payment shall be based on the most recent schedule of values submitted by the Contractor in accordance with the Contract Documents. The schedule of values shall allocate the entire Contract Sum among the various portions of the Work. The schedule of values shall be prepared in such form, and supported by such data to substantiate its accuracy, as the Architect may require. This schedule of values shall be used as a basis for reviewing the Contractor’s Applications for Payment.

§ 5.1.5 Applications for Payment shall show the percentage of completion of each portion of the Work as of the end of the period covered by the Application for Payment.

§ 5.1.6 In accordance with AIA Document A201™–2017, General Conditions of the Contract for Construction, and subject to other provisions of the Contract Documents, the amount of each progress payment shall be computed as follows:

§ 5.1.6.1 The amount of each progress payment shall first include:

.1 That portion of the Contract Sum properly allocable to completed Work;
.2 That portion of the Contract Sum properly allocable to materials and equipment delivered and suitably stored at the site for subsequent incorporation in the completed construction, or, if approved in advance by the Owner, suitably stored off the site at a location agreed upon in writing; and
.3 That portion of Construction Change Directives that the Architect determines, in the Architect’s professional judgment, to be reasonably justified.

§ 5.1.6.2 The amount of each progress payment shall then be reduced by:

.1 The aggregate of any amounts previously paid by the Owner;
.2 The amount, if any, for Work that remains uncorrected and for which the Architect has previously withheld a Certificate for Payment as provided in Article 9 of AIA Document A201–2017;
.3 Any amount for which the Contractor does not intend to pay a Subcontractor or material supplier, unless the Work has been performed by others the Contractor intends to pay;
.4 For Work performed or defects discovered since the last payment application, any amount for which the Architect may withhold payment, or nullify a Certificate of Payment in whole or in part, as provided in Article 9 of AIA Document A201–2017; and
.5 Retainage withheld pursuant to Section 5.1.7.

§ 5.1.7 Retainage
§ 5.1.7.1 For each progress payment made prior to Substantial Completion of the Work, the Owner may withhold the following amount, as retainage, from the payment otherwise due:

(Insert a percentage or amount to be withheld as retainage from each Application for Payment. The amount of retainage may be limited by governing law.)
§ 5.1.7.1 The following items are not subject to retainage:
(Insert any items not subject to the withholding of retainage, such as general conditions, insurance, etc.)

§ 5.1.7.2 Reduction or limitation of retainage, if any, shall be as follows:
(If the retainage established in Section 5.1.7.1 is to be modified prior to Substantial Completion of the entire Work, including modifications for Substantial Completion of portions of the Work as provided in Section 3.3.2, insert provisions for such modifications.)

§ 5.1.7.3 Except as set forth in this Section 5.1.7.3, upon Substantial Completion of the Work, the Contractor may submit an Application for Payment that includes the retainage withheld from prior Applications for Payment pursuant to this Section 5.1.7. The Application for Payment submitted at Substantial Completion shall not include retainage as follows:
(Insert any other conditions for release of retainage upon Substantial Completion.)

§ 5.1.8 If final completion of the Work is materially delayed through no fault of the Contractor, the Owner shall pay the Contractor any additional amounts in accordance with Article 9 of AIA Document A201–2017.

§ 5.1.9 Except with the Owner’s prior approval, the Contractor shall not make advance payments to suppliers for materials or equipment which have not been delivered and stored at the site.

§ 5.2 Final Payment
§ 5.2.1 Final payment, constituting the entire unpaid balance of the Contract Sum, shall be made by the Owner to the Contractor when
.1 the Contractor has fully performed the Contract except for the Contractor’s responsibility to correct Work as provided in Article 12 of AIA Document A201–2017, and to satisfy other requirements, if any, which extend beyond final payment; and
.2 a final Certificate for Payment has been issued by the Architect.

§ 5.2.2 The Owner’s final payment to the Contractor shall be made no later than 30 days after the issuance of the Architect’s final Certificate for Payment, or as follows:

§ 5.3 Interest
Payments due and unpaid under the Contract shall bear interest from the date payment is due at the rate stated below, or in the absence thereof, at the legal rate prevailing from time to time at the place where the Project is located.
(Insert rate of interest agreed upon, if any.)

ARTICLE 6 DISPUTE RESOLUTION
§ 6.1 Initial Decision Maker
The Architect will serve as the Initial Decision Maker pursuant to Article 15 of AIA Document A201–2017, unless the parties appoint below another individual, not a party to this Agreement, to serve as the Initial Decision Maker.
(If the parties mutually agree, insert the name, address and other contact information of the Initial Decision Maker, if other than the Architect.)
§ 6.2 Binding Dispute Resolution
For any Claim subject to, but not resolved by, mediation pursuant to Article 15 of AIA Document A201–2017, the method of binding dispute resolution shall be as follows:

(Check the appropriate box.)

[] Arbitration pursuant to Section 15.4 of AIA Document A201–2017
[] Litigation in a court of competent jurisdiction
[] Other (Specify)

If the Owner and Contractor do not select a method of binding dispute resolution, or do not subsequently agree in writing to a binding dispute resolution method other than litigation, Claims will be resolved by litigation in a court of competent jurisdiction.

ARTICLE 7 TERMINATION OR SUSPENSION
§ 7.1 The Contract may be terminated by the Owner or the Contractor as provided in Article 14 of AIA Document A201–2017.

§ 7.1.1 If the Contract is terminated for the Owner’s convenience in accordance with Article 14 of AIA Document A201–2017, then the Owner shall pay the Contractor a termination fee as follows:

(Insert the amount of, or method for determining, the fee, if any, payable to the Contractor following a termination for the Owner’s convenience.)

§ 7.2 The Work may be suspended by the Owner as provided in Article 14 of AIA Document A201–2017.

ARTICLE 8 MISCELLANEOUS PROVISIONS
§ 8.1 Where reference is made in this Agreement to a provision of AIA Document A201–2017 or another Contract Document, the reference refers to that provision as amended or supplemented by other provisions of the Contract Documents.

§ 8.2 The Owner’s representative:

(Name, address, email address, and other information)

§ 8.3 The Contractor’s representative:

(Name, address, email address, and other information)
§ 8.4 Neither the Owner’s nor the Contractor’s representative shall be changed without ten days’ prior notice to the other party.

§ 8.5 Insurance and Bonds
§ 8.5.1 The Owner and the Contractor shall purchase and maintain insurance as set forth in AIA Document A101™–2017, Standard Form of Agreement Between Owner and Contractor where the basis of payment is a Stipulated Sum, Exhibit A, Insurance and Bonds, and elsewhere in the Contract Documents.

§ 8.5.2 The Contractor shall provide bonds as set forth in AIA Document A101™–2017 Exhibit A, and elsewhere in the Contract Documents.

§ 8.6 Notice in electronic format, pursuant to Article 1 of AIA Document A201–2017, may be given in accordance with AIA Document E203™–2013, Building Information Modeling and Digital Data Exhibit, if completed, or as otherwise set forth below:
(If other than in accordance with AIA Document E203–2013, insert requirements for delivering notice in electronic format such as name, title, and email address of the recipient and whether and how the system will be required to generate a read receipt for the transmission.)

§ 8.7 Other provisions:

ARTICLE 9 ENUMERATION OF CONTRACT DOCUMENTS
§ 9.1 This Agreement is comprised of the following documents:
.1 AIA Document A101™–2017, Standard Form of Agreement Between Owner and Contractor
.2 AIA Document A101™–2017, Exhibit A, Insurance and Bonds
.3 AIA Document A201™–2017, General Conditions of the Contract for Construction
.4 AIA Document E203™–2013, Building Information Modeling and Digital Data Exhibit, dated as indicated below:
(Insert the date of the E203-2013 incorporated into this Agreement.)

.5 Drawings

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
</table>

.6 Specifications

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
</table>

.7 Addenda, if any:

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
</table>

Portions of Addenda relating to bidding or proposal requirements are not part of the Contract Documents unless the bidding or proposal requirements are also enumerated in this Article 9.

.8 Other Exhibits:
(Insert any other exhibits that are referenced in the contract documents.)
AIA Document E204™–2017, Sustainable Projects Exhibit, dated as indicated below:

(Insert the date of the E204-2017 incorporated into this Agreement.)

The Sustainability Plan:

<table>
<thead>
<tr>
<th>Title</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
</table>

Supplementary and other Conditions of the Contract:

<table>
<thead>
<tr>
<th>Document</th>
<th>Title</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
</table>

Other documents, if any, listed below:

(List here any additional documents that are intended to form part of the Contract Documents. AIA Document A201™–2017 provides that the advertisement or invitation to bid, Instructions to Bidders, sample forms, the Contractor’s bid or proposal, portions of Addenda relating to bidding or proposal requirements, and other information furnished by the Owner in anticipation of receiving bids or proposals, are not part of the Contract Documents unless enumerated in this Agreement. Any such documents should be listed here only if intended to be part of the Contract Documents.)

This Agreement entered into as of the day and year first written above.

ABA | ProBAR OWNER (Signature)

(Printed name and title)

CONTRACTOR (Signature)

(Printed name and title)

The Reese Plaza Development OWNER (Signature)

(Printed name and title)
for the following PROJECT:
(Name and location or address)
«ProBAR at The Reese - Level 2 and 1»
«The Reese
202 S 1st Street
Harlingen, TX 78550»

THE OWNER:
(Name, legal status and address)
«The American Bar Association
321 N. Clark St
Chicago, Illinois 60654
«The Reese Plaza Development llc.
202 S. 1st St.»
Harlingen, TX 78550 »

THE ARCHITECT:
(Name, legal status and address)
«megamorphosis», General Corporation
«324 West Van Buren Ave
Harlingen, Texas 78550»

TABLE OF ARTICLES

1 GENERAL PROVISIONS
2 OWNER
3 CONTRACTOR
4 ARCHITECT
5 SUBCONTRACTORS
6 CONSTRUCTION BY OWNER OR BY SEPARATE CONTRACTORS
7 CHANGES IN THE WORK
8 TIME
9 PAYMENTS AND COMPLETION
10 PROTECTION OF PERSONS AND PROPERTY
11 INSURANCE AND BONDS
12 UNCOVERING AND CORRECTION OF WORK
13 MISCELLANEOUS PROVISIONS
Certificate of Substantial Completion
9.8.3, 9.8.4, 9.8.5
Certificates for Payment
4.2.1, 4.2.5, 4.2.9, 9.3.3, 9.4, 9.5, 9.6.1, 9.6.6, 9.7, 9.10.1, 9.10.3, 14.1.1.3, 14.2.4, 15.1.3
Certificates of Inspection, Testing or Approval
13.5.4
Certificates of Insurance
9.10.2, 11.1.3
Change Orders
1.1.1, 2.4, 3.4.2, 3.7.4, 3.8.2.3, 3.10.1, 3.12.6, 5.2.1, 5.2.3, 6.2.2, 8.1.2, 8.2.2, 8.3.1, 11.1, 11.3.1, 11.3.6, 11.4.1, 15.1.4
Change Orders, Definition of
7.2.1
CHANGES IN THE WORK
2.2.1, 3.11, 4.2.8, 7.2.1, 7.3.1, 7.4, 8.3.1, 9.3.1.1, 11.3.9
Claims, Definition of
15.1.1
CLAIMS AND DISPUTES
3.2.4, 6.1.1, 6.3, 7.3.9, 9.3.3, 9.10.4, 10.3.3, 15.1, 15.4
Claims and Timely Assertion of Claims
15.4.1
Claims for Additional Cost
3.2.4, 3.7.4, 6.1.1, 8.3.1, 9.3.1.1
Claims for Additional Time
3.2.4, 3.7.4, 6.1.1, 8.3.2, 10.3.2, 15.1.5
Concealed or Unknown Conditions, Claims for
3.7.4
Claims for Damages
3.2.4, 3.18, 6.1.1, 8.3.3, 9.5.1, 9.6.7, 10.3.3, 11.1.1, 11.3.5, 11.3.7, 14.1.3, 14.2.4, 15.1.6
Claims Subject to Arbitration
15.3.1, 15.4.1
Cleaning Up
3.15, 6.3
Commencement of the Work, Conditions Relating to
2.2.1, 3.2.2, 3.4.1, 3.7.1, 3.10.1, 3.12.6, 5.2.1, 5.2.3, 6.2.2, 8.1.2, 8.2.2, 8.3.1, 11.1, 11.3.1, 11.3.6, 11.4.1, 15.1.4
Commencement of the Work, Definition of
8.1.2
Communications Facilitating Contract Administration
3.9.1, 4.2.4
Completion, Conditions Relating to
3.4.1, 3.11, 3.15, 4.2.2, 4.2.9, 8.2, 9.4.2, 9.8, 9.9.1, 9.10, 12.2, 13.7, 14.1.2
COMPLETION, PAYMENTS AND
9
Completion, Substantial
4.2.9, 8.1.1, 8.1.3, 8.2.3, 9.4.2, 9.8, 9.9.1, 9.10.3, 12.2, 13.7
Completion with Laws
1.6, 3.2.3, 3.6, 3.7, 3.12.10, 3.13, 4.1.1, 9.6.4, 10.2.2, 11.1, 11.3, 13.1, 13.4, 13.5.1, 13.5.2, 13.6, 14.1.1, 14.2.1.3, 15.2.8, 15.4.2, 15.4.3
Conditions of the Contract
1.1.1, 6.1.1, 6.1.4
Consent, Written
3.4.2, 3.7.4, 3.12.8, 3.14.2, 4.1.2, 9.3.2, 9.8.5, 9.9.1, 9.10.2, 9.10.3, 11.3.1, 13.2, 13.4.2, 15.4.4.2
Consolidation or Joiner
15.4.4
CONSTRUCTION BY OWNER OR BY SEPARATE CONTRACTORS
1.1.4, 6
Construction Change Directive, Definition of
7.3.1
Construction Change Directives
1.1.1, 3.4.2, 3.12.8, 4.2.8, 7.1.1, 7.1.2, 7.1.3, 7.3, 9.3.1.1
Construction Schedules, Contractor’s
3.10, 3.12.1, 6.1.3, 15.1.5.2
Contingent Assignment of Subcontracts
5.4, 14.2.2.2
Continuing Contract Performance
15.1.3
Contract, Definition of
1.1.2
CONTRACT, TERMINATION OR SUSPENSION OF THE
5.4.1.1, 11.3.9, 14
Contract Administration
3.1.3, 4, 9.4, 9.5
Contract Award and Execution, Conditions Relating to
3.7.1, 3.10.5, 6.1.1, 11.1.3, 11.5.6, 11.4.1
Contract Documents, Copies Furnished and Use of
1.5.2, 2.2.5, 5.3
Contract Documents, Definition of
1.1.1
Contract Sum
3.7.4, 3.8, 5.2.3, 7.2, 7.3, 7.4, 9.1, 9.4.2, 9.5.1.4, 9.6.7, 9.7, 10.3.2, 11.3.1, 14.2.4, 14.3.2, 15.1.4, 15.2.5
Contract Sum, Definition of
9.1
Contract Time
3.7.4, 3.7.5, 3.10.2, 5.2.3, 7.2.1.3, 7.3.1, 7.3.5, 7.4, 8.1.1, 8.2.1, 8.3.1, 9.5.1, 9.7, 10.3.2, 12.1.1, 14.3.2, 15.1.5.1, 15.2.5
Contract Time, Definition of
8.1.1
CONTRACTOR
3
Contractor, Definition of
3.1, 6.1.2
Contractor’s Construction Schedules

3.10, 3.12.1, 3.12.2, 6.1.3, 15.1.5.2

Contractor’s Employees

3.3.2, 3.4.3, 3.8.1, 3.9, 3.18.2, 4.2.3, 4.2.6, 10.2, 10.3, 11.1.1, 11.3.7, 14.1, 14.2.1.1

Contractor’s Liability Insurance

11.1

Contractor’s Relationship with Separate Contractors and Owner’s Forces

3.12.5, 3.14.2, 3.12.1, 15.1.5.2

Contractor’s Relationship with Subcontractors

3.3.2, 3.4.3, 3.8.1, 3.9, 3.18.2, 4.2.3, 4.2.6, 10.2, 10.3, 11.1.1, 11.3.7, 14.1, 14.2.1.1

Contractor’s Relationship with the Architect

1.1.2, 1.5, 3.1.3, 3.2.2, 3.2.3, 3.2.4, 3.3.1, 3.4.2, 3.5, 3.7.4, 3.10.3, 3.12.2, 4.2.11, 4.2.12, 4.2.13, 5.2, 6.3, 7.3.7, 7.3.9, 8.1.3, 8.3.1, 9.2, 9.3, 9.5, 9.7, 9.8, 9.9, 10.2, 10.3, 11.3.7, 12, 13.5, 15.1.2, 15.2.1

Contractor’s Representations

3.2.1, 3.2.2, 3.5, 3.12.6, 6.2.2, 8.2.1, 9.3.3, 9.8.2

Contractor’s Responsibility for Those Performing the Work

3.3.2, 3.18, 5.3, 6.1.3, 6.2, 9.5.1, 10.2.8

Contractor’s Review of Contract Documents

3.2

Contractor’s Right to Stop the Work

9.7

Contractor’s Right to Terminate the Contract

14.1, 15.1.6

Contractor’s Submittals

Corrections of Work

2.3, 2.4, 3.7.3, 9.4.2, 9.8.2, 9.8.3, 9.9.1, 12.1.2, 12.2

Correlation of the Contract Documents

1.2

Costs

7.3.7

Costs

2.4, 3.2.4, 3.7.3, 3.8.2, 3.15.2, 5.4.2, 6.1.1, 6.2.3, 7.3.3.3, 7.3.7, 7.3.8, 7.3.9, 9.10.2, 10.3.2, 10.3.6, 11.3, 12.1.2, 12.2.1, 12.2.4, 13.5, 14

Cutting and Patching

3.14, 6.2.5

Damage to Construction of Owner or Separate Contractors

3.14.2, 6.2.4, 10.2.1.2, 10.2.5, 10.4, 11.1.1, 11.3, 12.2.4

Damage to the Work

3.14.2, 9.9.1, 10.2.1.2, 10.2.5, 10.4, 11.3.1, 12.2.4

Damage for Delay

6.1.1, 8.3.3, 9.5.1.6, 9.7, 10.3.2

Date of Commencement of the Work, Definition of

8.1.2

Date of Substantial Completion, Definition of

8.1.3

Day, Definition of

8.1.4

Decisions of the Architect

3.7.4, 4.2.6, 4.2.7, 4.2.11, 4.2.12, 4.2.13, 15.2, 6.3, 7.3.7, 7.3.9, 8.1.3, 8.3.1, 9.2, 9.4, 9.5, 9.4, 9.9.1, 13.5.2, 14.2.2, 14.2.4, 15.1, 15.2

Defects, Claims for

3.2.4, 3.18, 6.1.1, 8.3.3, 9.5.1, 9.6.7, 10.3.3, 11.1.1, 11.3.7, 14.1.3, 14.2.4, 15.1.6

Delays and Extensions of Time

3.2, 3.7.4, 5.2.7, 7.3.1, 7.4, 8.3, 9.5.1, 9.7, 10.3.2, 10.4, 14.3.2, 15.1.5, 15.2.5

Disputes

6.3, 7.3.9, 15.1, 15.2

Documents and Samples at the Site

3.11

Drawings, Definition of

1.1.5

Effective Date of Insurance

9.9.3, 9.10.4, 12.2.1

Emergency

10.4, 14.1.1.2, 15.1.4

Employees, Contractor’s

3.3.2, 3.4.3, 3.8.1, 3.9, 3.18.2, 4.2.3, 4.2.6, 10.2, 10.3.3, 11.1.1, 11.3.7, 14.1, 14.2.1.1

Equipment, Labor, Materials or

1.1.3, 1.1.6, 3.4, 3.5, 3.8.2, 3.8.3, 3.12, 3.13, 3.15.1, 4.2.6, 4.2.7, 5.2.1, 6.2.1, 7.3.7, 9.3.2, 9.3.3, 9.5.1.3, 9.10.2, 10.2.1, 10.2.4, 14.2.1.1, 14.2.1.2
Execution and Progress of the Work
1.1.3, 1.2.1, 1.2.2, 2.2.3, 2.2.5, 3.1, 3.3.1, 3.4.1, 3.5, 3.7.1, 3.10.1, 3.12, 3.14, 4.2, 6.2.2, 7.1.3, 7.3.5, 8.2, 9.5.1, 9.9.1, 10.2, 10.3, 12.2, 14.2, 14.3.1, 15.1.3

Extensions of Time
3.2.4, 3.7.4, 5.2.3, 7.2.1, 7.3, 7.4, 9.5.1, 9.7, 10.3.2, 10.4, 14.3, 15.1.5, 15.2.5

Failure of Payment
9.5.1.3, 9.7, 9.10.2, 13.6, 14.1.1.3, 14.2.1.2

Faulty Work
(See Defective or Nonconforming Work)

Final Completion and Final Payment
4.2.1, 4.2.9, 9.8.2, 9.10, 11.1.2, 11.1.3, 11.3.1, 11.3.5, 12.3, 14.2.4, 14.4.3

Financial Arrangements, Owner's
2.2.1, 13.2.2, 14.1.1.4

Fire and Extended Coverage Insurance
11.3.1.1

GENERAL PROVISIONS
1
Governing Law
13.1
Guarantees (See Warranty)

Hazardous Materials
10.2.4, 10.3

Identification of Subcontractors and Suppliers
5.2.1

Indemnification
3.17, 3.18, 9.10.2, 10.3.3, 10.3.5, 10.3.6, 11.3.1.2, 11.3.7

Information and Services Required of the Owner
9.5.1.3, 9.7, 9.10.2, 13.2, 13.6, 14.2.1, 14.2.2, 14.2.4, 15.1.3

Initial Decision
15.2

Initial Decision Maker, Definition of
1.1.8

Initial Decision Maker, Decisions
14.2.2, 14.2.4, 15.2.1, 15.2.2, 15.2.3, 15.2.4, 15.2.5

Initial Decision Maker, Extent of Authority
14.2.2, 14.2.4, 15.1.3, 15.2.1, 15.2.2, 15.2.3, 15.2.4, 15.2.5

Injury or Damage to Person or Property
10.2.8, 10.4

Inspections
3.1.3, 3.3.3, 3.7.1, 4.2.2, 4.2.6, 4.2.9, 9.4.2, 9.8.3, 9.9.2, 9.10.1, 12.2.1, 13.5

Instructions to Bidders
1.1.3

Instructions to the Contractor
3.2.4, 3.3.1, 3.8.1, 5.2.1, 7, 8.2.2, 12, 13.5.2

Instruments of Service, Definition of
1.1.7

Insurance
3.18.1, 6.1.1, 7.3.7, 9.3.2, 9.8.4, 9.9.1, 9.10.2, 11

Insurance, Boiler and Machinery
11.3.2

Insurance, Contractor's Liability
11.1

Insurance, Effective Date of
8.2.2, 11.1.2

Insurance, Loss of Use
11.3.3

Insurance, Owner's Liability
11.2

Insurance, Property
10.2.5, 11.3

Insurance, Stored Materials
9.3.2

INSURANCE AND BONDS
11

Insurance Companies, Consent to Partial Occupancy
9.9.1

Intent of the Contract Documents
1.2.1, 4.2.7, 4.2.12, 4.2.13, 7.4

Interest
13.6

Interpretation
1.2.3, 1.4, 4.1.1, 5.1.6, 12.1.2

Interpretations, Written
4.2.11, 4.2.12, 15.1.4

Judgment on Final Award
15.4.2

Labor and Materials, Equipment
1.1.3, 1.1.6, 3.4, 3.5, 3.8.2, 3.8.3, 3.12, 3.13, 3.15.1, 4.2.6, 4.2.7, 5.2.1, 6.2.1, 7.3.7, 9.3.2, 9.3.3, 9.5.1.3, 9.10.2, 10.2.1, 10.2.4, 14.2.1.1, 14.2.1.2

Labor Disputes
8.3.1

Laws and Regulations
1.5, 3.2.3, 3.6, 3.7, 3.12.10, 3.13, 4.4.1, 9.6.4, 9.9.1, 10.2.2, 11.1.1, 11.3, 13.1, 13.4, 13.5.1, 13.5.2, 13.6, 14, 15.2.8, 15.4

Liens
2.1.2, 9.3.3, 9.10.2, 9.10.4, 15.28

Limitations, Statutes of
12.2.5, 13.7, 15.4.1.1

Limitations of Liability
2.3, 3.2.2, 3.5, 3.12.10, 3.17, 3.18.1, 4.2.6, 4.2.7, 4.2.12, 6.2.2, 9.4.2, 9.6.4, 9.6.7, 10.2.5, 10.3.3, 11.1.2, 11.2, 11.3.7, 12.2.5, 13.4.2

Limitations of Time
2.1.2, 2.2.4, 3.2.2, 3.10, 3.11, 3.12.5, 3.15.1, 4.2.7, 5.2, 5.3, 5.4.1, 6.2.4, 7.3, 7.4, 8.2, 9.2, 9.3.1, 9.3.7, 9.4.1, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 11.1.3, 11.3.1.5, 11.3.6, 11.3.10, 12.2, 13.5, 13.7, 14, 15

Loss of Use Insurance
11.3.3

Material Suppliers
1.5, 3.12.1, 4.2.4, 4.2.6, 5.2.1, 9.3, 9.4.2, 9.6, 9.10.5

Materials, Hazardous
10.2.4, 10.3
Materials, Labor, Equipment and
1.1.3, 1.1.6, 1.5.1, 3.4.1, 3.5, 3.8.2, 3.8.3, 3.12, 3.13, 3.15.1, 4.2.6, 4.2.7, 5.2.1, 6.2.1, 7.3.7, 9.3.2, 9.3.3, 9.5.1.9, 9.10.2, 10.2.1.2, 10.2.4, 14.2.1.1, 14.2.1.2
Means, Methods, Techniques, Sequences and
Procedures of Construction
3.3.1, 3.12.10, 4.2.2, 4.2.7, 9.4.2
Mechanic’s Lien
2.1.2, 15.2.8
Mediation
8.3.1, 10.3.5, 10.3.6, 15.3
Minor Changes in the Work
1.1.1, 3.12.8, 4.2.8, 7.1, 7.4
MISCELLANEOUS PROVISIONS
13
Modifications, Definition of
1.1.1
Modifications to the Contract
1.1.1, 1.1.2, 3.11, 4.1.2, 4.2.1, 5.2.3, 7.1, 8.3.1, 9.7, 10.3.2, 11.3.1
Mutual Responsibility
6.2
Nonconforming Work, Acceptance of
9.6.6, 9.9.3, 12.3
Nonconforming Work, Rejection and Correction of
2.3, 2.4, 2.5, 2.6.4, 9.5.1, 9.8.2, 9.9.3, 9.10.4, 12.2.1
Notice
2.2.1, 2.3, 2.4, 3.3.1, 3.7.2, 3.12.9, 5.2.1, 9.7, 9.10, 10.2.2, 11.1.3, 12.2.2.1, 13.3, 13.5.1, 13.5.2, 14.1, 14.2, 15.2.8, 15.4.1
Notice, Written
2.3, 2.4, 3.3.1, 3.9.2, 3.12.9, 3.12.10, 5.2.1, 9.7, 9.10, 10.2.2, 10.3, 11.1.3, 11.5.6, 12.2.2.1, 13.3, 14, 15.2.6, 15.4.1
Notice of Claims
3.7.4, 10.2.8, 15.1.2, 15.4
Notice of Testing and Inspections
13.5.1, 13.5.2
Observations, Contractor’s
3.2, 3.7.4
Occupancy
2.2.2, 9.6.6, 9.8, 11.3.1.5
Orders, Written
1.1.1, 2.3, 3.9.2, 7.8.2.2, 11.3.9, 12.1, 12.2.2.1, 13.5.2, 14.3.1
OWNER
2
Owner, Definition of
2.1.1
Owner, Information and Services Required of
2.1.2, 2.2.1, 3.2.2, 3.12.10, 6.1.3, 6.1.4, 6.2.5, 9.3.2, 9.6.1, 9.6.4, 9.9.2, 9.10.3, 10.3.3, 11.2, 11.3, 13.5.1, 13.5.2, 14.1.1.4, 14.4.1, 15.1.3
Owner’s Authority
1.5, 2.1.1, 2.3, 2.4, 3.4.2, 3.8.1, 3.12.10, 3.14.2, 4.1.2, 4.1.3, 4.2.4, 4.2.9, 5.2.1, 5.2.4, 5.4.1, 6.1, 6.3, 7.2.1, 7.3.1, 8.2.2, 8.3.1, 9.3.1, 9.3.2, 9.5.1, 9.6.4, 9.9.1, 9.10.2, 10.3.2, 11.1.3, 11.3.3, 11.3.10, 12.2.2, 12.3, 13.2.2, 14.3, 14.4, 15.2.7
Owner’s Financial Capability
2.2.1, 13.2.2, 14.1.1.4
Owner’s Liability Insurance
11.2
Owner’s Relationship with Subcontractors
1.1.2, 5.2, 5.3, 5.4, 9.6.4, 9.10.2, 14.2.2
Owner’s Right to Carry Out the Work
2.4, 14.2.2
Owner’s Right to Clean Up
6.3
Owner’s Right to Perform Construction and to
Award Separate Contracts
6.1
Owner’s Right to Stop the Work
2.3
Owner’s Right to Suspend the Work
14.3
Owner’s Right to Terminate the Contract
14.2
Ownership and Use of Drawings, Specifications
and Other Instruments of Service
1.1.1, 1.1.6, 1.1.7, 1.5, 2.2.5, 3.2.2, 3.17, 4.2.12, 5.3
Partial Occupancy or Use
9.6.6, 9.9, 11.3.1.5
Patching, Cutting and
3.14, 6.2.5
Patents
3.17
Payment, Applications for
4.2.5, 7.3.9, 9.2, 9.3, 9.4, 9.5, 9.6.3, 9.7, 9.8.5, 9.10.1, 14.2.3, 14.2.4, 14.4.3
Payment, Certificates for
4.2.5, 4.2.9, 9.3.3, 9.4, 9.5, 9.6.1, 9.6.6, 9.7, 9.10.1, 9.10.3, 13.7, 14.1.1.3, 14.2.4
Payment, Failure of
9.5.1.3, 9.7, 9.10.2, 13.6, 14.1.1.3, 14.2.1.2
Payment, Final
4.2.1, 4.2.9, 9.8.2, 9.10, 11.1.2, 11.4.1, 11.4.2, 12.3, 13.7, 14.2.4, 14.4.3
Payment Bond, Performance Bond and
7.3.7.4, 9.6.7, 9.10.3, 11.4
Payments, Progress
9.3, 9.6, 9.8.5, 9.10.3, 13.6, 14.2.3, 15.1.3
PAYMENTS AND COMPLETION
9
Payments to Subcontractors
5.4.2, 9.5.1.3, 9.6.2, 9.6.3, 9.6.4, 9.6.7, 14.2.1.2
PCB
10.3.1
Performance Bond and Payment Bond
7.3.7.4, 9.6.7, 9.10.3, 11.4
Permits, Fees, Notices and Compliance with Laws
2.2.2, 3.7, 3.13, 7.3, 10.2.2
PERSONS AND PROPERTY, PROTECTION OF
10
Polychlorinated Biphenyl
10.3.1
Product Data, Definition of
3.12.2
Product Data and Samples, Shop Drawings
3.11, 3.12, 4.2.7
Progress and Completion
4.2.2, 8.2, 9.8, 9.9.1, 14.1.4, 15.1.3
Progress Payments
9.3, 9.6, 9.8.5, 9.10.3, 13.6, 14.2.3, 15.1.3
Project, Definition of
1.1.4
Project Representatives
4.2.10
Property Insurance
10.2.5, 11.3
PROTECTION OF PERSONS AND PROPERTY
10
Regulations and Laws
1.5, 3.2.3, 3.6, 3.7, 3.12.10, 3.13, 4.1.1, 9.6.4, 9.9.1, 10.2.2, 11.1, 11.4, 13.1, 13.4, 13.5.1, 13.5.2, 13.6, 14, 15.2.8, 15.4
Rejection of Work
3.5, 4.2.6, 12.2.1
Releases and Waivers of Liens
9.10.2
Representations
3.2.1, 3.5, 3.12.6, 6.2.2, 8.2.1, 9.3.3, 9.4.2, 9.5.1, 9.8.2, 9.10.1
Representatives
2.1.1, 3.1.1, 3.9, 4.1.1, 4.2.2, 4.2.10, 5.1.1, 5.1.2, 13.2.1
Responsibility for Those Performing the Work
3.3.2, 3.18, 4.2.3, 5.3, 6.1.3, 6.2, 6.3, 9.5.1, 10
Retainage
9.3.1, 9.6.2, 9.8.5, 9.9.1, 9.10.2, 9.10.3
Review of Contract Documents and Field Conditions by Contractor
3.2, 3.12.7, 6.1.3
Review of Contractor’s Submittals by Owner and Architect
3.10.1, 3.10.2, 3.11, 3.12, 4.2, 5.2, 6.1.3, 9.2, 9.8.2
Review of Shop Drawings, Product Data and Samples by Contractor
3.12
Rights and Remedies
1.1.2, 2.3, 2.4, 3.5, 3.7.4, 3.15.2, 4.2.6, 5.3, 5.4, 6.1, 6.3, 7.3.1, 8.3, 9.5.1, 9.7, 10.2.5, 10.3, 12.2.2, 12.2.4, 13.4, 14, 15.4
Royalties, Patents and Copyrights
3.17
Rules and Notices for Arbitration
15.4.1
Safety of Persons and Property
10.2, 10.4
Safety Precautions and Programs
3.3.1, 4.2.2, 4.2.7, 5.3, 10.1.1, 10.2, 10.4
Samples, Definition of
3.12.3
Samples, Shop Drawings, Product Data and
3.11, 3.12, 4.2.7
Samples at the Site, Documents and
3.11
Schedule of Values
9.2, 9.3.1
Separate Contracts and Contractors
3.10, 3.12.1, 3.12.2, 6.1.3, 15.2.5
Site, Use of
3.13, 6.1.1, 6.2.1
Site Visits, Architect’s
3.7.4, 4.2.2, 4.2.9, 9.4.2, 9.5.1, 9.9.2, 9.10.1, 13.5
Special Inspections and Testing
4.2.6, 12.2.1, 13.5
Specifications, Definition of
1.1.6
Specifications
1.1.1, 1.1.6, 1.2.2, 1.5, 3.11, 3.12.10, 3.17, 4.2.14
Statute of Limitations
13.7, 15.4.1.1
Stopping the Work
2.3, 9.7, 10.3, 14.1
Subcontractors, Work by
1.2.2, 3.3.2, 3.12.1, 4.2.3, 5.2, 5.3, 5.4, 9.3.1.2, 9.6.7
Subcontractual Relations
5.3, 5.4, 9.3.1.2, 9.6, 9.10, 10.2.1, 14.1, 14.2.1
Submittals
3.10, 3.11, 3.12, 4.2.7, 5.2.1, 5.2.3, 7.3.7, 9.2, 9.3, 9.8, 9.9.1, 9.10.2, 9.10.3, 11.1.3
Submittal Schedule
3.10.2, 3.12.5, 4.2.7
Subrogation, Waivers of
6.1.1, 11.3.7
Substantial Completion
4.2.9, 8.1.1, 8.1.3, 8.2.3, 9.4.2, 9.8, 9.9.1, 9.10.3, 12.2, 13.7
Substantial Completion, Definition of
9.8.1
Substitution of Subcontractors
5.2.3, 5.2.4
Substitution of Architect
4.1.3
Substitutions of Materials
3.4.2, 3.5, 7.3.8
Sub-contractor, Definition of
5.1.2
Subsurface Conditions
3.7.4
Successors and Assigns
13.2
Superintendent
3.9, 10.2.6
Supervision and Construction Procedures
1.2.2, 3.3, 3.4, 3.12.10, 4.2.2, 4.2.7, 6.1.3, 6.2.4, 7.1.3, 7.3.7, 8.2, 8.3.1, 9.4.2, 10, 12, 14, 15.1.3
SURETY
Surety
5.4.1.2, 9.8.5, 9.10.2, 9.10.3, 14.2.2, 15.2.7
Surety, Consent of
9.10.2, 9.10.3
Surveys
2.2.3
Suspension by the Owner for Convenience
14.3
Suspension of the Work
5.4.2, 14.3
Suspension or Termination of the Contract
5.4.1.1, 14.1, 15.1.6
TAXES
Taxes
3.6, 3.8.2.1, 7.3.7.4
Termination by the Contractor
14.1, 15.1.6
Termination by the Owner for Cause
5.4.1.1, 14.2, 15.1.6
Termination by the Owner for Convenience
14.4
Termination of the Architect
4.1.3
Termination of the Contractor
14.2.2
TERMINATION OR SUSPENSION OF THE CONTRACT
14
Tests and Inspections
3.1.3, 3.3.3, 4.2.2, 4.2.6, 4.2.9, 9.4.2, 9.8.3, 9.9.2, 9.10.1, 10.3.2, 11.4.1, 12.2.1, 13.5
TIME
8
Time, Delays and Extensions of
3.2.4, 3.7.4, 5.2.3, 7.2.1, 7.3.1, 7.4, 8.3, 9.5.1, 9.7, 10.3.2, 10.4, 14.3.2, 15.1.5, 15.2.5
Time Limits
2.1.2, 2.2, 2.4, 3.2.2, 3.10, 3.11, 3.12.5, 3.15.1, 4.2, 4.5.2, 5.3, 5.4, 6.2.4, 7.3, 7.4, 8.2, 9.2, 9.3.1, 9.3.3, 9.4.1, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 11.1.3, 12.2, 13.5, 13.7, 14, 15.1.2, 15.4.1
Time Limits on Claims
3.7.4, 10.2.8, 13.7, 15.1.2
Title to Work
9.3.2, 9.3.3
Transmission of Data in Digital Form
1.6
UNCOVERING AND CORRECTION OF WORK
12
Uncovering of Work
12.1
Unforeseen Conditions, Concealed or Unknown
3.7.4, 8.3.1, 10.3
Unit Prices
7.3.3.2, 7.3.4
Use of Documents
1.1.1, 1.5, 2.2.5, 3.12.6, 5.3
Use of Site
3.13, 6.1.1, 6.2.1
Values, Schedule of
9.2, 9.3.1
Waiver of Claims by the Architect
13.4.2
Waiver of Claims by the Contractor
9.10.5, 13.4.2, 15.1.6
Waiver of Claims by the Owner
9.9.3, 9.10.3, 9.10.4, 12.2.2.1, 13.4.2, 14.2.4, 15.1.6
Waiver of Consequential Damages
14.2.4, 15.1.6
Waiver of Liens
9.10.2, 9.10.4
Waivers of Subrogation
6.1.1, 11.3.7
Warranty
3.5, 4.2.9, 9.3.3, 9.8.4, 9.9.1, 9.10.4, 12.2.2, 13.7
Weather Delays
15.1.5.2
Work, Definition of
1.1.3
Written Consent
1.5.2, 3.4.2, 4.1.3, 4.1.4, 4.1.4.2, 9.3.2, 9.8.5, 9.9.1, 9.10.2, 9.10.3, 11.4.1, 13.2, 13.4.2, 15.4.4.2
Written Interpretaions
4.2.11, 4.2.12
Written Notice
2.3, 2.4, 3.3.1, 3.9, 3.12.9, 3.12.10, 5.2.1, 8.2.2, 9.7, 9.10, 10.2.2, 10.3, 11.1.3, 12.2.2, 12.2.4, 13.3, 14, 15.4.1
Written Orders
1.1.1, 2.3, 3.9, 7.8.2.2, 12.1, 12.2, 13.5.2, 14.3.1, 15.1.2
FIELD CODE CHANGED
ARTICLE 1 GENERAL PROVISIONS
§ 1.1 BASIC DEFINITIONS
§ 1.1.1 THE CONTRACT DOCUMENTS
The Contract Documents are enumerated in the Agreement between the Owner and Contractor (hereinafter the Agreement) and consist of the Agreement, Conditions of the Contract (General, Supplementary and other Conditions), Drawings, Specifications, Addenda issued prior to execution of the Contract, other documents listed in the Agreement and Modifications issued after execution of the Contract. A Modification is (1) a written amendment to the Contract signed by both parties, (2) a Change Order, (3) a Construction Change Directive or (4) a written order for a minor change in the Work issued by the Architect. Unless specifically enumerated in the Agreement, the Contract Documents do not include the advertisement or invitation to bid, Instructions to Bidders, sample forms, other information furnished by the Owner in anticipation of receiving bids or proposals, the Contractor’s bid or proposal, or portions of Addenda relating to bidding requirements.

§ 1.1.2 THE CONTRACT
The Contract Documents form the Contract for Construction. The Contract represents the entire and integrated agreement between the parties hereto and supersedes prior negotiations, representations or agreements, either written or oral. The Contract may be amended or modified only by a Modification. The Contract Documents shall not be construed to create a contractual relationship of any kind (1) between the Contractor and the Architect or the Architect’s consultants, (2) between the Owner and a Subcontractor or a Sub-subcontractor, (3) between the Owner and the Architect or the Architect’s consultants or (4) between any persons or entities other than the Owner and the Contractor. The Architect shall, however, be entitled to performance and enforcement of obligations under the Contract intended to facilitate performance of the Architect’s duties.

§ 1.1.3 THE WORK
The term “Work” means the construction and services required by the Contract Documents, whether completed or partially completed, and includes all other labor, materials, equipment and services provided or to be provided by the Contractor to fulfill the Contractor’s obligations. The Work may constitute the whole or a part of the Project.

§ 1.1.4 THE PROJECT
The Project is the total construction of which the Work performed under the Contract Documents may be the whole or a part and which may include construction by the Owner and by separate contractors.

§ 1.1.5 THE DRAWINGS
The Drawings are the graphic and pictorial portions of the Contract Documents showing the design, location and dimensions of the Work, generally including plans, elevations, sections, details, schedules and diagrams.

§ 1.1.6 THE SPECIFICATIONS
The Specifications are that portion of the Contract Documents consisting of the written requirements for materials, equipment, systems, standards and workmanship for the Work, and performance of related services.

§ 1.1.7 INSTRUMENTS OF SERVICE
Instruments of Service are representations, in any medium of expression now known or later developed, of the tangible and intangible creative work performed by the Architect and the Architect’s consultants under their respective professional services agreements. Instruments of Service may include, without limitation, studies, surveys, models, sketches, drawings, specifications, and other similar materials.

§ 1.1.8 INITIAL DECISION MAKER
The Initial Decision Maker is the person identified in the Agreement to render initial decisions on Claims in accordance with Section 15.2 and certify termination of the Agreement under Section 14.2.2.

§ 1.2 CORRELATION AND INTENT OF THE CONTRACT DOCUMENTS
§ 1.2.1 The intent of the Contract Documents is to include all items necessary for the proper execution and completion of the Work by the Contractor. The Contract Documents are complementary, and what is required by one shall be as binding as if required by all, performance by the Contractor shall be required only to the extent consistent with the Contract Documents and reasonably inferable from them as being necessary to produce the indicated results.
§ 1.2.2 Organization of the Specifications into divisions, sections and articles, and arrangement of Drawings shall not control the Contractor in dividing the Work among Subcontractors or in establishing the extent of Work to be performed by any trade.

§ 1.2.3 Unless otherwise stated in the Contract Documents, words that have well-known technical or construction industry meanings are used in the Contract Documents in accordance with such recognized meanings.

§ 1.3 CAPITALIZATION
Terms capitalized in these General Conditions include those that are (1) specifically defined, (2) the titles of numbered articles or (3) the titles of other documents published by the American Institute of Architects.

§ 1.4 INTERPRETATION
In the interest of brevity the Contract Documents frequently omit modifying words such as “all” and “any” and articles such as “the” and “an,” but the fact that a modifier or an article is absent from one statement and appears in another is not intended to affect the interpretation of either statement.

§ 1.5 OWNERSHIP AND USE OF DRAWINGS, SPECIFICATIONS AND OTHER INSTRUMENTS OF SERVICE
§ 1.5.1 The Architect and the Architect’s consultants shall be deemed the authors and owners of their respective Instruments of Service, including the Drawings and Specifications, and will retain all common law, statutory and other reserved rights, including copyrights. The Contractor, Subcontractors, Sub-subcontractors, and material or equipment suppliers shall not own or claim a copyright in the Instruments of Service. Submittal or distribution to meet official regulatory requirements or for other purposes in connection with this Project is not to be construed as publication in derogation of the Architect’s or Architect’s consultants’ reserved rights.

§ 1.5.2 The Contractor, Subcontractors, Sub-subcontractors and material or equipment suppliers are authorized to use and reproduce the Instruments of Service provided to them solely and exclusively for execution of the Work. All copies made under this authorization shall bear the copyright notice, if any, shown on the Instruments of Service. The Contractor, Subcontractors, Sub-subcontractors, and material or equipment suppliers may not use the Instruments of Service on other projects or for additions to this Project outside the scope of the Work without the specific written consent of the Owner, Architect and the Architect’s consultants.

§ 1.6 TRANSMISSION OF DATA IN DIGITAL FORM
If the parties intend to transmit Instruments of Service or any other information or documentation in digital form, they shall endeavor to establish necessary protocols governing such transmissions, unless otherwise already provided in the Agreement or the Contract Documents.

ARTICLE 2 OWNER
§ 2.1 GENERAL
§ 2.1.1 The Owner is the person or entity identified as such in the Agreement and is referred to throughout the Contract Documents as if singular in number. The Owner shall designate in writing a representative who shall have express authority to bind the Owner with respect to all matters requiring the Owner’s approval or authorization. Except as otherwise provided in Section 4.2.1, the Architect does not have such authority. The term “Owner” means the Owner or the Owner’s authorized representative.

§ 2.1.2 The Owner shall furnish to the Contractor within fifteen days after receipt of a written request, information necessary and relevant for the Contractor to evaluate, give notice of or enforce mechanic’s lien rights. Such information shall include a correct statement of the record legal title to the property on which the Project is located, usually referred to as the site, and the Owner’s interest therein.

§ 2.2 INFORMATION AND SERVICES REQUIRED OF THE OWNER
§ 2.2.1 Prior to commencement of the Work, the Contractor may request in writing that the Owner provide reasonable evidence that the Owner has made financial arrangements to fulfill the Owner’s obligations under the Contract. Thereafter, the Contractor may only request such evidence if (1) the Owner fails to make payments to the Contractor as the Contract Documents require; (2) a change in the Work materially changes the Contract Sum; or (3) the Contractor identifies in writing a reasonable concern regarding the Owner’s ability to make payment when due. The Owner shall furnish such evidence as a condition precedent to commencement or continuation of the Work or the...
portion of the Work affected by a material change. After the Owner furnishes the evidence, the Owner shall not materially vary such financial arrangements without prior notice to the Contractor.

§ 2.2.2 Except for permits and fees that are the responsibility of the Contractor under the Contract Documents, including those required under Section 3.7.1, the Owner shall secure and pay for necessary approvals, easements, assessments and charges required for construction, use or occupancy of permanent structures or for permanent changes in existing facilities.

§ 2.2.3 The Owner shall furnish surveys describing physical characteristics, legal limitations and utility locations for the site of the Project, and a legal description of the site. The Contractor shall be entitled to rely on the accuracy of information furnished by the Owner but shall exercise proper precautions relating to the safe performance of the Work.

§ 2.2.4 The Owner shall furnish information or services required of the Owner by the Contract Documents with reasonable promptness. The Owner shall also furnish any other information or services under the Owner’s control and relevant to the Contractor’s performance of the Work with reasonable promptness after receiving the Contractor’s written request for such information or services.

§ 2.2.5 Unless otherwise provided in the Contract Documents, the Owner shall furnish to the Contractor one copy of the Contract Documents for purposes of making reproductions pursuant to Section 1.5.2.

§ 2.3 OWNER’S RIGHT TO STOP THE WORK
If the Contractor fails to correct Work that is not in accordance with the requirements of the Contract Documents as required by Section 12.2 or repeatedly fails to carry out Work in accordance with the Contract Documents, the Owner may issue a written order to the Contractor to stop the Work, or any portion thereof, until the cause for such order has been eliminated; however, the right of the Owner to stop the Work shall not give rise to a duty on the part of the Owner to exercise this right for the benefit of the Contractor or any other person or entity, except to the extent required by Section 6.1.3.

§ 2.4 OWNER’S RIGHT TO CARRY OUT THE WORK
If the Contractor defaults or neglects to carry out the Work in accordance with the Contract Documents and fails within a ten-day period after receipt of written notice from the Owner to commence and continue correction of such default or neglect with diligence and promptness, the Owner may, without prejudice to other remedies the Owner may have, correct such deficiencies. In such case an appropriate Change Order shall be issued deducting from payments then or thereafter due the Contractor the reasonable cost of correcting such deficiencies, including Owner’s expenses and compensation for the Architect’s additional services made necessary by such default, neglect or failure. Such action by the Owner and amounts charged to the Contractor are both subject to prior approval of the Architect. If payments then or thereafter due the Contractor are not sufficient to cover such amounts, the Contractor shall pay the difference to the Owner.

ARTICLE 3 CONTRACTOR
§ 3.1 GENERAL
§ 3.1.1 The Contractor is the person or entity identified as such in the Agreement and is referred to throughout the Contract Documents as if singular in number. The Contractor shall be lawfully licensed, if required in the jurisdiction where the Project is located. The Contractor shall designate in writing a representative who shall have express authority to bind the Contractor with respect to all matters under this Contract. The term “Contractor” means the Contractor or the Contractor’s authorized representative.

§ 3.1.2 The Contractor shall perform the Work in accordance with the Contract Documents.

§ 3.1.3 The Contractor shall not be relieved of obligations to perform the Work in accordance with the Contract Documents either by activities or duties of the Architect in the Architect’s administration of the Contract, or by tests, inspections or approvals required or performed by persons or entities other than the Contractor.
§ 3.2 REVIEW OF CONTRACT DOCUMENTS AND FIELD CONDITIONS BY CONTRACTOR

§ 3.2.1 Execution of the Contract by the Contractor is a representation that the Contractor has visited the site, become generally familiar with local conditions under which the Work is to be performed and correlated personal observations with requirements of the Contract Documents.

§ 3.2.2 Because the Contract Documents are complementary, the Contractor shall, before starting each portion of the Work, carefully study and compare the various Contract Documents relative to that portion of the Work, as well as the information furnished by the Owner pursuant to Section 2.2.3, shall take field measurements of any existing conditions related to that portion of the Work, and shall observe any conditions at the site affecting it. These obligations are for the purpose of facilitating coordination and construction by the Contractor and are not for the purpose of discovering errors, omissions, or inconsistencies in the Contract Documents; however, the Contractor shall promptly report to the Architect any errors, inconsistencies or omissions discovered by or made known to the Contractor as a request for information in such form as the Architect may require. It is recognized that the Contractor’s review is made in the Contractor’s capacity as a contractor and not as a licensed design professional, unless otherwise specifically provided in the Contract Documents.

§ 3.2.3 The Contractor is not required to ascertain that the Contract Documents are in accordance with applicable laws, statutes, ordinances, codes, rules and regulations, or lawful orders of public authorities, but the Contractor shall promptly report to the Architect any nonconformity discovered by or made known to the Contractor as a request for information in such form as the Architect may require.

§ 3.2.4 If the Contractor believes that additional cost or time is involved because of clarifications or instructions the Architect issues in response to the Contractor’s notices or requests for information pursuant to Sections 3.2.2 or 3.2.3, the Contractor shall make Claims as provided in Article 15. If the Contractor fails to perform the obligations of Sections 3.2.2 or 3.2.3, the Contractor shall pay such costs and damages to the Owner as would have been avoided if the Contractor had performed such obligations. If the Contractor performs those obligations, the Contractor shall not be liable to the Owner or Architect for damages resulting from errors, inconsistencies or omissions in the Contract Documents, for differences between field measurements or conditions and the Contract Documents, or for nonconformities of the Contract Documents to applicable laws, statutes, ordinances, codes, rules and regulations, and lawful orders of public authorities.

§ 3.3 SUPERVISION AND CONSTRUCTION PROCEDURES

§ 3.3.1 The Contractor shall supervise and direct the Work, using the Contractor's best skill and attention. The Contractor shall be solely responsible for, and have control over, construction means, methods, techniques, sequences and procedures and for coordinating all portions of the Work under the Contract, unless the Contract Documents give other specific instructions concerning these matters. If the Contract Documents give specific instructions concerning construction means, methods, techniques, sequences or procedures, the Contractor shall evaluate the jobsite safety thereof and, except as stated below, shall be fully and solely responsible for the jobsite safety of such means, methods, techniques, sequences or procedures. If the Contractor determines that such means, methods, techniques, sequences or procedures may not be safe, the Contractor shall give timely written notice to the Owner and Architect and shall not proceed with that portion of the Work without further written instructions from the Architect. If the Contractor is then instructed to proceed with the required means, methods, techniques, sequences or procedures without acceptance of changes proposed by the Contractor, the Owner shall be solely responsible for any loss or damage arising solely from those Owner-required means, methods, techniques, sequences or procedures.

§ 3.3.2 The Contractor shall be responsible to the Owner for acts and omissions of the Contractor’s employees, Subcontractors and their agents and employees, and other persons or entities performing portions of the Work for, or on behalf of, the Contractor or any of its Subcontractors.

§ 3.3.3 The Contractor shall be responsible for inspection of portions of Work already performed to determine that such portions are in proper condition to receive subsequent Work.

§ 3.4 LABOR AND MATERIALS

§ 3.4.1 Unless otherwise provided in the Contract Documents, the Contractor shall provide and pay for labor, materials, equipment, tools, construction equipment and machinery, water, heat, utilities, transportation, and other facilities and services necessary for proper execution and completion of the Work, whether temporary or permanent and whether or not incorporated or to be incorporated in the Work.
§ 3.4.2 Except in the case of minor changes in the Work authorized by the Architect in accordance with Sections 3.12.8 or 7.4, the Contractor may make substitutions only with the consent of the Owner, after evaluation by the Architect and in accordance with a Change Order or Construction Change Directive.

§ 3.4.3 The Contractor shall enforce strict discipline and good order among the Contractor’s employees and other persons carrying out the Work. The Contractor shall not permit employment of unfit persons or persons not properly skilled in tasks assigned to them.

§ 3.5 WARRANTY
The Contractor warrants to the Owner and Architect that materials and equipment furnished under the Contract will be of good quality and new unless the Contract Documents require or permit otherwise. The Contractor further warrants that the Work will conform to the requirements of the Contract Documents and will be free from defects, except for those inherent in the quality of the Work the Contract Documents require or permit. Work, materials, or equipment not conforming to these requirements may be considered defective. The Contractor’s warranty excludes remedy for damage or defect caused by abuse, alterations to the Work not executed by the Contractor, improper or insufficient maintenance, improper operation, or normal wear and tear and normal usage. If required by the Architect, the Contractor shall furnish satisfactory evidence as to the kind and quality of materials and equipment.

§ 3.6 TAXES
The Contractor shall pay sales, consumer, use and similar taxes for the Work provided by the Contractor that are legally enacted when bids are received or negotiations concluded, whether or not yet effective or merely scheduled to go into effect.

§ 3.7 PERMITS, FEES, NOTICES AND COMPLIANCE WITH LAWS
§ 3.7.1 Unless otherwise provided in the Contract Documents, the Contractor shall secure and pay for the building permit as well as for other permits, fees, licenses, and inspections by government agencies necessary for proper execution and completion of the Work that are customarily secured after execution of the Contract and legally required at the time bids are received or negotiations concluded.

§ 3.7.2 The Contractor shall comply with and give notices required by applicable laws, statutes, ordinances, codes, rules and regulations, and lawful orders of public authorities applicable to performance of the Work.

§ 3.7.3 If the Contractor performs Work knowing it to be contrary to applicable laws, statutes, ordinances, codes, rules and regulations, or lawful orders of public authorities, the Contractor shall assume appropriate responsibility for such Work and shall bear the costs attributable to correction.

§ 3.7.4 Concealed or Unknown Conditions. If the Contractor encounters conditions at the site that are (1) subsurface or otherwise concealed physical conditions that differ materially from those indicated in the Contract Documents or (2) unknown physical conditions of an unusual nature, that differ materially from those ordinarily found to exist and generally recognized as inherent in construction activities of the character provided for in the Contract Documents, the Contractor shall promptly provide notice to the Owner and the Architect before conditions are disturbed and in no event later than 21 days after first observance of the conditions. The Architect will promptly investigate such conditions and, if the Architect determines that they differ materially and cause an increase or decrease in the Contractor’s cost of, or time required for, performance of any part of the Work, will recommend an equitable adjustment in the Contract Sum or Contract Time, or both. If the Architect determines that the conditions at the site are not materially different from those indicated in the Contract Documents and that no change in the terms of the Contract is justified, the Architect shall promptly notify the Owner and Contractor in writing, stating the reasons. If either party disputes the Architect’s determination or recommendation, that party may proceed as provided in Article 15.

§ 3.7.5 If, in the course of the Work, the Contractor encounters human remains or recognizes the existence of burial markers, archaeological sites or wetlands not indicated in the Contract Documents, the Contractor shall immediately suspend any operations that would affect them and shall notify the Owner and Architect. Upon receipt of such notice, the Owner shall promptly take any action necessary to obtain governmental authorization required to resume the operations. The Contractor shall continue to suspend such operations until otherwise instructed by the Owner but shall continue with all other operations that do not affect those remains or features. Requests for adjustments in the Contract Sum and Contract Time arising from the existence of such remains or features may be made as provided in Article 15.
§ 3.8 ALLOWANCES

§ 3.8.1 The Contractor shall include in the Contract Sum all allowances stated in the Contract Documents. Items covered by allowances shall be supplied for such amounts and by such persons or entities as the Owner may direct, but the Contractor shall not be required to employ persons or entities to whom the Contractor has reasonable objection.

§ 3.8.2 Unless otherwise provided in the Contract Documents,

1. Allowances shall cover the cost to the Contractor of materials and equipment delivered at the site and all required taxes, less applicable trade discounts;

2. Contractor’s costs for unloading and handling at the site, labor, installation costs, overhead, profit and other expenses contemplated for stated allowance amounts shall be included in the Contract Sum but not in the allowances; and

3. Whenever costs are more than or less than allowances, the Contract Sum shall be adjusted accordingly by Change Order. The amount of the Change Order shall reflect (1) the difference between actual costs and the allowances under Section 3.8.2.1 and (2) changes in Contractor’s costs under Section 3.8.2.2.

§ 3.8.3 Materials and equipment under an allowance shall be selected by the Owner with reasonable promptness.

§ 3.9 SUPERINTENDENT

§ 3.9.1 The Contractor shall employ a competent superintendent and necessary assistants who shall be in attendance at the Project site during performance of the Work. The superintendent shall represent the Contractor, and communications given to the superintendent shall be as binding as if given to the Contractor.

§ 3.9.2 The Contractor, as soon as practicable after award of the Contract, shall furnish in writing to the Owner through the Architect the name and qualifications of a proposed superintendent. The Architect may reply within 14 days to the Contractor in writing stating (1) whether the Owner or the Architect has reasonable objection to the proposed superintendent or (2) that the Architect requires additional time to review. Failure of the Architect to reply within the 14 day period shall constitute notice of no reasonable objection.

§ 3.9.3 The Contractor shall not employ a proposed superintendent to whom the Owner or Architect has made reasonable and timely objection. The Contractor shall not change the superintendent without the Owner’s consent, which shall not unreasonably be withheld or delayed.

§ 3.10 CONTRACTOR’S CONSTRUCTION SCHEDULES

§ 3.10.1 The Contractor, promptly after being awarded the Contract, shall prepare and submit for the Owner’s and Architect’s information a Contractor’s construction schedule for the Work. The schedule shall not exceed time limits current under the Contract Documents, shall be revised at appropriate intervals as required by the conditions of the Work and Project, shall be related to the entire Project to the extent required by the Contract Documents, and shall provide for expeditious and practicable execution of the Work.

§ 3.10.2 The Contractor shall prepare a submittal schedule, promptly after being awarded the Contract and thereafter as necessary to maintain a current submittal schedule, and shall submit the schedule(s) for the Architect’s approval. The Architect’s approval shall not unreasonably be delayed or withheld. The submittal schedule shall (1) be coordinated with the Contractor’s construction schedule, and (2) allow the Architect reasonable time to review submittals. If the Contractor fails to submit a submittal schedule, the Contractor shall not be entitled to any increase in Contract Sum or extension of Contract Time based on the time required for review of submittals.

§ 3.10.3 The Contractor shall perform the Work in general accordance with the most recent schedules submitted to the Owner and Architect.

§ 3.11 DOCUMENTS AND SAMPLES AT THE SITE

The Contractor shall maintain at the site for the Owner one copy of the Drawings, Specifications, Addenda, Change Orders and other Modifications, in good order and marked currently to indicate field changes and selections made during construction, and one copy of approved Shop Drawings, Product Data, Samples and similar required submittals. These shall be available to the Architect and shall be delivered to the Architect for submittal to the Owner upon completion of the Work as a record of the Work as constructed.
§ 3.12 SHOP DRAWINGS, PRODUCT DATA AND SAMPLES

§ 3.12.1 Shop Drawings are drawings, diagrams, schedules and other data specially prepared for the Work by the Contractor or a Subcontractor, Sub-subcontractor, manufacturer, supplier or distributor to illustrate some portion of the Work.

§ 3.12.2 Product Data are illustrations, standard schedules, performance charts, instructions, brochures, diagrams and other information furnished by the Contractor to illustrate materials or equipment for some portion of the Work.

§ 3.12.3 Samples are physical examples that illustrate materials, equipment or workmanship and establish standards by which the Work will be judged.

§ 3.12.4 Shop Drawings, Product Data, Samples and similar submittals are not Contract Documents. Their purpose is to demonstrate the way by which the Contractor proposes to conform to the information given and the design concept expressed in the Contract Documents for those portions of the Work for which the Contract Documents require submittals. Review by the Architect is subject to the limitations of Section 4.2.7. Informational Submittals upon which the Architect is not expected to take responsive action may be so identified in the Contract Documents. Submittals that are not required by the Contract Documents may be returned by the Architect without action.

§ 3.12.5 The Contractor shall review for compliance with the Contract Documents, approve and submit to the Architect Shop Drawings, Product Data, Samples and similar submittals required by the Contract Documents in accordance with the submittal schedule approved by the Architect or, in the absence of an approved submittal schedule, with reasonable promptness and in such sequence as to cause no delay in the Work or in the activities of the Owner or of separate contractors.

§ 3.12.6 By submitting Shop Drawings, Product Data, Samples and similar submittals, the Contractor represents to the Owner and Architect that the Contractor has (1) reviewed and approved them, (2) determined and verified materials, field measurements and field construction criteria related thereto, or will do so and (3) checked and coordinated the information contained within such submittals with the requirements of the Work and of the Contract Documents.

§ 3.12.7 The Contractor shall perform no portion of the Work for which the Contract Documents require submittal and review of Shop Drawings, Product Data, Samples or similar submittals until the respective submittal has been approved by the Architect.

§ 3.12.8 The Work shall be in accordance with approved submittals except that the Contractor shall not be relieved of responsibility for deviations from requirements of the Contract Documents by the Architect’s approval of Shop Drawings, Product Data, Samples or similar submittals unless the Contractor has specifically informed the Architect in writing of such deviation at the time of submittal and (1) the Architect has given written approval to the specific deviation as a minor change in the Work, or (2) a Change Order or Construction Change Directive has been issued authorizing the deviation. The Contractor shall not be relieved of responsibility for errors or omissions in Shop Drawings, Product Data, Samples or similar submittals by the Architect’s approval thereof.

§ 3.12.9 The Contractor shall direct specific attention, in writing or on resubmitted Shop Drawings, Product Data, Samples or similar submittals, to revisions other than those requested by the Architect on previous submittals. In the absence of such written notice, the Architect’s approval of a resubmission shall not apply to such revisions.

§ 3.12.10 The Contractor shall not be required to provide professional services that constitute the practice of architecture or engineering unless such services are specifically required by the Contract Documents for a portion of the Work or unless the Contractor needs to provide such services in order to carry out the Contractor’s responsibilities for construction means, methods, techniques, sequences and procedures. The Contractor shall not be required to provide professional services in violation of applicable law. If professional design services or certifications by a design professional related to systems, materials or equipment are specifically required of the Contractor by the Contract Documents, the Owner and the Architect will specify all performance and design criteria that such services must satisfy. The Contractor shall cause such services or certifications to be provided by a properly licensed design professional, whose signature and seal shall appear on all drawings, calculations, specifications, certifications, Shop Drawings and other submittals prepared by such professional. Shop Drawings and other submittals related to the Work designed or certified by such professional, if prepared by others, shall bear such professional’s written approval when submitted to the Architect. The Owner and the Architect shall be entitled to rely upon the adequacy, accuracy and
completeness of the services, certifications and approvals performed or provided by such design professionals, provided the Owner and Architect have specified to the Contractor all performance and design criteria that such services must satisfy. Pursuant to this Section 3.12.10, the Architect will review, approve or take other appropriate action on submittals only for the limited purpose of checking for conformance with information given and the design concept expressed in the Contract Documents. The Contractor shall not be responsible for the adequacy of the performance and design criteria specified in the Contract Documents.

§ 3.13 USE OF SITE
The Contractor shall confine operations at the site to areas permitted by applicable laws, statutes, ordinances, codes, rules and regulations, and lawful orders of public authorities and the Contract Documents and shall not unreasonably encumber the site with materials or equipment.

§ 3.14 CUTTING AND PATCHING
§ 3.14.1 The Contractor shall be responsible for cutting, fitting or patching required to complete the Work or to make its parts fit together properly. All areas requiring cutting, fitting and patching shall be restored to the condition existing prior to the cutting, fitting and patching, unless otherwise required by the Contract Documents.

§ 3.14.2 The Contractor shall not damage or endanger a portion of the Work or fully or partially completed construction of the Owner or separate contractors by cutting, patching or otherwise altering such construction, or by excavation. The Contractor shall not cut or otherwise alter such construction by the Owner or a separate contractor except with written consent of the Owner and of such separate contractor; such consent shall not be unreasonably withheld. The Contractor shall not unreasonably withhold from the Owner or a separate contractor the Contractor’s consent to cutting or otherwise altering the Work.

§ 3.15 CLEANING UP
§ 3.15.1 The Contractor shall keep the premises and surrounding area free from accumulation of waste materials or rubbish caused by operations under the Contract. At completion of the Work, the Contractor shall remove waste materials, rubbish, the Contractor’s tools, construction equipment, machinery and surplus materials from and about the Project.

§ 3.15.2 If the Contractor fails to clean up as provided in the Contract Documents, the Owner may do so and Owner shall be entitled to reimbursement from the Contractor.

§ 3.16 ACCESS TO WORK
The Contractor shall provide the Owner and Architect access to the Work in preparation and progress wherever located.

§ 3.17 ROYALTIES, PATENTS AND COPYRIGHTS
The Contractor shall pay all royalties and license fees. The Contractor shall defend suits or claims for infringement of copyrights and patent rights and shall hold the Owner and Architect harmless from loss on account thereof, but shall not be responsible for such defense or loss when a particular design, process or product of a particular manufacturer or manufacturers is required by the Contract Documents, or where the copyright violations are contained in Drawings, Specifications or other documents prepared by the Owner or Architect. However, if the Contractor has reason to believe that the required design, process or product is an infringement of a copyright or a patent, the Contractor shall be responsible for such loss unless such information is promptly furnished to the Architect.

§ 3.18 INDEMNIFICATION
§ 3.18.1 To the fullest extent permitted by law the Contractor shall indemnify and hold harmless the Owner, Architect, Architect’s consultants, and agents and employees of any of them from and against claims, damages, losses and expenses, including but not limited to attorneys’ fees, arising out of or resulting from performance of the Work, provided that such claim, damage, loss or expense is attributable to bodily injury, sickness, disease or death, or to injury to or destruction of tangible property (other than the Work itself), but only to the extent caused by the negligent acts or omissions of the Contractor, a Subcontractor, anyone directly or indirectly employed by them or anyone for whose acts they may be liable, regardless of whether or not such claim, damage, loss or expense is caused in part by a party indemnified hereunder. Such obligation shall not be construed to negate, abridge, or reduce other rights or obligations of indemnity that would otherwise exist as to a party or person described in this Section 3.18.
§ 3.18.2 In claims against any person or entity indemnified under this Section 3.18 by an employee of the Contractor, a Subcontractor, anyone directly or indirectly employed by them or anyone for whose acts they may be liable, the indemnification obligation under Section 3.18.1 shall not be limited by a limitation on amount or type of damages, compensation or benefits payable by or for the Contractor or a Subcontractor under workers’ compensation acts, disability benefit acts or other employee benefit acts.
§ 4.2.7 The Architect will review and approve, or take other appropriate action upon, the Contractor’s submittals such as Shop Drawings, Product Data and Samples, but only for the limited purpose of checking for conformance with information given and the design concept expressed in the Contract Documents. The Architect’s action will be taken in accordance with the submittal schedule approved by the Architect or, in the absence of an approved submittal schedule, with reasonable promptness while allowing sufficient time in the Architect’s professional judgment to permit adequate review. Review of such submittals is not conducted for the purpose of determining the accuracy and completeness of other details such as dimensions and quantities, or for substantiating instructions for installation or performance of equipment or systems, all of which remain the responsibility of the Contractor as required by the Contract Documents. The Architect’s review of the Contractor’s submittals shall not relieve the Contractor of the obligations under Sections 3.3, 3.5 and 3.12. The Architect’s review shall not constitute approval of safety precautions or, unless otherwise specifically stated by the Architect, of any construction means, methods, techniques, sequences or procedures. The Architect’s approval of a specific item shall not indicate approval of an assembly of which the item is a component.

§ 4.2.8 The Architect will prepare Change Orders and Construction Change Directives, and may authorize minor changes in the Work as provided in Section 7.4. The Architect will investigate and make determinations and recommendations regarding concealed and unknown conditions as provided in Section 3.7.4.

§ 4.2.9 The Architect will conduct inspections to determine the date or dates of Substantial Completion and the date of final completion; issue Certificates of Substantial Completion pursuant to Section 9.8; receive and forward to the Owner, for the Owner’s review and records, written warranties and related documents required by the Contract and assembled by the Contractor pursuant to Section 9.10; and issue a final Certificate for Payment pursuant to Section 9.10.

§ 4.2.10 If the Owner and Architect agree, the Architect will provide one or more project representatives to assist in carrying out the Architect’s responsibilities at the site. The duties, responsibilities and limitations of authority of such project representatives shall be as set forth in an exhibit to be incorporated in the Contract Documents.

§ 4.2.11 The Architect will interpret and decide matters concerning performance under, and requirements of, the Contract Documents on written request of either the Owner or Contractor. The Architect’s response to such requests will be made in writing within any time limits agreed upon or otherwise with reasonable promptness.

§ 4.2.12 Interpretations and decisions of the Architect will be consistent with the intent of, and reasonably inferable from, the Contract Documents and will be in writing or in the form of drawings. When making such interpretations and decisions, the Architect will endeavor to secure faithful performance by both Owner and Contractor, will not show partiality to either and will not be liable for results of interpretations or decisions rendered in good faith.

§ 4.2.13 The Architect’s decisions on matters relating to aesthetic effect will be final if consistent with the intent expressed in the Contract Documents.

§ 4.2.14 The Architect will review and respond to requests for information about the Contract Documents. The Architect’s response to such requests will be made in writing within any time limits agreed upon or otherwise with reasonable promptness. If appropriate, the Architect will prepare and issue supplemental Drawings and Specifications in response to the requests for information.

ARTICLE 5 SUBCONTRACTORS

§ 5.1 DEFINITIONS

§ 5.1.1 A Subcontractor is a person or entity who has a direct contract with the Contractor to perform a portion of the Work at the site. The term “Subcontractor” is referred to throughout the Contract Documents as if singular in number and means a Subcontractor or an authorized representative of the Subcontractor. The term “Subcontractor” does not include a separate contractor or subcontractors of a separate contractor.

§ 5.1.2 A Sub-subcontractor is a person or entity who has a direct or indirect contract with a Subcontractor to perform a portion of the Work at the site. The term “Sub-subcontractor” is referred to throughout the Contract Documents as if singular in number and means a Sub-subcontractor or an authorized representative of the Sub-subcontractor.
§ 5.2 AWARD OF SUBCONTRACTS AND OTHER CONTRACTS FOR PORTIONS OF THE WORK

§ 5.2.1 Unless otherwise stated in the Contract Documents or the bidding requirements, the Contractor, as soon as practicable after award of the Contract, shall furnish in writing to the Owner through the Architect the names of persons or entities (including those who are to furnish materials or equipment fabricated to a special design) proposed for each principal portion of the Work. The Architect may reply within 14 days to the Contractor in writing stating (1) whether the Owner or the Architect has reasonable objection to any such proposed person or entity or (2) that the Architect requires additional time for review. Failure of the Owner or Architect to reply within the 14-day period shall constitute notice of no reasonable objection.

§ 5.2.2 The Contractor shall not contract with a proposed person or entity to whom the Owner or Architect has made reasonable and timely objection. The Contractor shall not be required to contract with anyone to whom the Contractor has made reasonable objection.

§ 5.2.3 If the Owner or Architect has reasonable objection to a person or entity proposed by the Contractor, the Contractor shall propose another to whom the Owner or Architect has no reasonable objection. If the proposed but rejected Subcontractor was reasonably capable of performing the Work, the Contract Sum and Contract Time shall be increased or decreased by the difference, if any, occasioned by such change, and an appropriate Change Order shall be issued before commencement of the substitute Subcontractor’s Work. However, no increase in the Contract Sum or Contract Time shall be allowed for such change unless the Contractor has acted promptly and responsibly in submitting names as required.

§ 5.2.4 The Contractor shall not substitute a Subcontractor, person or entity previously selected if the Owner or Architect makes reasonable objection to such substitution.

§ 5.3 SUBCONTRACTUAL RELATIONS

By appropriate agreement, written where legally required for validity, the Contractor shall require each Subcontractor, to the extent of the Work to be performed by the Subcontractor, to be bound to the Contractor by terms of the Contract Documents, and to assume toward the Contractor all the obligations and responsibilities, including the responsibility for safety of the Subcontractor’s Work, which the Contractor, by these Documents, assumes toward the Owner and Architect. Each subcontract agreement shall preserve and protect the rights of the Owner and Architect under the Contract Documents with respect to the Work to be performed by the Subcontractor so that subcontracting thereof will not prejudice such rights, and shall allow to the Subcontractor, unless specifically provided otherwise in the subcontract agreement, the benefit of all rights, remedies and redress against the Owner and Architect under the Contract Documents, and against the Owner. Where appropriate, the Contractor shall require each Subcontractor to enter into similar agreements with Sub-subcontractors. The Contractor shall make available to each proposed Subcontractor, prior to the execution of the subcontract agreement, copies of the Contract Documents to which the Subcontractor will be bound, and, upon written request of the Subcontractor, identify to the Subcontractor terms and conditions of the proposed subcontract agreement that may be at variance with the Contract Documents.

Subcontractors will similarly make copies of applicable portions of such documents available to their respective proposed Sub-subcontractors.

§ 5.4 CONTINGENT ASSIGNMENT OF SUBCONTRACTS

§ 5.4.1 Each subcontract agreement for a portion of the Work is assigned by the Contractor to the Owner, provided that

1. assignment is effective only after termination of the Contract by the Owner for cause pursuant to Section 14.2 and only for those subcontract agreements that the Owner accepts by notifying the Subcontractor and Contractor in writing; and

2. assignment is subject to the prior rights of the surety, if any, obligated under bond relating to the Contract.

When the Owner accepts the assignment of a subcontract agreement, the Owner assumes the Contractor’s rights and obligations under the subcontract.

§ 5.4.2 Upon such assignment, if the Work has been suspended for more than 30 days, the Subcontractor’s compensation shall be equitably adjusted for increases in cost resulting from the suspension.

§ 5.4.3 Upon such assignment to the Owner under this Section 5.4, the Owner may further assign the subcontract to a successor contractor or other entity. If the Owner assigns the subcontract to a successor contractor or other entity, the
ARTICLE 6 CONSTRUCTION BY OWNER OR BY SEPARATE CONTRACTORS

§ 6.1 OWNER’S RIGHT TO PERFORM CONSTRUCTION AND TO AWARD SEPARATE CONTRACTS

§ 6.1.1 The Owner reserves the right to perform construction or operations related to the Project with the Owner’s own forces, and to award separate contracts in connection with other portions of the Project or other construction or operations on the site under Conditions of the Contract identical or substantially similar to these including those portions related to insurance and waiver of subrogation. If the Contractor claims that delay or additional cost is involved because of such action by the Owner, the Contractor shall make such Claim as provided in Article 15.

§ 6.1.2 When separate contracts are awarded for different portions of the Project or other construction or operations on the site, the term “Contractor” in the Contract Documents in each case shall mean the Contractor who executes each separate Owner-Contractor Agreement.

§ 6.1.3 The Owner shall provide for coordination of the activities of the Owner’s own forces and of each separate contractor with the Work of the Contractor, who shall cooperate with them. The Contractor shall participate with other separate contractors and the Owner in reviewing their construction schedules. The Contractor shall make any revisions to the construction schedule deemed necessary after a joint review and mutual agreement. The construction schedules shall then constitute the schedules to be used by the Contractor, separate contractors and the Owner until subsequently revised.

§ 6.1.4 Unless otherwise provided in the Contract Documents, when the Owner performs construction or operations related to the Project with the Owner’s own forces, the Owner shall be deemed to be subject to the same obligations and to have the same rights that apply to the Contractor under the Conditions of the Contract, including, without excluding others, those stated in Article 3, this Article 6 and Articles 10, 11 and 12.

§ 6.2 MUTUAL RESPONSIBILITY

§ 6.2.1 The Contractor shall afford the Owner and separate contractors reasonable opportunity for introduction and storage of their materials and equipment and performance of their activities, and shall connect and coordinate the Contractor’s construction and operations with theirs as required by the Contract Documents.

§ 6.2.2 If part of the Contractor’s Work depends for proper execution or results upon construction or operations by the Owner or a separate contractor, the Contractor shall, prior to proceeding with that portion of the Work, promptly report to the Architect apparent discrepancies or defects in such other construction that would render it unsuitable for such proper execution and results. Failure of the Contractor so to report shall constitute an acknowledgment that the Owner’s or separate contractor’s completed or partially completed construction is fit and proper to receive the Contractor’s Work, except as to defects not then reasonably discoverable.

§ 6.2.3 The Contractor shall reimburse the Owner for costs the Owner incurs that are payable to a separate contractor because of the Contractor’s delays, improperly timed activities or defective construction. The Owner shall be responsible to the Contractor for costs the Contractor incurs because of a separate contractor’s delays, improperly timed activities, damage to the Work or defective construction.

§ 6.2.4 The Contractor shall promptly remedy damage the Contractor wrongfully causes to completed or partially completed construction or to property of the Owner or separate contractors as provided in Section 10.2.5.

§ 6.2.5 The Owner and each separate contractor shall have the same responsibilities for cutting and patching as are described for the Contractor in Section 3.14.

§ 6.3 OWNER’S RIGHT TO CLEAN UP

If a dispute arises among the Contractor, separate contractors and the Owner as to the responsibility under their respective contracts for maintaining the premises and surrounding area free from waste materials and rubbish, the Owner may clean up and the Architect will allocate the cost among those responsible.
ARTICLE 7 CHANGES IN THE WORK

§ 7.1 GENERAL
§ 7.1.1 Changes in the Work may be accomplished after execution of the Contract, and without invalidating the Contract, by Change Order, Construction Change Directive or order for a minor change in the Work, subject to the limitations stated in this Article 7 and elsewhere in the Contract Documents.

§ 7.1.2 A Change Order shall be based upon agreement among the Owner, Contractor and Architect; a Construction Change Directive requires agreement by the Owner and Architect and may or may not be agreed to by the Contractor; an order for a minor change in the Work may be issued by the Architect alone.

§ 7.1.3 Changes in the Work shall be performed under applicable provisions of the Contract Documents, and the Contractor shall proceed promptly, unless otherwise provided in the Change Order, Construction Change Directive or order for a minor change in the Work.

§ 7.2 CHANGE ORDERS
§ 7.2.1 A Change Order is a written instrument prepared by the Architect and signed by the Owner, Contractor and Architect stating their agreement upon all of the following:
1. The change in the Work;
2. The amount of the adjustment, if any, in the Contract Sum; and
3. The extent of the adjustment, if any, in the Contract Time.

§ 7.3 CONSTRUCTION CHANGE DIRECTIVES
§ 7.3.1 A Construction Change Directive is a written order prepared by the Architect and signed by the Owner and Architect, directing a change in the Work prior to agreement on adjustment, if any, in the Contract Sum or Contract Time, or both. The Owner may by Construction Change Directive, without invalidating the Contract, order changes in the Work within the general scope of the Contract consisting of additions, deletions or other revisions, the Contract Sum and Contract Time being adjusted accordingly.

§ 7.3.2 A Construction Change Directive shall be used in the absence of total agreement on the terms of a Change Order.

§ 7.3.3 If the Construction Change Directive provides for an adjustment to the Contract Sum, the adjustment shall be based on one of the following methods:
1. Mutual acceptance of a lump sum properly itemized and supported by sufficient substantiating data to permit evaluation;
2. Unit prices stated in the Contract Documents or subsequently agreed upon;
3. Cost to be determined in a manner agreed upon by the parties and a mutually acceptable fixed or percentage fee; or
4. As provided in Section 7.3.7.

§ 7.3.4 If unit prices are stated in the Contract Documents or subsequently agreed upon, and if quantities originally contemplated are materially changed in a proposed Change Order or Construction Change Directive so that application of such unit prices to quantities of Work proposed will cause substantial inequity to the Owner or Contractor, the applicable unit prices shall be equitably adjusted.

§ 7.3.5 Upon receipt of a Construction Change Directive, the Contractor shall promptly proceed with the change in the Work involved and advise the Architect of the Contractor’s agreement or disagreement with the method, if any, provided in the Construction Change Directive for determining the proposed adjustment in the Contract Sum or Contract Time.

§ 7.3.6 A Construction Change Directive signed by the Contractor indicates the Contractor’s agreement therewith, including adjustment in Contract Sum and Contract Time or the method for determining them. Such agreement shall be effective immediately and shall be recorded as a Change Order.

§ 7.3.7 If the Contractor does not respond promptly or disagrees with the method for adjustment in the Contract Sum, the Architect shall determine the method and the adjustment on the basis of reasonable expenditures and savings of those performing the Work attributable to the change, including, in case of an increase in the Contract Sum, an amount
for overhead and profit as set forth in the Agreement, or if no such amount is set forth in the Agreement, a reasonable amount. In such case, and also under Section 7.3.3.3, the Contractor shall keep and present, in such form as the Architect may prescribe, an itemized accounting together with appropriate supporting data. Unless otherwise provided in the Contract Documents, costs for the purposes of this Section 7.3.7 shall be limited to the following:

1. Costs of labor, including social security, old age and unemployment insurance, fringe benefits required by agreement or custom, and workers’ compensation insurance;
2. Costs of materials, supplies and equipment, including cost of transportation, whether incorporated or consumed;
3. Rental costs of machinery and equipment, exclusive of hand tools, whether rented from the Contractor or others;
4. Costs of premiums for all bonds and insurance, permit fees, and sales, use or similar taxes related to the Work; and
5. Additional costs of supervision and field office personnel directly attributable to the change.

§ 7.3.8 The amount of credit to be allowed by the Contractor to the Owner for a deletion or change that results in a net decrease in the Contract Sum shall be actual net cost as confirmed by the Architect. When both credits and credits covering related Work or substitutions are involved in a change, the allowance for overhead and profit shall be figured on the basis of net increase, if any, with respect to that change.

§ 7.3.9 Pending final determination of the total cost of a Construction Change Directive to the Owner, the Contractor may request payment for Work completed under the Construction Change Directive in Applications for Payment. The Architect will make an interim determination for purposes of monthly certification for payment for those costs and certify for payment the amount that the Architect determines, in the Architect’s professional judgment, to be reasonably justified. The Architect’s interim determination of cost shall adjust the Contract Sum on the same basis as a Change Order, subject to the right of either party to disagree and assert a Claim in accordance with Article 15.

§ 7.3.10 When the Owner and Contractor agree with a determination made by the Architect concerning the adjustments in the Contract Sum and Contract Time, or otherwise reach agreement upon the adjustments, such agreement shall be effective immediately and the Architect will prepare a Change Order. Change Orders may be issued for all or any part of a Construction Change Directive.

§ 7.4 MINOR CHANGES IN THE WORK
The Architect has authority to order minor changes in the Work not involving adjustment in the Contract Sum or extension of the Contract Time and not inconsistent with the intent of the Contract Documents. Such changes will be effected by written order signed by the Architect and shall be binding on the Owner and Contractor.

ARTICLE 8 TIME
§ 8.1 DEFINITIONS
§ 8.1.1 Unless otherwise provided, Contract Time is the period of time, including authorized adjustments, allotted in the Contract Documents for Substantial Completion of the Work.

§ 8.1.2 The date of commencement of the Work is the date established in the Agreement.

§ 8.1.3 The date of Substantial Completion is the date certified by the Architect in accordance with Section 9.8.

§ 8.1.4 The term “day” as used in the Contract Documents shall mean calendar day unless otherwise specifically defined.

§ 8.2 PROGRESS AND COMPLETION
§ 8.2.1 Time limits stated in the Contract Documents are of the essence of the Contract. By executing the Agreement the Contractor confirms that the Contract Time is a reasonable period for performing the Work.

§ 8.2.2 The Contractor shall not knowingly, except by agreement or instruction of the Owner in writing, prematurely commence operations on the site or elsewhere prior to the effective date of insurance required by Article 11 to be furnished by the Contractor and Owner. The date of commencement of the Work shall not be changed by the effective date of such insurance.
§ 8.2.3 The Contractor shall proceed expeditiously with adequate forces and shall achieve Substantial Completion within the Contract Time.

§ 8.3 DELAYS AND EXTENSIONS OF TIME
§ 8.3.1 If the Contractor is delayed at any time in the commencement or progress of the Work by an act or neglect of the Owner or Architect, or of an employee of either, or of a separate contractor employed by the Owner; or by changes ordered in the Work; or by labor disputes, fire, unusual delay in deliveries, unavoidable casualties or other causes beyond the Contractor’s control; or by delay authorized by the Owner pending mediation and arbitration; or by other causes that the Architect determines may justify delay, then the Contract Time shall be extended by Change Order for such reasonable time as the Architect may determine.

§ 8.3.2 Claims relating to time shall be made in accordance with applicable provisions of Article 15.

§ 8.3.3 This Section 8.3 does not preclude recovery of damages for delay by either party under other provisions of the Contract Documents.

ARTICLE 9 PAYMENTS AND COMPLETION
§ 9.1 CONTRACT SUM
The Contract Sum is stated in the Agreement and, including authorized adjustments, is the total amount payable by the Owner to the Contractor for performance of the Work under the Contract Documents.

§ 9.2 SCHEDULE OF VALUES
Where the Contract is based on a stipulated sum or Guaranteed Maximum Price, the Contractor shall submit to the Architect, before the first Application for Payment, a schedule of values allocating the entire Contract Sum to the various portions of the Work and prepared in such form and supported by such data to substantiate its accuracy as the Architect may require. This schedule, unless objected to by the Architect, shall be used as a basis for reviewing the Contractor’s Applications for Payment.

§ 9.3 APPLICATIONS FOR PAYMENT
§ 9.3.1 At least ten days before the date established for each progress payment, the Contractor shall submit to the Architect an itemized Application for Payment prepared in accordance with the schedule of values, if required under Section 9.2, for completed portions of the Work. Such application shall be notarized, if required, and supported by such data substantiating the Contractor’s right to payment as the Owner or Architect may require, such as copies of requisitions from Subcontractors and material suppliers, and shall reflect retainage if provided for in the Contract Documents.

§ 9.3.1.1 As provided in Section 7.3.9, such applications may include requests for payment on account of changes in the Work that have been properly authorized by Construction Change Directives, or by interim determinations of the Architect, but not yet included in Change Orders.

§ 9.3.1.2 Applications for Payment shall not include requests for payment for portions of the Work for which the Contractor does not intend to pay a Subcontractor or material supplier, unless such Work has been performed by others whom the Contractor intends to pay.

§ 9.3.2 Unless otherwise provided in the Contract Documents, payments shall be made on account of materials and equipment delivered and suitably stored at the site for subsequent incorporation in the Work. If approved in advance by the Owner, payment may similarly be made for materials and equipment suitably stored off the site at a location agreed upon in writing. Payment for materials and equipment stored on or off the site shall be conditioned upon compliance by the Contractor with procedures satisfactory to the Owner to establish the Owner’s title to such materials and equipment or otherwise protect the Owner’s interest, and shall include the costs of applicable insurance, storage and transportation to the site for such materials and equipment stored off the site.

§ 9.3.3 The Contractor warrants that title to all Work covered by an Application for Payment will pass to the Owner no later than the time of payment. The Contractor further warrants that upon submittal of an Application for Payment all Work for which Certificates for Payment have been previously issued and payments received from the Owner shall, to the best of the Contractor’s knowledge, information and belief, be free and clear of liens, claims, security interests or
encumbrances in favor of the Contractor, Subcontractors, material suppliers, or other persons or entities making a claim by reason of having provided labor, materials and equipment relating to the Work.

§ 9.4 CERTIFICATES FOR PAYMENT

§ 9.4.1 The Architect will, within seven days after receipt of the Contractor’s Application for Payment, either issue to the Owner a Certificate for Payment, with a copy to the Contractor, for such amount as the Architect determines is properly due, or notify the Contractor and Owner in writing of the Architect’s reasons for withholding certification in whole or in part as provided in Section 9.5.1.

§ 9.4.2 The issuance of a Certificate for Payment will constitute a representation by the Architect to the Owner, based on the Architect’s evaluation of the Work and the data comprising the Application for Payment, that, to the best of the Architect’s knowledge, information and belief, the Work has progressed to the point indicated and that the quality of the Work is in accordance with the Contract Documents. The foregoing representations are subject to an evaluation of the Work for conformance with the Contract Documents upon Substantial Completion, to results of subsequent tests and inspections, to correction of minor deviations from the Contract Documents prior to completion and to specific qualifications expressed by the Architect. The issuance of a Certificate for Payment will further constitute a representation that the Contractor is entitled to payment in the amount certified. However, the issuance of a Certificate for Payment will not be a representation that the Architect has (1) made exhaustive or continuous on-site inspections to check the quality or quantity of the Work, (2) reviewed construction means, methods, techniques, sequences or procedures, (3) reviewed copies of requisitions received from Subcontractors and material suppliers and other data requested by the Owner to substantiate the Contractor’s right to payment, or (4) made examination to ascertain how or for what purpose the Contractor has used money previously paid on account of the Contract Sum.

§ 9.5 DECISIONS TO WITHHOLD CERTIFICATION

§ 9.5.1 The Architect may withhold a Certificate for Payment in whole or in part, to the extent reasonably necessary to protect the Owner, if in the Architect’s opinion the representations to the Owner required by Section 9.4.2 cannot be made. If the Architect is unable to certify payment in the amount of the Application, the Architect will identify the Contractor and Owner as provided in Section 9.4.1. If the Contractor and Architect cannot agree on a revised amount, the Architect will promptly issue a Certificate for Payment for the amount for which the Architect is able to make such representations to the Owner. The Architect may also withhold a Certificate for Payment or, because of subsequently discovered evidence, may nullify the whole or a part of a Certificate for Payment previously issued, to such extent as may be necessary in the Architect’s opinion to protect the Owner from loss for which the Contractor is responsible, including loss resulting from acts and omissions described in Section 3.3.2, because of

.1 defective Work not remedied;
.2 third party claims filed or reasonable evidence indicating probable filing of such claims unless security acceptable to the Owner is provided by the Contractor;
.3 failure of the Contractor to make payments properly to Subcontractors or for labor, materials or equipment;
.4 reasonable evidence that the Work cannot be completed for the unpaid balance of the Contract Sum;
.5 damage to the Owner or a separate contractor;
.6 reasonable evidence that the Work will not be completed within the Contract Time, and that the unpaid balance would not be adequate to cover actual or liquidated damages for the anticipated delay; or
.7 repeated failure to carry out the Work in accordance with the Contract Documents.

§ 9.5.2 When the above reasons for withholding certification are removed, certification will be made for amounts previously withheld.

§ 9.5.3 If the Architect withholds certification for payment under Section 9.5.1.3, the Owner may, at its sole option, issue joint checks to the Contractor and to any Subcontractor or material or equipment suppliers to whom the Contractor failed to make payment for Work properly performed or material or equipment suitably delivered. If the Owner makes payments by joint check, the Owner shall notify the Architect and the Architect will reflect such payment on the next Certificate for Payment.

§ 9.6 PROGRESS PAYMENTS

§ 9.6.1 After the Architect has issued a Certificate for Payment, the Owner shall make payment in the manner and within the time provided in the Contract Documents, and shall so notify the Architect.
§ 9.6.2 The Contractor shall pay each Subcontractor no later than seven days after receipt of payment from the Owner the amount to which the Subcontractor is entitled, reflecting percentages actually retained from payments to the Contractor on account of the Subcontractor’s portion of the Work. The Contractor shall, by appropriate agreement with each Subcontractor, require each Subcontractor to make payments to Sub-subcontractors in a similar manner.

§ 9.6.3 The Architect will, on request, furnish to a Subcontractor, if practicable, information regarding percentages of completion or amounts applied for by the Contractor and action taken thereon by the Architect and Owner on account of portions of the Work done by such Subcontractor.

§ 9.6.4 The Owner has the right to request written evidence from the Contractor that the Contractor has properly paid Subcontractors and material and equipment suppliers amounts paid by the Owner to the Contractor for subcontracted Work. If the Contractor fails to furnish such evidence within seven days, the Owner shall have the right to contact Subcontractors to ascertain whether they have been properly paid. Neither the Owner nor Architect shall have an obligation to pay or to see to the payment of money to a Subcontractor, except as may otherwise be required by law.

§ 9.6.5 Contractor payments to material and equipment suppliers shall be treated in a manner similar to that provided in Sections 9.6.2, 9.6.3 and 9.6.4.

§ 9.6.6 A Certificate for Payment, a progress payment, or partial or entire use or occupancy of the Project by the Owner shall not constitute acceptance of Work not in accordance with the Contract Documents.

§ 9.6.7 Unless the Contractor provides the Owner with a payment bond in the full penal sum of the Contract Sum, payments received by the Contractor for Work properly performed by Subcontractors and suppliers shall be held by the Contractor for those Subcontractors or suppliers who performed Work or furnished materials, or both, under contract with the Contractor for which payment was made by the Owner. Nothing contained herein shall require money to be placed in a separate account and not commingled with money of the Contractor, shall create any fiduciary liability or tort liability on the part of the Contractor for breach of trust or shall entitle any person or entity to an award of punitive damages against the Contractor for breach of the requirements of this provision.

§ 9.7 FAILURE OF PAYMENT
If the Architect does not issue a Certificate for Payment, through no fault of the Contractor, within seven days after receipt of the Contractor’s Application for Payment, or if the Owner does not pay the Contractor within seven days after the date established in the Contract Documents the amount certified by the Architect or awarded by binding dispute resolution, then the Contractor may, upon seven additional days’ written notice to the Owner and Architect, stop the Work until payment of the amount owing has been received. The Contract Time shall be extended appropriately and the Contract Sum shall be increased by the amount of the Contractor’s reasonable costs of shut-down, delay and start-up, plus interest as provided for in the Contract Documents.

§ 9.8 SUBSTANTIAL COMPLETION
§ 9.8.1 Substantial Completion is the stage in the progress of the Work when the Work or designated portion thereof is sufficiently complete in accordance with the Contract Documents so that the Owner can occupy or utilize the Work for its intended use.

§ 9.8.2 When the Contractor considers that the Work, or a portion thereof which the Owner agrees to accept separately, is substantially complete, the Contractor shall prepare and submit to the Architect a comprehensive list of items to be completed or corrected prior to final payment. Failure to include an item on such list does not alter the responsibility of the Contractor to complete all Work in accordance with the Contract Documents.

§ 9.8.3 Upon receipt of the Contractor’s list, the Architect will make an inspection to determine whether the Work or designated portion thereof is substantially complete. If the Architect’s inspection discloses any item, whether or not included on the Contractor’s list, which is not sufficiently complete in accordance with the Contract Documents so that the Owner can occupy or utilize the Work or designated portion thereof for its intended use, the Contractor shall, before issuance of the Certificate of Substantial Completion, complete or correct such item upon notification by the Architect. In such case, the Contractor shall then submit a request for another inspection by the Architect to determine Substantial Completion.
§ 9.8.4 When the Work or designated portion thereof is substantially complete, the Architect will prepare a Certificate
of Substantial Completion that shall establish the date of Substantial Completion, shall establish responsibilities of the
Owner and Contractor for security, maintenance, heat, utilities, damage to the Work and insurance, and shall fix the
time within which the Contractor shall finish all items on the list accompanying the Certificate. Warranties required by
the Contract Documents shall commence on the date of Substantial Completion of the Work or designated portion
thereof unless otherwise provided in the Certificate of Substantial Completion.

§ 9.8.5 The Certificate of Substantial Completion shall be submitted to the Owner and Contractor for their written
acceptance of responsibilities assigned to them in such Certificate. Upon such acceptance and consent of surety, if any,
the Owner shall make payment of retainage applying to such Work or designated portion thereof. Such payment shall
be adjusted for Work that is incomplete or not in accordance with the requirements of the Contract Documents.

§ 9.9 PARTIAL OCCUPANCY OR USE
§ 9.9.1 The Owner may occupy or use any completed or partially completed portion of the Work at any stage when
such portion is designated by separate agreement with the Contractor, provided such occupancy or use is consented to
by the insurer as required under Section 11.3.1.5 and authorized by public authorities having jurisdiction over the
Project. Such partial occupancy or use may commence whether or not the portion is substantially complete, provided
the Owner and Contractor have accepted in writing the responsibilities assigned to each of them for payments,
retainage, if any, security, maintenance, heat, utilities, damage to the Work and insurance, and have agreed in writing
concerning the period for correction of the Work and commencement of warranties required by the Contract
Documents. When the Contractor considers a portion substantially complete, the Contractor shall prepare and submit
a list to the Architect as provided under Section 9.8.2. Consent of the Contractor to partial occupancy or use shall not
be unreasonably withheld. The stage of the progress of the Work shall be determined by written agreement between
the Owner and Contractor or, if no agreement is reached, by decision of the Architect.

§ 9.9.2 Immediately prior to such partial occupancy or use, the Owner, Contractor and Architect shall jointly inspect
the area to be occupied or portion of the Work to be used in order to determine and record the condition of the Work.

§ 9.9.3 Unless otherwise agreed upon, partial occupancy or use of a portion of the Work shall not constitute
acceptance of Work not complying with the requirements of the Contract Documents.

§ 9.10 FINAL COMPLETION AND FINAL PAYMENT
§ 9.10.1 Upon receipt of the Contractor’s written notice that the Work is ready for final inspection and acceptance and
upon receipt of a final Application for Payment, the Architect will promptly make such inspection and, when the
Architect finds the Work acceptable under the Contract Documents and the Contract fully performed, the Architect
will promptly issue a final Certificate for Payment stating that to the best of the Architect’s knowledge, information
and belief, and on the basis of the Architect’s on-site visits and inspections, the Work has been completed in
accordance with terms and conditions of the Contract Documents and that the entire balance found to be due to the
Contractor and noted in the final Certificate is due and payable. The Architect’s final Certificate for Payment will
constitute a further representation that conditions listed in Section 9.10.2 as precedent to the Contractor’s being
to final payment have been fulfilled.

§ 9.10.2 Neither final payment nor any remaining retained percentage shall become due until the Contractor submits to
the Architect (1) an affidavit that payrolls, bills for materials and equipment, and other indebtedness connected with
the Work for which the Owner or the Owner’s property might be responsible or encumbered (less amounts withheld
by Owner) have been paid or otherwise satisfied, (2) a certificate evidencing that insurance required by the Contract
Documents to remain in force after final payment is currently in effect and will not be canceled or allowed to expire
until at least 30 days’ prior written notice has been given to the Owner, (3) a written statement that the Contractor
knows of no substantial reason that the insurance will not be renewable to cover the period required by the Contract
Documents, (4) consent of surety, if any, to final payment and (5), if required by the Owner, other data establishing
payment or satisfaction of obligations, such as receipts, releases and waivers of liens, claims, security interests or
encumbrances arising out of the Contract, to the extent and in such form as may be designated by the Owner. If a
Subcontractor refuses to furnish a release or waiver required by the Owner, the Contractor may furnish a bond
satisfactory to the Owner to indemnify the Owner against such lien. If such lien remains unsatisfied after payments are
made, the Contractor shall refund to the Owner all money that the Owner may be compelled to pay in discharging such
lien, including all costs and reasonable attorneys’ fees.
§ 9.10.3 If, after Substantial Completion of the Work, final completion thereof is materially delayed through no fault of the Contractor or by issuance of Change Orders affecting final completion, and the Architect so confirms, the Owner shall, upon application by the Contractor and certification by the Architect, and without terminating the Contract, make payment of the balance due for that portion of the Work fully completed and accepted. If the remaining balance for Work not fully completed or corrected is less than retainage stipulated in the Contract Documents, and if bonds have been furnished, the written consent of surety to payment of the balance due for that portion of the Work fully completed and accepted shall be submitted by the Contractor to the Architect prior to certification of such payment. Such payment shall be made under terms and conditions governing final payment, except that it shall not constitute a waiver of claims.

§ 9.10.4 The making of final payment shall constitute a waiver of Claims by the Owner except those arising from

1. liens, Claims, security interests or encumbrances arising out of the Contract and unsettled;
2. failure of the Work to comply with the requirements of the Contract Documents; or
3. terms of special warranties required by the Contract Documents.

§ 9.10.5 Acceptance of final payment by the Contractor, a Subcontractor or material supplier shall constitute a waiver of claims by that payee except those previously made in writing and identified by that payee as unsettled at the time of final Application for Payment.

ARTICLE 10 PROTECTION OF PERSONS AND PROPERTY
§ 10.1 SAFETY PRECAUTIONS AND PROGRAMS
The Contractor shall be responsible for initiating, maintaining and supervising all safety precautions and programs in connection with the performance of the Contract.

§ 10.2 SAFETY OF PERSONS AND PROPERTY
§ 10.2.1 The Contractor shall take reasonable precautions for safety of, and shall provide reasonable protection to prevent damage, injury or loss to

1. employees on the Work and other persons who may be affected thereby;
2. the Work and materials and equipment to be incorporated therein, whether in storage on or off the site, under care, custody or control of the Contractor or the Contractor’s Subcontractors or Sub-subcontractors; and
3. other property at the site or adjacent thereto, such as trees, shrubs, lawns, walks, pavements, roadways, structures and utilities not designated for removal, relocation or replacement in the course of construction.

§ 10.2.2 The Contractor shall comply with and give notices required by applicable laws, statutes, ordinances, codes, rules and regulations, and lawful orders of public authorities bearing on safety of persons or property or their protection from damage, injury or loss.

§ 10.2.3 The Contractor shall erect and maintain, as required by existing conditions and performance of the Contract, reasonable safeguards for safety and protection, including posting danger signs and other warnings against hazards, promulgating safety regulations and notifying owners and users of adjacent sites and utilities.

§ 10.2.4 When use or storage of explosives or other hazardous materials or equipment or unusual methods are necessary for execution of the Work, the Contractor shall exercise utmost care and carry on such activities under supervision of properly qualified personnel.

§ 10.2.5 The Contractor shall promptly remedy damage and loss (other than damage or loss insured under property insurance required by the Contract Documents) to property referred to in Sections 10.2.1.2 and 10.2.1.3 caused in whole or in part by the Contractor, a Subcontractor, a Sub-subcontractor, or anyone directly or indirectly employed by any of them, or by anyone for whose acts they may be liable and for which the Contractor is responsible under Sections 10.2.1.2 and 10.2.1.3, except damage or loss attributable to acts or omissions of the Owner or Architect or anyone directly or indirectly employed by either of them, or by anyone for whose acts either of them may be liable, and not attributable to the fault or negligence of the Contractor. The foregoing obligations of the Contractor are in addition to the Contractor’s obligations under Section 3.18.
§ 10.2.6 The Contractor shall designate a responsible member of the Contractor’s organization at the site whose duty shall be the prevention of accidents. This person shall be the Contractor’s superintendent unless otherwise designated by the Contractor in writing to the Owner and Architect.

§ 10.2.7 The Contractor shall not permit any part of the construction or site to be loaded so as to cause damage or create an unsafe condition.

§ 10.2.8 INJURY OR DAMAGE TO PERSON OR PROPERTY
If either party suffers injury or damage to person or property because of an act or omission of the other party, or of others for whose acts such party is legally responsible, written notice of such injury or damage, whether or not insured, shall be given to the other party within a reasonable time not exceeding 21 days after discovery. The notice shall provide sufficient detail to enable the other party to investigate the matter.

§ 10.3 HAZARDOUS MATERIALS
§ 10.3.1 The Contractor is responsible for compliance with any requirements included in the Contract Documents regarding hazardous materials. If the Contractor encounters a hazardous material or substance not addressed in the Contract Documents and if reasonable precautions will be inadequate to prevent foreseeable bodily injury or death to persons resulting from a material or substance, including but not limited to asbestos or polychlorinated biphenyl (PCB), encountered on the site by the Contractor, the Contractor shall, upon recognizing the condition, immediately stop Work in the affected area and report the condition to the Owner and Architect in writing.

§ 10.3.2 Upon receipt of the Contractor’s written notice, the Owner shall obtain the services of a licensed laboratory to verify the presence or absence of the material or substance reported by the Contractor and, in the event such material or substance is found to be present, to cause it to be rendered harmless. Unless otherwise required by the Contract Documents, the Owner shall furnish in writing to the Contractor and Architect the names and qualifications of persons or entities who are to perform tests verifying the presence or absence of such material or substance or who are to perform the task of removal or safe containement of such material or substance. The Contractor and the Architect will promptly reply to the Owner in writing stating whether or not the Owner has reasonable objection to the persons or entities proposed by the Owner. If either the Contractor or Architect has an objection to a person or entity proposed by the Owner, the Owner shall propose another to whom the Contractor and the Architect have no reasonable objection. When the material or substance has been rendered harmless, Work in the affected area shall resume upon written agreement of the Owner and Contractor. By Change Order, the Contract Time shall be extended appropriately and the Contract Sum shall be increased in the amount of the Contractor’s reasonable additional costs of shut-down, delay and start-up.

§ 10.3.3 To the fullest extent permitted by law, the Owner shall indemnify and hold harmless the Contractor, Subcontractors, Architect, Architect’s consultants and agents and employees of any of them from and against claims, damages, losses and expenses, including but not limited to attorneys’ fees, arising out of or resulting from performance of the Work in the affected area if in fact the material or substance presents the risk of bodily injury or death as described in Section 10.3.1 and has not been rendered harmless, provided that such claim, damage, loss or expense is attributable to bodily injury, sickness, disease or death, or to injury to or destruction of tangible property (other than the Work itself), except to the extent that such damage, loss or expense is due to the fault or negligence of the party seeking indemnity.

§ 10.3.4 The Owner shall not be responsible under this Section 10.3 for materials or substances the Contractor brings to the site unless such materials or substances are required by the Contract Documents. The Owner shall be responsible for materials or substances required by the Contract Documents, except to the extent of the Contractor’s fault or negligence in the use and handling of such materials or substances.

§ 10.3.5 The Contractor shall indemnify the Owner for the cost and expense the Owner incurs (1) for remediation of a material or substance the Contractor brings to the site and negligently handles, or (2) where the Contractor fails to perform its obligations under Section 10.3.1, except to the extent that the cost and expense are due to the Owner’s fault or negligence.

§ 10.3.6 If, without negligence on the part of the Contractor, the Contractor is held liable by a government agency for the cost of remediation of a hazardous material or substance solely by reason of performing Work as required by the Contract Documents, the Owner shall indemnify the Contractor for all cost and expense thereby incurred.
§ 10.4 EMERGENCIES
In an emergency affecting safety of persons or property, the Contractor shall act, at the Contractor’s discretion, to prevent threatened damage, injury or loss. Additional compensation or extension of time claimed by the Contractor on account of an emergency shall be determined as provided in Article 15 and Article 7.

ARTICLE 11 INSURANCE AND BONDS
§ 11.1 CONTRACTOR’S LIABILITY INSURANCE
§ 11.1.1 The Contractor shall purchase from and maintain in a company or companies lawfully authorized to do business in the jurisdiction in which the Project is located such insurance as will protect the Contractor from claims set forth below which may arise out of or result from the Contractor’s operations and completed operations under the Contract and for which the Contractor may be legally liable, whether such operations be by the Contractor or by a Subcontractor or by anyone directly or indirectly employed by any of them, or by anyone for whose acts any of them may be liable:

1. Claims under workers’ compensation, disability benefit and other similar employee benefit acts that are applicable to the Work to be performed;
2. Claims for damages because of bodily injury, occupational sickness or disease, or death of the Contractor’s employees;
3. Claims for damages because of bodily injury, sickness or disease, or death of any person other than the Contractor’s employees;
4. Claims for damages insured by usual personal injury liability coverage;
5. Claims for damages, other than to the Work itself, because of injury to or destruction of tangible property, including loss of use resulting therefrom;
6. Claims for damages because of bodily injury, death of a person or property damage arising out of ownership, maintenance or use of a motor vehicle;
7. Claims for bodily injury or property damage arising out of completed operations; and
8. Claims involving contractual liability insurance applicable to the Contractor’s obligations under Section 3.18.

§ 11.1.2 The insurance required by Section 11.1.1 shall be written for not less than limits of liability specified in the Contract Documents or required by law, whichever coverage is greater. Coverages, whether written on an occurrence or claims-made basis, shall be maintained without interruption from the date of commencement of the Work until the date of final payment and termination of any coverage required to be maintained after final payment, and, with respect to the Contractor’s completed operations coverage, until the expiration of the period for correction of Work or for such other period for maintenance of completed operations coverage as specified in the Contract Documents.

§ 11.1.3 Certificates of insurance acceptable to the Owner shall be filed with the Owner prior to commencement of the Work and thereafter upon renewal or replacement of each required policy of insurance. These certificates and the insurance policies required by this Section 11.1 shall contain a provision that coverages afforded under the policies will not be canceled or allowed to expire until at least 30 days’ prior written notice has been given to the Owner. An additional certificate evidencing continuation of liability coverage, including coverage for completed operations, shall be submitted with the final Application for Payment as required by Section 9.10.2 and thereafter upon renewal or replacement of such coverage until the expiration of the time required by Section 11.1.2. Information concerning reduction of coverage on account of revised limits or claims paid under the General Aggregate, or both, shall be furnished by the Contractor with reasonable promptness.

§ 11.1.4 The Contractor shall cause the commercial liability coverage required by the Contract Documents to include (1) the Owner, the Architect and the Architect’s consultants as additional insureds for claims caused in whole or in part by the Contractor’s negligent acts or omissions during the Contractor’s operations; and (2) the Owner as an additional insured for claims caused in whole or in part by the Contractor’s negligent acts or omissions during the Contractor’s completed operations.

§ 11.2 OWNER’S LIABILITY INSURANCE
The Owner shall be responsible for purchasing and maintaining the Owner’s usual liability insurance.
§ 11.3 PROPERTY INSURANCE

§ 11.3.1 Unless otherwise provided, the Owner shall purchase and maintain, in a company or companies lawfully authorized to do business in the jurisdiction in which the Project is located, property insurance written on a builder’s risk “all-risk” or equivalent policy form in the amount of the initial Contract Sum, plus value of subsequent Contract Modifications and cost of materials supplied or installed by others, comprising total value for the entire Project at the site on a replacement cost basis without optional deductibles. Such property insurance shall be maintained, unless otherwise provided in the Contract Documents or otherwise agreed in writing by all persons and entities who are beneficiaries of such insurance, until final payment has been made as provided in Section 9.10 or until no person or entity other than the Owner has an insurable interest in the property required by this Section 11.3 to be covered, whichever is later. This insurance shall include interests of the Owner, the Contractor, Subcontractors and Sub-subcontractors in the Project.

§ 11.3.1.1 Property insurance shall be on an “all-risk” or equivalent policy form and shall include, without limitation, insurance against the perils of fire (with extended coverage) and physical loss or damage including, without duplication of coverage, theft, vandalism, malicious mischief, collapse, earthquake, flood, windstorm, falsework, testing and startup, temporary buildings and debris removal including demolition occasioned by enforcement of any applicable legal requirements, and shall cover reasonable compensation for Architect’s and Contractor’s services and expenses required as a result of such insured loss.

§ 11.3.1.2 If the Owner does not intend to purchase such property insurance required by the Contract and with all of the coverages in the amount described above, the Owner shall so inform the Contractor in writing prior to commencement of the Work. The Contractor may then effect insurance that will protect the interests of the Contractor, Subcontractors and Sub-subcontractors in the Work, and by appropriate Change Order the cost thereof shall be charged to the Owner. If the Contractor is damaged by the failure or neglect of the Owner to purchase or maintain insurance as described above, without so notifying the Contractor in writing, then the Owner shall bear all reasonable costs properly attributable thereto.

§ 11.3.1.3 If the property insurance requires deductibles, the Owner shall pay costs not covered because of such deductibles.

§ 11.3.1.4 This property insurance shall cover portions of the Work stored off the site, and also portions of the Work in transit.

§ 11.3.1.5 Partial occupancy or use in accordance with Section 9.9 shall not commence until the insurance company or companies providing property insurance have consented to such partial occupancy or use by endorsement or otherwise. The Owner and the Contractor shall take reasonable steps to obtain consent of the insurance company or companies and shall, without mutual written consent, take no action with respect to partial occupancy or use that would cause cancellation, lapse or reduction of insurance.

§ 11.3.2 BOILER AND MACHINERY INSURANCE

The Owner shall purchase and maintain boiler and machinery insurance required by the Contract Documents or by law, which shall specifically cover such insured objects during installation and until final acceptance by the Owner; this insurance shall include interests of the Owner, Contractor, Subcontractors and Sub-subcontractors in the Work, and the Owner and Contractor shall be named insureds.

§ 11.3.3 LOSS OF USE INSURANCE

The Owner, at the Owner’s option, may purchase and maintain such insurance as will insures the Owner against loss of use of the Owner’s property due to fire or other hazards, however caused. The Owner waives all rights of action against the Contractor for loss of use of the Owner’s property, including consequential losses due to fire or other hazards however caused.

§ 11.3.4 If the Contractor requests in writing that insurance for risks other than those described herein or other special causes of loss be included in the property insurance policy, the Owner shall, if possible, include such insurance, and the cost thereof shall be charged to the Contractor by appropriate Change Order.

§ 11.3.5 If during the Project construction period the Owner insures properties, real or personal or both, at or adjacent to the site by property insurance under policies separate from those insure the Project, or if after final payment...
§ 11.3.6 Before an exposure to loss may occur, the Owner shall file with the Contractor a copy of each policy that includes insurance coverages required by this Section 11.3. Each policy shall contain all generally applicable conditions, definitions, exclusions and endorsements related to this Project. Each policy shall contain a provision that the policy will not be canceled or allowed to expire, and that its limits will not be reduced, until at least 30 days’ prior written notice has been given to the Contractor.

§ 11.3.7 WAIVERS OF SUBROGATION
The Owner and Contractor waive all rights against (1) each other and any of their subcontractors, sub-subcontractors, agents and employees, each of the other, and (2) the Architect, Architect’s consultants, separate contractors described in Article 6, if any, and any of their subcontractors, sub-subcontractors, agents and employees; for damages caused by fire or other causes of loss to the extent covered by property insurance obtained pursuant to this Section 11.3 or other property insurance applicable to the Work, except such rights as they have to proceeds of such insurance held by the Owner as fiduciary. The Owner or Contractor, as appropriate, shall require of the Architect, Architect’s consultants, separate contractors described in Article 6, if any, and the subcontractors, sub-subcontractors, agents and employees of any of them, by appropriate agreements, written where legally required for validity, similar waivers each in favor of other parties enumerated herein. The policies shall provide such waivers of subrogation by endorsement or otherwise. A waiver of subrogation shall be effective as to a person or entity even though that person or entity would otherwise have a duty of indemnification, contractual or otherwise, did not pay the insurance premium directly or indirectly, and whether or not the person or entity had an insurable interest in the property damaged.

§ 11.3.8 A loss insured under the Owner’s property insurance shall be adjusted by the Owner as fiduciary and made payable to the Owner as fiduciary for the insureds, as their interests may appear, subject to requirements of any applicable mortgagee clause and of Section 11.3.10. The Contractor shall pay Subcontractors their just shares of insurance proceeds received by the Contractor, and by appropriate agreements, written where legally required for validity, shall require Subcontractors to make payments to their Sub-subcontractors in similar manner.

§ 11.3.9 If required in writing by a party in interest, the Owner as fiduciary shall, upon occurrence of an insured loss, give bond for proper performance of the Owner’s duties. The cost of required bonds shall be charged against proceeds received as fiduciary. The Owner shall deposit in a separate account proceeds so received, which the Owner shall distribute in accordance with such agreement as the parties in interest may reach, or as determined in accordance with the method of binding dispute resolution selected in the Agreement between the Owner and Contractor. If after such loss no other special agreement is made and unless the Owner terminates the Contract for convenience, replacement of damaged property shall be performed by the Contractor after notification of a Change in the Work in accordance with Article 7.

§ 11.3.10 The Owner as fiduciary shall have power to adjust and settle a loss with insurers unless one of the parties in interest shall object in writing within five days after occurrence of loss to the Owner’s exercise of this power; if such objection is made, the dispute shall be resolved in the manner selected by the Owner and Contractor as the method of binding dispute resolution in the Agreement. If the Owner and Contractor have selected arbitration as the method of binding dispute resolution, the Owner as fiduciary shall make settlement with insurers or, in the case of a dispute over distribution of insurance proceeds, in accordance with the directions of the arbitrators.

§ 11.4 PERFORMANCE BOND AND PAYMENT BOND
§ 11.4.1 The Owner shall have the right to require the Contractor to furnish bonds covering faithful performance of the Contract and payment of obligations arising thereunder as stipulated in bidding requirements or specifically required in the Contract Documents on the date of execution of the Contract.

§ 11.4.2 Upon the request of any person or entity appearing to be a potential beneficiary of bonds covering payment of obligations arising under the Contract, the Contractor shall promptly furnish a copy of the bonds or shall authorize a copy to be furnished.
ARTICLE 12 UNCOVERING AND CORRECTION OF WORK

§ 12.1 UNCOVERING OF WORK

§ 12.1.1 If a portion of the Work is covered contrary to the Architect’s request or to requirements specifically expressed in the Contract Documents, it must, if requested in writing by the Architect, be uncovered for the Architect’s examination and be replaced at the Contractor’s expense without change in the Contract Time.

§ 12.1.2 If a portion of the Work has been covered that the Architect has not specifically requested to examine prior to its being covered, the Architect may request to see such Work and it shall be uncovered by the Contractor. If such Work is in accordance with the Contract Documents, costs of uncovering and replacement shall, by appropriate Change Order, be at the Owner’s expense. If such Work is not in accordance with the Contract Documents, such costs and the cost of correction shall be at the Contractor’s expense unless the condition was caused by the Owner or a separate contractor in which event the Owner shall be responsible for payment of such costs.

§ 12.2 CORRECTION OF WORK

§ 12.2.1 BEFORE OR AFTER SUBSTANTIAL COMPLETION

The Contractor shall promptly correct Work rejected by the Architect or failing to conform to the requirements of the Contract Documents, whether discovered before or after Substantial Completion and whether or not fabricated, installed or completed. Costs of correcting such rejected Work, including additional testing and inspections, the cost of uncovering and replacement, and compensation for the Architect’s services and expenses made necessary thereby, shall be at the Contractor’s expense.

§ 12.2.2 AFTER SUBSTANTIAL COMPLETION

§ 12.2.2.1 In addition to the Contractor’s obligations under Section 3.5, if, within one year after the date of Substantial Completion of the Work or designated portion thereof or after the date for commencement of warranties established under Section 9.9.1, or by terms of an applicable special warranty required by the Contract Documents, any of the Work is found to be not in accordance with the requirements of the Contract Documents, the Contractor shall correct it promptly after receipt of written notice from the Owner to do so unless the Owner has previously given the Contractor a written acceptance of such condition. The Owner shall give such notice promptly after discovery of the condition. During the one-year period for correction of Work, if the Owner fails to notify the Contractor and give the Contractor an opportunity to make the correction, the Owner waives the rights to require correction by the Contractor and to make a claim for breach of warranty. If the Contractor fails to correct nonconforming Work within a reasonable time during that period after receipt of notice from the Owner or Architect, the Owner may correct it in accordance with Section 2.4.

§ 12.2.2.2 The one-year period for correction of Work shall be extended with respect to portions of Work first performed after Substantial Completion by the period of time between Substantial Completion and the actual completion of that portion of the Work.

§ 12.2.2.3 The one-year period for correction of Work shall not be extended by corrective Work performed by the Contractor pursuant to this Section 12.2.

§ 12.2.3 The Contractor shall remove from the site portions of the Work that are not in accordance with the requirements of the Contract Documents and are neither corrected by the Contractor nor accepted by the Owner.

§ 12.2.4 The Contractor shall bear the cost of correcting destroyed or damaged construction, whether completed or partially completed, of the Owner or separate contractors caused by the Contractor’s correction or removal of Work that is not in accordance with the requirements of the Contract Documents.

§ 12.2.5 Nothing contained in this Section 12.2 shall be construed to establish a period of limitation with respect to other obligations the Contractor has under the Contract Documents. Establishment of the one-year period for correction of Work as described in Section 12.2.2 relates only to the specific obligation of the Contractor to correct the Work, and has no relationship to the time within which the obligation to comply with the Contract Documents may be sought to be enforced, nor to the time within which proceedings may be commenced to establish the Contractor’s liability with respect to the Contractor’s obligations other than specifically to correct the Work.
§ 12.3 ACCEPTANCE OF NONCONFORMING WORK
If the Owner prefers to accept Work that is not in accordance with the requirements of the Contract Documents, the Owner may do so instead of requiring its removal and correction, in which case the Contract Sum will be reduced as appropriate and equitable. Such adjustment shall be effected whether or not final payment has been made.

ARTICLE 13 MISCELLANEOUS PROVISIONS
§ 13.1 GOVERNING LAW
The Contract shall be governed by the law of the place where the Project is located except that, if the parties have selected arbitration as the method of binding dispute resolution, the Federal Arbitration Act shall govern Section 15.4.

§ 13.2 SUCCESSORS AND ASSIGNS
§ 13.2.1 The Owner and Contractor respectively bind themselves, their partners, successors, assigns and legal representatives to covenants, agreements and obligations contained in the Contract Documents. Except as provided in Section 13.2.2, neither party to the Contract shall assign the Contract as a whole without written consent of the other. If either party attempts to make such an assignment without such consent, that party shall nevertheless remain legally responsible for all obligations under the Contract.

§ 13.2.2 The Owner may, without consent of the Contractor, assign the Contract to a lender providing construction financing for the Project, if the lender assumes the Owner’s rights and obligations under the Contract Documents. The Contractor shall execute all consents reasonably required to facilitate such assignment.

§ 13.3 WRITTEN NOTICE
Written notice shall be deemed to have been duly served if delivered in person to the individual, to a member of the firm or entity, or to an officer of the corporation for which it was intended; or if delivered at, or sent by registered or certified mail or by courier service providing proof of delivery to, the last business address known to the party giving notice.

§ 13.4 RIGHTS AND REMEDIES
§ 13.4.1 Duties and obligations imposed by the Contract Documents and rights and remedies available thereunder shall be in addition to and not a limitation of duties, obligations, rights and remedies otherwise imposed or available by law.

§ 13.4.2 No action or failure to act by the Owner, Architect or Contractor shall constitute a waiver of a right or duty afforded them under the Contract, nor shall such action or failure to act constitute approval of or acquiescence in a breach there under, except as may be specifically agreed in writing.

§ 13.5 TESTS AND INSPECTIONS
§ 13.5.1 Tests, inspections and approvals of portions of the Work shall be made as required by the Contract Documents and by applicable laws, statutes, ordinances, codes, rules and regulations or lawful orders of public authorities. Unless otherwise provided, the Contractor shall make arrangements for such tests, inspections and approvals with an independent testing laboratory or entity acceptable to the Owner, or with the appropriate public authority, and shall bear all related costs of tests, inspections and approvals. The Contractor shall give the Architect timely notice of when and where tests and inspections are to be made so that the Architect may be present for such procedures. The Owner shall bear costs of (1) tests, inspections or approvals that do not become requirements until after bids are received or negotiations concluded, and (2) tests, inspections or approvals where building codes or applicable laws or regulations prohibit the Owner from delegating their cost to the Contractor.

§ 13.5.2 If the Architect, Owner or public authorities having jurisdiction determine that portions of the Work require additional testing, inspection or approval not included under Section 13.5.1, the Architect will, upon written authorization from the Owner, instruct the Contractor to make arrangements for such additional testing, inspection or approval by an entity acceptable to the Owner, and the Contractor shall give timely notice to the Architect of when and where tests and inspections are to be made so that the Architect may be present for such procedures. Such costs, except as provided in Section 13.5.3, shall be at the Owner’s expense.

§ 13.5.3 If such procedures for testing, inspection or approval under Sections 13.5.1 and 13.5.2 reveal failure of the portions of the Work to comply with requirements established by the Contract Documents, all costs made necessary by
such failure including those of repeated procedures and compensation for the Architect’s services and expenses shall be at the Contractor’s expense.

§ 13.5.4 Required certificates of testing, inspection or approval shall, unless otherwise required by the Contract Documents, be secured by the Contractor and promptly delivered to the Architect.

§ 13.5.5 If the Architect is to observe tests, inspections or approvals required by the Contract Documents, the Architect will do so promptly and, where practicable, at the normal place of testing.

§ 13.5.6 Tests or inspections conducted pursuant to the Contract Documents shall be made promptly to avoid unreasonable delay in the Work.

§ 13.6 INTEREST
Payments due and unpaid under the Contract Documents shall bear interest from the date payment is due at such rate as the parties may agree upon in writing or, in the absence thereof, at the legal rate prevailing from time to time at the place where the Project is located.

§ 13.7 TIME LIMITS ON CLAIMS
The Owner and Contractor shall commence all claims and causes of action, whether in contract, tort, breach of warranty or otherwise, against the other arising out of or related to the Contract in accordance with the requirements of the final dispute resolution method selected in the Agreement within the time period specified by applicable law, but in any case not more than 10 years after the date of Substantial Completion of the Work. The Owner and Contractor waive all claims and causes of action not commenced in accordance with this Section 13.7.

ARTICLE 14 TERMINATION OR SUSPENSION OF THE CONTRACT

§ 14.1 TERMINATION BY THE CONTRACTOR
§ 14.1.1 The Contractor may terminate the Contract if the Work is stopped for a period of 30 consecutive days through no act or fault of the Contractor or a Subcontractor, Sub-subcontractor or their agents or employees or any other persons or entities performing portions of the Work under direct or indirect contract with the Contractor, for any of the following reasons:

1. Issuance of an order of a court or other public authority having jurisdiction that requires all Work to be stopped;
2. An act of government, such as a declaration of national emergency that requires all Work to be stopped;
3. Because the Architect has not issued a Certificate for Payment and has not notified the Contractor of the reason for withholding certification as provided in Section 9.4.1, or because the Owner has not made payment on a Certificate for Payment within the time stated in the Contract Documents;
4. The Owner has failed to furnish to the Contractor promptly, upon the Contractor’s request, reasonable evidence as required by Section 2.2.1.

§ 14.1.2 The Contractor may terminate the Contract if, through no act or fault of the Contractor or a Subcontractor, Sub-subcontractor or their agents or employees or any other persons or entities performing portions of the Work under direct or indirect contract with the Contractor, repeated suspensions, delays or interruptions of the entire Work by the Owner as described in Section 14.3 constitute in the aggregate more than 100 percent of the total number of days scheduled for completion, or 120 days in any 365-day period, whichever is less.

§ 14.1.3 If one of the reasons described in Section 14.1.1 or 14.1.2 exists, the Contractor may, upon seven days’ written notice to the Owner and Architect, terminate the Contract and recover from the Owner payment for Work executed, including reasonable overhead and profit, costs incurred by reason of such termination; and damages.

§ 14.1.4 If the Work is stopped for a period of 60 consecutive days through no act or fault of the Contractor or a Subcontractor or their agents or employees or any other persons performing portions of the Work under contract with the Contractor because the Owner has repeatedly failed to fulfill the Owner’s obligations under the Contract Documents with respect to matters important to the progress of the Work, the Contractor may, upon seven additional days’ written notice to the Owner and the Architect, terminate the Contract and recover from the Owner as provided in Section 14.1.3.
§ 14.2 TERMINATION BY THE OWNER FOR CAUSE
§ 14.2.1 The Owner may terminate the Contract if the Contractor

.1 repeatedly refuses or fails to supply enough properly skilled workers or proper materials;
.2 fails to make payment to Subcontractors for materials or labor in accordance with the respective
agreements between the Contractor and the Subcontractors;
.3 repeatedly disregards applicable laws, statutes, ordinances, codes, rules and regulations, or lawful
orders of a public authority; or
.4 otherwise is guilty of substantial breach of a provision of the Contract Documents.

§ 14.2.2 When any of the above reasons exist, the Owner, upon certification by the Initial Decision Maker that
sufficient cause exists to justify such action, may without prejudice to any other rights or remedies of the Owner and
after giving the Contractor and the Contractor’s surety, if any, seven days’ written notice, terminate employment of the
Contractor and may, subject to any prior rights of the surety:

.1 Exclude the Contractor from the site and take possession of all materials, equipment, tools, and
construction equipment and machinery thereon owned by the Contractor;
.2 Accept assignment of subcontracts pursuant to Section 5.4; and
.3 Finish the Work by whatever reasonable method the Owner may deem expedient. Upon written request
of the Contractor, the Owner shall furnish to the Contractor a detailed accounting of the costs incurred
by the Owner in finishing the Work.

§ 14.2.3 When the Owner terminates the Contract for one of the reasons stated in Section 14.2.1, the Contractor shall
not be entitled to receive further payment until the Work is finished.

§ 14.2.4 If the unpaid balance of the Contract Sum exceeds costs of finishing the Work, including compensation for
the Architect’s services and expenses made necessary thereby, and other damages incurred by the Owner and not
expressly waived, such excess shall be paid to the Contractor. If such costs and damages exceed the unpaid balance,
the Contractor shall pay the deficiency to the Owner. The amount to be paid to the Contractor or Owner, as the case
may be, shall be certified by the Initial Decision Maker, upon application, and this obligation for payment shall survive
termination of the Contract.

§ 14.3 SUSPENSION BY THE OWNER FOR CONVENIENCE
§ 14.3.1 The Owner may, without cause, order the Contractor in writing to suspend, delay or interrupt the Work in
whole or in part for such period of time as the Owner may determine.

§ 14.3.2 The Contract Sum and Contract Time shall be adjusted for increases in the cost and time caused by
suspension, delay or interruption as described in Section 14.3.1. Adjustment of the Contract Sum shall include profit.
No adjustment shall be made to the extent

.1 that performance is, was or would have been so suspended, delayed or interrupted by another cause for
which the Contractor is responsible; or
.2 that an equitable adjustment is made or denied under another provision of the Contract.

§ 14.4 TERMINATION BY THE OWNER FOR CONVENIENCE
§ 14.4.1 The Owner may, at any time, terminate the Contract for the Owner’s convenience and without cause.

§ 14.4.2 Upon receipt of written notice from the Owner of such termination for the Owner’s convenience, the Contractor shall

.1 cease operations as directed by the Owner in the notice;
.2 take actions necessary, or that the Owner may direct, for the protection and preservation of the Work;
and
.3 except for Work directed to be performed prior to the effective date of termination stated in the notice,
terminate all existing subcontracts and purchase orders and enter into no further subcontracts and
purchase orders.

§ 14.4.3 In case of such termination for the Owner’s convenience, the Contractor shall be entitled to receive payment
for Work executed, and costs incurred by reason of such termination, along with reasonable overhead and profit on the
Work not executed.
ARTICLE 15 CLAIMS AND DISPUTES
§ 15.1 CLAIMS
§ 15.1.1 DEFINITION
A Claim is a demand or assertion by one of the parties seeking, as a matter of right, payment of money, or other relief
with respect to the terms of the Contract. The term “Claim” also includes other disputes and matters in question
between the Owner and Contractor arising out of or relating to the Contract. The responsibility to substantiate Claims
shall rest with the party making the Claim.
§ 15.1.2 NOTICE OF CLAIMS
Claims by either the Owner or Contractor must be initiated by written notice to the other party and to the Initial
Decision Maker with a copy sent to the Architect, if the Architect is not serving as the Initial Decision Maker. Claims
by either party must be initiated within 21 days after occurrence of the event giving rise to such Claim or within 21
days after the claimant first recognizes the condition giving rise to the Claim, whichever is later.
§ 15.1.3 CONTINUING CONTRACT PERFORMANCE
Pending final resolution of a Claim, except as otherwise agreed in writing or as provided in Section 9.7 and Article 14,
the Contractor shall proceed diligently with performance of the Contract and the Owner shall continue to make
payments in accordance with the Contract Documents. The Architect will prepare Change Orders and issue
Certificates for Payment in accordance with the decisions of the Initial Decision Maker.
§ 15.1.4 CLAIMS FOR ADDITIONAL COST
If the Contractor wishes to make a Claim for an increase in the Contract Sum, written notice as provided herein shall
be given before proceeding to execute the Work. Prior notice is not required for Claims relating to an emergency
endangering life or property arising under Section 10.4.
§ 15.1.5 CLAIMS FOR ADDITIONAL TIME
§ 15.1.5.1 If the Contractor wishes to make a Claim for an increase in the Contract Time, written notice as provided
herein shall be given. The Contractor’s Claim shall include an estimate of cost and of probable effect of delay on
progress of the Work. In the case of a continuing delay, only one Claim is necessary.
§ 15.1.5.2 If adverse weather conditions are the basis for a Claim for additional time, such Claim shall be documented
by data substantiating that weather conditions were abnormal for the period of time, could not have been reasonably
anticipated and had an adverse effect on the scheduled construction.
§ 15.1.6 CLAIMS FOR CONSEQUENTIAL DAMAGES
The Contractor and Owner waive Claims against each other for consequential damages arising out of or relating to this
Contract. This mutual waiver includes
1. damages incurred by the Owner for rental expenses, for losses of use, income, profit, financing,
 business and reputation, and for loss of management or employee productivity or of the services of such
 persons; and
2. damages incurred by the Contractor for principal office expenses including the compensation of
 personnel stationed there, for losses of financing, business and reputation, and for loss of profit except
 anticipated profit arising directly from the Work.

This mutual waiver is applicable, without limitation, to all consequential damages due to either party’s termination in
accordance with Article 14. Nothing contained in this Section 15.1.6 shall be deemed to preclude an award of
liquidated damages, when applicable, in accordance with the requirements of the Contract Documents which may
include the entire rent payment owed by Owner American Bar Association to Owner Reese Development
for the first and second floor of the leased premises, under the applicable lease agreement, for any period of
delay beyond the identified date of completion.

§ 15.2 INITIAL DECISION
§ 15.2.1 Claims, excluding those arising under Sections 10.3, 10.4, 11.3.9, and 11.3.10, shall be referred to the Initial
Decision Maker for initial decision. The Architect will serve as the Initial Decision Maker, unless otherwise indicated
in the Agreement. Except for those Claims excluded by this Section 15.2.1, an initial decision shall be required as a
condition precedent to mediation of any Claim arising prior to the date final payment is due, unless 30 days have
passed after the Claim has been referred to the Initial Decision Maker with no decision having been rendered. Unless
the Initial Decision Maker and all affected parties agree, the Initial Decision Maker will not decide disputes between the Contractor and persons or entities other than the Owner.

§ 15.2.2 The Initial Decision Maker will review Claims and within ten days of the receipt of a Claim take one or more of the following actions: (1) request additional supporting data from the claimant or a response with supporting data from the other party, (2) reject the Claim in whole or in part, (3) approve the Claim, (4) suggest a compromise, or (5) advise the parties that the Initial Decision Maker is unable to resolve the Claim if the Initial Decision Maker lacks sufficient information to evaluate the merits of the Claim or if the Initial Decision Maker concludes that, in the Initial Decision Maker’s sole discretion, it would be inappropriate for the Initial Decision Maker to resolve the Claim.

§ 15.2.3 In evaluating Claims, the Initial Decision Maker may, but shall not be obligated to, consult with or seek information from either party or from persons with special knowledge or expertise who may assist the Initial Decision Maker in rendering a decision. The Initial Decision Maker may request the Owner to authorize retention of such persons at the Owner’s expense.

§ 15.2.4 If the Initial Decision Maker requests a party to provide a response to a Claim or to furnish additional supporting data, such party shall respond, within ten days after receipt of such request, and shall either (1) provide a response on the requested supporting data, (2) advise the Initial Decision Maker when the response or supporting data will be furnished or (3) advise the Initial Decision Maker that no supporting data will be furnished. Upon receipt of the response or supporting data, if any, the Initial Decision Maker will either reject or approve the Claim in whole or in part.

§ 15.2.5 The Initial Decision Maker will render an initial decision approving or rejecting the Claim, or indicating that the Initial Decision Maker is unable to resolve the Claim. This initial decision shall (1) be in writing; (2) state the reasons therefor; and (3) notify the parties and the Architect, if the Architect is not serving as the Initial Decision Maker, of any change in the Contract Sum or Contract Time or both. The initial decision shall be final and binding on the parties but subject to mediation and, if the parties fail to resolve their dispute through mediation, to binding dispute resolution.

§ 15.2.6 Either party may file for mediation of an initial decision at any time, subject to the terms of Section 15.2.6.1.

§ 15.2.6.1 Either party may, within 30 days from the date of an initial decision, demand in writing that the other party file for mediation within 60 days of the initial decision. If such a demand is made and the party receiving the demand fails to file for mediation within the time required, then both parties waive their rights to mediate or pursue binding dispute resolution proceedings with respect to the initial decision.

§ 15.2.7 In the event of a Claim against the Contractor, the Owner may, but is not obligated to, notify the surety, if any, of the nature and amount of the Claim. If the Claim relates to a possibility of a Contractor’s default, the Owner may, but is not obligated to, notify the surety and request the surety’s assistance in resolving the controversy.

§ 15.2.8 If a Claim relates to or is the subject of a mechanic’s lien, the party asserting such Claim may proceed in accordance with applicable law to comply with the lien notice or filing deadlines.

§ 15.3 MEDIATION

§ 15.3.1 Claims, disputes, or other matters in controversy arising out of or related to the Contract except those waived as provided for in Sections 9.10.4, 9.10.5, and 15.1.6 shall be subject to mediation as a condition precedent to binding dispute resolution.

§ 15.3.2 The parties shall endeavor to resolve their Claims by mediation which, unless the parties mutually agree otherwise, shall be administered by the American Arbitration Association in accordance with its Construction Industry Mediation Procedures in effect on the date of the Agreement. A request for mediation shall be made in writing, delivered to the other party to the Contract, and filed with the person or entity administering the mediation. The request may be made concurrently with the filing of binding dispute resolution proceedings but, in such event, mediation shall proceed in advance of binding dispute resolution proceedings, which shall be stayed pending mediation for a period of 60 days from the date of filing, unless stayed for a longer period by agreement of the parties or court order. If an arbitration is stayed pursuant to this Section 15.3.2, the parties may nonetheless proceed to the selection of the arbitrator(s) and agree upon a schedule for later proceedings.
§ 15.3.3 The parties shall share the mediator’s fee and any filing fees equally. The mediation shall be held in the place where the Project is located, unless another location is mutually agreed upon. Agreements reached in mediation shall be enforceable as settlement agreements in any court having jurisdiction thereof.

§ 15.4 ARBITRATION

§ 15.4.1 If the parties have selected arbitration as the method for binding dispute resolution in the Agreement, any Claim subject to, but not resolved by, mediation shall be subject to arbitration which, unless the parties mutually agree otherwise, shall be administered by the American Arbitration Association in accordance with its Construction Industry Arbitration Rules in effect on the date of the Agreement. A demand for arbitration shall be made in writing, delivered to the other party to the Contract, and filed with the person or entity administering the arbitration. The party filing a notice of demand for arbitration must assert in the demand all Claims then known to that party on which arbitration is permitted to be demanded.

§ 15.4.1.1 A demand for arbitration shall be made no earlier than concurrently with the filing of a request for mediation, but in no event shall it be made after the date when the institution of legal or equitable proceedings based on the Claim would be barred by the applicable statute of limitations. For statute of limitations purposes, receipt of a written demand for arbitration by the person or entity administering the arbitration shall constitute the institution of legal or equitable proceedings based on the Claim.

§ 15.4.2 The award rendered by the arbitrator or arbitrators shall be final, and judgment may be entered upon it in accordance with applicable law in any court having jurisdiction thereof.

§ 15.4.3 The foregoing agreement to arbitrate and other agreements to arbitrate with an additional person or entity duly consented to by parties to the Agreement shall be specifically enforceable under applicable law in any court having jurisdiction thereof.

§ 15.4.4 CONSOLIDATION OR JOINER

§ 15.4.4.1 Either party, at its sole discretion, may consolidate an arbitration conducted under this Agreement with any other arbitration to which it is a party provided that (1) the arbitration agreement governing the other arbitration permits consolidation, (2) the arbitrations to be consolidated substantially involve common questions of law or fact, and (3) the arbitrations employ materially similar procedural rules and methods for selecting arbitrators.

§ 15.4.4.2 Either party, at its sole discretion, may include by joinder persons or entities substantially involved in a common question of law or fact whose presence is required if complete relief is to be accorded in arbitration, provided that the party sought to be joined consents in writing to such joinder. Consent to arbitration involving an additional person or entity shall not constitute consent to arbitration of any claim, dispute or other matter in question not described in the written consent.

§ 15.4.4.3 The Owner and Contractor grant to any person or entity made a party to an arbitration conducted under this Section 15.4, whether by joinder or consolidation, the same rights of joinder and consolidation as the Owner and Contractor under this Agreement.
1.1 FORM OF AGREEMENT AND GENERAL CONDITIONS

A. The following form of Owner/Contractor Agreement and form of the General Conditions shall be used for Project:

1. AIA Document A101, "Standard Form of Agreement between Owner and Contractor, Stipulated Sum."
 a. The General Conditions for Project are AIA Document A201, "General Conditions of the Contract for Construction."
 b. The General Conditions for Project are AIA Document A201, "General Conditions of the Contract for Construction."

2. The General Conditions are incorporated by reference.

1.2 ADMINISTRATIVE FORMS

A. Administrative Forms: Additional administrative forms are specified in Division 01 General Requirements.

B. Copies of AIA standard forms may be obtained from the American Institute of Architects; http://www.aia.org/contractdocs/purchase/index.htm; docspurchases@aia.org; (800) 942-7732.

C. Preconstruction Forms:
 1. Form of Performance Bond and Labor and Material Bond: AIA Document A312, "Performance Bond and Payment Bond."

D. Information and Modification Forms:
 1. Form for Requests for Information (RFIs): AIA Document G716, "Request for Information (RFI)."

E. Payment Forms:
 1. Schedule of Values Form: AIA Document G703, "Continuation Sheet."
 3. Form of Contractor's Affidavit: AIA Document G706, "Contractor's Affidavit of Payment of Debts and Claims."
 5. Form of Consent of Surety: AIA Document G707, "Consent of Surety to Final Payment."

END OF DOCUMENT 006000
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Project information.
 2. Work covered by Contract Documents.
 3. Phased construction.
 4. Work under separate contracts.
 5. Access to site.
 6. Coordination with occupants.
 7. Work restrictions.
 8. Specification and drawing conventions.

B. Related Requirements:
 1. Section 015000 "Temporary Facilities and Controls" for limitations and procedures governing temporary use of Owner's facilities.

1.2 PROJECT INFORMATION

A. Project Identification: The Reese; Probar Finish Out

B. Project Location: 202 South First Street, Second Floor, Harlingen, Texas 78550

C. Owner: ABA - ProBAR | Reese Plaza Development, LLC.
 1. Owner's Representative: Delia Avila (ProBAR) Todd Aune (Reese)

D. Architect: megamorphosis inc.

1.3 WORK COVERED BY CONTRACT DOCUMENTS

A. The Work of Project is defined by the Contract Documents and consists of the following:
 1. Tenant Finish out for second floor of the Reese and portion of the first floor, Approximately 17,040 square feet. Improvements consist of installation of all mechanical, electrical and plumbing fixtures and connections to utilities. Installation of all partitions and finish materials. Fabrication of all millwork and countertops. Installation of all doors, hardware, interior signage and all work as reflected in the construction drawings and specifications. (Construction Documents). GC to provide windstorm certificate for all new work in the exterior building envelope.

B. Type of Contract.
 1. Project will be constructed under a single prime contract.
 2. There are no hazardous materials in this building.
 3. Contractors shall not apply taxes to their bids, as Owners will be paying improvement taxes when completed.
1.4 WORK UNDER SEPARATE CONTRACTS

A. General: Cooperate fully with separate contractors so work on those contracts may be carried out smoothly, without interfering with or delaying work under this Contract or other contracts. Coordinate the Work of this Contract with work performed under separate contracts, such as:

1. Furniture Installation
2. Window Blind Installation

1.5 ACCESS TO SITE

A. General: Contractor shall have limited use of Project site for construction operations as indicated on Drawings by the Contract limits and as indicated by requirements of this Section.

B. Use of Site: Limit use of Project site to areas within the Contract limits indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.

C. Condition of Existing Building: Maintain portions of existing building affected by construction operations in a weather tight condition throughout construction period. Repair damage caused by construction operations.

D. Storage of materials will be permitted in storage areas of Level 2 if additional material storage is required to keep work areas open.

1.6 COORDINATION WITH OCCUPANTS

A. Partial Owner Occupancy: Owner will occupy the premises during entire construction period, with the exception of areas under construction. Cooperate with Owner during construction operations to minimize conflicts and facilitate Owner usage. Perform the Work so as not to interfere with Owner's operations. Maintain existing exits unless otherwise indicated.

1. Maintain access to existing walkways, corridors, and other adjacent occupied or used facilities. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from Owner and authorities having jurisdiction.
2. Provide not less than 48 hours' notice to Owner of activities that will affect Owner's operations.

1.7 WORK RESTRICTIONS

A. Work Restrictions, General: Comply with restrictions on construction operations.

1. Comply with limitations on use of public streets and with other requirements of authorities having jurisdiction.

B. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after providing temporary utility services according to requirements indicated:

1. Notify Owner not less than two days in advance of proposed utility interruptions.

C. Noise, Vibration, and Odors: Coordinate operations that may result in high levels of noise and vibration, odors, or other disruption to Owner occupancy with Owner.

1. Notify Owner not less than two days in advance of proposed disruptive operations.

D. Nonsmoking Building: Smoking is not permitted anywhere within the building.
1. Controlled Substances: Use of tobacco products and other controlled substances on Project site is not permitted.

1.8 SPECIFICATION AND DRAWING CONVENTIONS

A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:

1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.

2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.

B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 011000
SECTION 012100
ALLOWANCES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements governing allowances.

B. Types of allowances include the following:
 1. Lump-sum allowances.
 2. Quantity allowances.
 3. Contingency allowances.

C. Related Requirements:
 1. Section 014000 "Quality Requirements" for procedures governing the use of allowances for testing and inspecting.

1.2 ACTION SUBMITTALS

A. Submit proposals for purchase of products or systems included in allowances, in the form specified for Change Orders.

1.3 INFORMATIONAL SUBMITTALS

A. Submit invoices or delivery slips to show actual quantities of materials delivered to the site for use in fulfillment of each allowance.

B. Submit time sheets and other documentation to show labor time and cost for installation of allowance items that include installation as part of the allowance.

C. Coordinate and process submittals for allowance items in same manner as for other portions of the Work.

1.4 COORDINATION

A. Coordinate allowance items with other portions of the Work. Furnish templates as required to coordinate installation.

1.5 LUMP-SUM AND QUANTITY ALLOWANCES

A. Allowance shall include cost to Contractor of specific products and materials ordered by Owner or selected by Architect under allowance and shall include freight, and delivery to Project site.

B. Unless otherwise indicated, Contractor's costs for receiving and handling at Project site, labor, installation, overhead and profit, and similar costs related to products and materials selected by Architect under allowance shall be included as part of the Contract Sum and not part of the allowance.
1.6 CONTINGENCY ALLOWANCES

A. Use the contingency allowance only as directed by Architect for Owner's purposes and only by Change Orders that indicate amounts to be charged to the allowance.

B. Allowance Expenditures or Change Orders authorizing use of funds from the contingency allowance will include Contractor's related costs and reasonable overhead and profit margins.

C. At Project closeout, credit unused amounts remaining in the contingency allowance to Owner by Change Order.

1.7 ADJUSTMENT OF ALLOWANCES

A. Allowance Adjustment: To adjust allowance amounts, prepare a Change Order proposal based on the difference between purchase amount and the allowance, multiplied by final measurement of work-in-place where applicable. If applicable, include reasonable allowances for cutting losses, tolerances, mixing wastes, normal product imperfections, and similar margins.

1. Include installation costs in purchase amount only where indicated as part of the allowance.
2. If requested, prepare explanation and documentation to substantiate distribution of overhead costs and other margins claimed.

B. Submit claims for increased costs because of a change in scope or nature of the allowance described in the Contract Documents, whether for the purchase order amount or Contractor's handling, labor, installation, overhead, and profit.

1. Do not include Contractor's or subcontractor's indirect expense in the Change Order cost amount unless it is clearly shown that the nature or extent of work has changed from what could have been foreseen from information in the Contract Documents.
2. No change to Contractor's indirect expense is permitted for selection of higher- or lower-priced materials or systems of the same scope and nature as originally indicated.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine products covered by an allowance promptly on delivery for damage or defects. Return damaged or defective products to manufacturer for replacement.

3.2 PREPARATION

A. Coordinate materials and their installation for each allowance with related materials and installations to ensure that each allowance item is completely integrated and interfaced with related work.

3.3 SCHEDULE OF ALLOWANCES

A. Contingency Allowance: Include the sum of $20,000.00

1. This allowance includes material cost, handling, and installation and Contractor overhead and profit.
B. Signage Allowance: Include the sum of $5,000.00

1. This allowance includes material cost, handling, and installation and Contractor overhead and profit for all Owner directed wayfinding and identity signage EXCLUDING ROOM IDENTIFICATION SIGNAGE AS SPECIFIED. Room identification signage to be part of base bid amount per specification.

C. MEP Allowances:

1. Electrical Allowance: $5,000.00
2. Plumbing Allowance: $5,000.00
3. HVAC Allowance: $10,000.00
4. Retro-commissioning Allowance: $10,000.00

END OF SECTION 012100
SECTION 012300

ALTERNATES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for alternates.

1.2 DEFINITIONS

A. Alternate: An amount proposed by proposers and stated on the Proposal Form for certain work defined in the proposing requirements that may be added to or deducted from the base proposal amount if Owner decides to accept a corresponding change either in the amount of construction to be completed or in the products, materials, equipment, systems, or installation methods described in the Contract Documents.

1. Alternates described in this Section are part of the Work only if enumerated in the Agreement.
2. The cost or credit for each alternate is the net addition to or deduction from the Contract Sum to incorporate alternate into the Work. No other adjustments are made to the Contract Sum.

1.3 PROCEDURES

A. Coordination: Revise or adjust affected adjacent work as necessary to completely integrate work of the alternate into Project.

1. Include as part of each alternate, miscellaneous devices, accessory objects, and similar items incidental to or required for a complete installation whether or not indicated as part of alternate.

B. Notification: Immediately following award of the Contract, notify each party involved, in writing, of the status of each alternate. Indicate if alternates have been accepted, rejected, or deferred for later consideration. Include a complete description of negotiated revisions to alternates.

C. Execute accepted alternates under the same conditions as other work of the Contract.

D. Schedule: A schedule of alternates is included at the end of this Section. Specification Sections referenced in schedule contain requirements for materials necessary to achieve the work described under each alternate.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 SCHEDULE OF ALTERNATES

A. Alternate No. 1: CommunicationsCabling:

1. Base Proposal: Rough-ins and power for all system devices as indicated in MEP drawings.
2. Alternate: Provide fully functional systems including all devices and equipment required for the above listed systems, excluding rough-ins and power as indicated in MEP drawings.

B. Alternate No. 2: Access Control, Surveillance & Security Systems:

1. Base Proposal: Rough-ins and power for all system devices as indicated in MEP drawings.

2. Alternate: Provide fully functional systems including all devices and equipment required for the above listed systems, excluding rough-ins and power as indicated in MEP drawings.

C. Alternate No. 3: Audio Visual Systems:

1. Base Proposal: Rough-ins and power for all system devices as indicated in MEP drawings.

2. Alternate: Provide fully functional systems including all devices and equipment required for the above listed systems, excluding rough-ins and power as indicated in MEP drawings.

END OF SECTION 012300
SECTION 012500 - SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes administrative and procedural requirements for substitutions.

B. Related Requirements:

1. Section 016000 "Product Requirements" for requirements for submitting comparable product submittals for products by listed manufacturers.

1.2 DEFINITIONS
A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.

1.3 ACTION SUBMITTALS
A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.

1. Substitution Request Form: Use CSI Form 13.1A.
2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 a. Statement indicating why specified product or fabrication or installation cannot be provided, if applicable.
 b. Coordination information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate contractors, that will be necessary to accommodate proposed substitution.
 c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
 d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
 e. Samples, where applicable or requested.
 f. Certificates and qualification data, where applicable or requested.
 g. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.
 h. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.
 i. Research reports evidencing compliance with building code in effect for Project, from ICC-ES.
 j. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
 k. Cost information, including a proposal of change, if any, in the Contract Sum.
1. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.

m. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.

3. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within seven days of receipt of a request for substitution. Architect will notify Contractor of acceptance or rejection of proposed substitution within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

b. Use product specified if Architect does not issue a decision on use of a proposed substitution within time allocated.

1.4 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

A. Substitutions for Cause: Submit requests for substitution immediately on discovery of need for change, but not later than 15 days prior to time required for preparation and review of related submittals.

1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied:

a. Requested substitution is consistent with the Contract Documents and will produce indicated results.

b. Requested substitution will not adversely affect Contractor's construction schedule.

c. Requested substitution has received necessary approvals of authorities having jurisdiction.

d. Requested substitution is compatible with other portions of the Work.

e. Requested substitution has been coordinated with other portions of the Work.

f. Requested substitution provides specified warranty.

g. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

B. Substitutions for Convenience: Architect will consider requests for substitution if received within 60 days after commencement of the Work.

1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied:

a. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.

b. Requested substitution does not require extensive revisions to the Contract Documents.

c. Requested substitution is consistent with the Contract Documents and will produce indicated results.
d. Requested substitution will not adversely affect Contractor's construction schedule.
e. Requested substitution has received necessary approvals of authorities having jurisdiction.
f. Requested substitution is compatible with other portions of the Work.
g. Requested substitution has been coordinated with other portions of the Work.
h. Requested substitution provides specified warranty.
i. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

PART 3 - EXECUTION (Not Used)

END OF SECTION 012500
SECTION 012600
CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes administrative and procedural requirements for handling and processing Contract modifications.

1.2 MINOR CHANGES IN THE WORK
A. Architect will issue supplemental instructions authorizing minor changes in the Work, not involving adjustment to the Contract Sum or the Contract Time, on AIA Document G710, "Architect's Supplemental Instructions."

1.3 PROPOSAL REQUESTS
A. Owner-Initiated Proposal Requests: Architect will issue a detailed description of proposed changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications.
 1. Work Change Proposal Requests issued by Architect are not instructions either to stop work in progress or to execute the proposed change.
 2. Within 5 working days after receipt of Proposal Request, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time necessary to execute the change.
 a. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 b. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 c. Include costs of labor and supervision directly attributable to the change.
 d. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
 e. Quotation Form: Use forms acceptable to Architect.

B. Contractor-Initiated Work Change Proposals: If latent or changed conditions require modifications to the Contract, Contractor may initiate a claim by submitting a request for a change to Architect.
 1. Include a statement outlining reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and the Contract Time.
 2. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 3. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 4. Include costs of labor and supervision directly attributable to the change.
 5. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
 6. Comply with requirements in Section 012500 "Substitution Procedures" if the proposed change requires substitution of one product or system for product or system specified.
1.4 ADMINISTRATIVE CHANGE ORDERS
A. Allowance Adjustment: See Section 012100 "Allowances" for administrative procedures for preparation of Allowance Expenditure Change Order Proposal for adjusting the Contract Sum to reflect actual costs of allowances.

1.5 CHANGE ORDER PROCEDURES

1.6 CONSTRUCTION CHANGE DIRECTIVE
 1. Construction Change Directive contains a complete description of change in the Work. It also designates method to be followed to determine change in the Contract Sum or the Contract Time.
B. Documentation: Maintain detailed records on a time and material basis of work required by the Construction Change Directive.
 1. After completion of change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 012600
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements necessary to prepare and process Applications for Payment.

B. Related Requirements:
 1. Section 012100 "Allowances" for procedural requirements governing the handling and processing of allowances.
 2. Section 012600 "Contract Modification Procedures" for administrative procedures for handling changes to the Contract.

1.2 SCHEDULE OF VALUES

A. Coordination: Coordinate preparation of the schedule of values with preparation of Contractor's construction schedule.

1. Coordinate line items in the schedule of values with other required administrative forms and schedules, including the following:
 a. Application for Payment forms with continuation sheets.
 b. Submittal schedule.
 c. Items required to be indicated as separate activities in Contractor's construction schedule.

2. Submit the schedule of values to Architect at earliest possible date but no later than seven days before the date scheduled for submittal of initial Applications for Payment.

B. Format and Content: Use Project Manual table of contents as a guide to establish line items for the schedule of values. Provide at least one line item for each Specification Section.

1. Identification: Include the following Project identification on the schedule of values:
 a. Project name and location.
 b. Name of Architect.
 c. Architect's project number.
 d. Contractor's name and address.
 e. Date of submittal.

2. Arrange schedule of values consistent with format of AIA Document G703.

 a. Include separate line items under Contractor and principal subcontracts for Project closeout requirements in an amount totaling five percent of the Contract Sum and subcontract amount.
 b. Payment will be a combination of funds from ABA ProBAR and The Reese Development, the payment application shall break each payment due into two
amounts based on the agreed upon percentages between ABA ProBAR and The Reese Development.

4. Round amounts to nearest whole dollar; total shall equal the Contract Sum.
5. Provide a separate line item in the schedule of values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
6. Provide separate line items in the schedule of values for initial cost of materials, for each subsequent stage of completion, and for total installed value of that part of the Work.
7. Allowances: Provide a separate line item in the schedule of values for each allowance. Show line-item value of unit-cost allowances, as a product of the unit cost, multiplied by measured quantity. Use information indicated in the Contract Documents to determine quantities.
8. Each item in the schedule of values and Applications for Payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item.
 a. Temporary facilities and other major cost items that are not direct cost of actual work-in-place may be shown either as separate line items in the schedule of values or distributed as general overhead expense, at Contractor's option.
9. Schedule Updating: Update and resubmit the schedule of values before the next Applications for Payment when Change Orders or Construction Change Directives result in a change in the Contract Sum.

1.3 APPLICATIONS FOR PAYMENT

A. Each Application for Payment shall be consistent with previous applications and payments as certified by Architect and paid for by Owner.
 1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements.

B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction work covered by each Application for Payment is the period indicated in the Agreement.

C. Application for Payment Forms: Use AIA Document G702 and AIA Document G703 as form for Applications for Payment.

D. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Architect will return incomplete applications without action.
 1. Entries shall match data on the schedule of values and Contractor's construction schedule. Use updated schedules if revisions were made.
 2. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.

E. Transmittal: Submit three signed and notarized original copies of each Application for Payment to Architect by a method ensuring receipt. One copy shall include waivers of lien and similar attachments if required.
 1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.

F. Waivers of Mechanic's Lien: With each Application for Payment, submit waivers of mechanic's lien from entities lawfully entitled to file a mechanic's lien arising out of the Contract and related to the Work covered by the payment.
 1. Submit partial waivers on each item for amount requested in previous application, after deduction for retainage, on each item.
2. When an application shows completion of an item, submit conditional final or full waivers.
3. Owner reserves the right to designate which entities involved in the Work must submit waivers.
4. Waiver Forms: Submit executed waivers of lien on forms acceptable to Owner.

G. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:

1. List of subcontractors.
2. Schedule of values.
3. Contractor's construction schedule (preliminary if not final).
4. Submittal schedule (preliminary if not final).
5. List of Contractor's staff assignments.
8. Initial progress report.
10. Certificates of insurance and insurance policies.

H. Application for Payment at Substantial Completion: After Architect issues the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.

1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.
2. This application shall reflect Certificates of Partial Substantial Completion issued previously for Owner occupancy of designated portions of the Work.

I. Final Payment Application: After completing Project closeout requirements, submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited to, the following:

1. Evidence of completion of Project closeout requirements.
2. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
3. Updated final statement, accounting for final changes to the Contract Sum.
7. Evidence that claims have been settled.
8. Final meter readings for utilities, a measured record of stored fuel, and similar data as of date of Substantial Completion or when Owner took possession of and assumed responsibility for corresponding elements of the Work.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 012900
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:

1. Coordination drawings.
2. Requests for Information (RFIs).
3. Project meetings.

1.2 DEFINITIONS

A. RFI: Request from Owner, Architect, or Contractor seeking information required by or clarifications of the Contract Documents.

1.3 INFORMATIONAL SUBMITTALS

A. Refer to Section 013200 Construction Progress Documentation for Project Schedule

B. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Include the following information in tabular form:

1. Name, address, and telephone number of entity performing subcontract or supplying products.
2. Number and title of related Specification Section(s) covered by subcontract.
3. Drawing number and detail references, as appropriate, covered by subcontract.

1.4 COORDINATION DRAWINGS

A. Coordination Drawings, General: Prepare coordination drawings according to requirements in individual Sections, where installation is not completely shown on Shop Drawings, where limited space availability necessitates coordination, or if coordination is required to facilitate integration of products and materials fabricated or installed by more than one entity.

1. Content: Project-specific information, drawn accurately to a scale large enough to indicate and resolve conflicts. Do not base coordination drawings on standard printed data. Include the following information, as applicable:

a. Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, and electrical systems.

b. Indicate dimensions shown on the Drawings. Specifically note dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternate sketches to Architect indicating proposed resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract.

B. Coordination Drawing Organization: Organize coordination drawings as follows:
1. Floor Plans and Reflected Ceiling Plans: Show architectural and structural elements, and mechanical, plumbing, fire-protection, fire-alarm, and electrical Work. Show locations of visible ceiling-mounted devices relative to acoustical ceiling grid.

2. Plenum Space: Indicate subframing for support of ceiling and wall systems, mechanical and electrical equipment, and related Work. Locate components within ceiling plenum to accommodate layout of light fixtures indicated on Drawings.

3. Mechanical Rooms: Provide coordination drawings for mechanical rooms showing plans and elevations of mechanical, plumbing, fire-protection, fire-alarm, and electrical equipment.

4. Structural Penetrations: Indicate penetrations and openings required for all disciplines.

5. Slab Edge and Embedded Items: Indicate slab edge locations and sizes and locations of embedded items for metal fabrications, sleeves, anchor bolts, bearing plates, angles, door floor closers, slab depressions for floor finishes, curbs and housekeeping pads, and similar items.

6. Review: Architect will review coordination drawings to confirm that the Work is being coordinated, but not for the details of the coordination, which are Contractor's responsibility.

1.5 REQUESTS FOR INFORMATION (RFIs)

A. General: Immediately on discovery of the need for additional information or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.

1. Architect will return RFIs submitted to Architect by other entities controlled by Contractor with no response.

2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.

3. Architect will return frivolous RFIs where the information requested is found within the plans and specifications to Contractor with marked "Reference plans/specifications."

B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:

1. Project name.
2. Project number.
3. Date.
4. Name of Contractor.
5. Name of Architect.
6. RFI number, numbered sequentially.
7. RFI subject.
8. Specification Section number and title and related paragraphs, as appropriate.
9. Drawing number and detail references, as appropriate.
10. Field dimensions and conditions, as appropriate.
11. Contractor's suggested resolution. If Contractor's solution(s) impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
12. Contractor's signature.
13. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.

C. RFI Forms: Software-generated form with substantially the same content as indicated above, acceptable to Architect.

D. Architect's Action: Architect will review each RFI, determine action required, and respond. Allow seven working days for Architect's response for each RFI. RFIs received by Architect after 2:00 p.m. will be considered as received the following working day.

1. The following RFIs will be returned without action:

 a. Requests for approval of submittals.
 b. Requests for approval of substitutions.
c. Requests for coordination information already indicated in the Contract Documents.
d. Requests for adjustments in the Contract Time or the Contract Sum.
e. Requests for interpretation of Architect's actions on submittals.
f. Incomplete RFIs or inaccurately prepared RFIs.

2. Architect's action may include a request for additional information, in which case Architect's time for response will date from time of receipt of additional information.

3. Architect's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Section 012600 "Contract Modification Procedures."

 a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Architect in writing within 10 days of receipt of the RFI response.

E. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log bi-weekly. Use software log that is part of Project Web site. Include the following:

 1. Project name.
 2. Name and address of Contractor.
 3. Name and address of Architect.
 4. RFI number including RFIs that were dropped and not submitted.
 5. RFI description.
 6. Date the RFI was submitted.
 7. Date Architect's response was received.

F. On receipt of Architect's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect within seven days if Contractor disagrees with response.

 1. Identification of related Minor Change in the Work, Construction Change Directive, and Proposal Request, as appropriate.

1.6 PROJECT MEETINGS

A. General: Schedule and conduct meetings and conferences at Project site unless otherwise indicated.

 1. Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify Owner and Architect of scheduled meeting dates and times.
 2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees.
 3. Minutes: Entity responsible for conducting meeting will record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner and Architect, within three days of the meeting.

B. Preconstruction Conference: Architect will schedule and conduct a preconstruction conference before starting construction, at a time convenient to Owner and Architect, but no later than 15 days after execution of the Agreement.

 1. Attendees: Authorized representatives of Owner, Owner's Commissioning Authority, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
 2. Agenda: Discuss items of significance that could affect progress, including the following:

 a. Tentative construction schedule.
 b. Phasing.
 c. Critical work sequencing and long-lead items.
 d. Designation of key personnel and their duties.
 e. Procedures for processing field decisions and Change Orders.
 f. Procedures for RFIs.
 g. Procedures for testing and inspecting.
h. Procedures for processing Applications for Payment.
i. Distribution of the Contract Documents.
j. Submittal procedures.
k. Preparation of record documents.
l. Use of the premises and existing building.
m. Work restrictions.
n. Working hours.
o. Owner's occupancy requirements.
p. Responsibility for temporary facilities and controls.
q. Procedures for moisture and mold control.
r. Procedures for disruptions and shutdowns.
s. Construction waste management and recycling.
t. Parking availability.
u. Office, work, and storage areas.
v. Equipment deliveries and priorities.
w. First aid.
x. Security.
y. Progress cleaning.

3. Minutes: Entity responsible for conducting meeting will record and distribute meeting minutes.

C. Pre installation Conferences: Conduct a pre installation conference at Project site before each construction activity that requires coordination with other construction.

1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect, and Owner's Commissioning Authority of scheduled meeting dates.

2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:

 b. Options.
 c. Related RFIs.
 d. Related Change Orders.
 e. Purchases.
 f. Deliveries.
 g. Submittals.
 h. Review of mockups.
 i. Possible conflicts.
 j. Compatibility problems.
 k. Time schedules.
 l. Weather limitations.
 m. Manufacturer's written instructions.
 n. Warranty requirements.
 o. Compatibility of materials.
 p. Acceptability of substrates.
 q. Temporary facilities and controls.
 r. Space and access limitations.
 s. Regulations of authorities having jurisdiction.
 t. Testing and inspecting requirements.
 u. Installation procedures.
 v. Coordination with other work.
 w. Required performance results.
 x. Protection of adjacent work.
 y. Protection of construction and personnel.

3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.

4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.
5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.

D. Progress Meetings: Conduct progress meetings at monthly intervals.

1. Attendees: In addition to representatives of Owner, Owner's Commissioning Authority and Architect, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.

2. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.

 a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.

 1) Review schedule for next period.

 b. Review present and future needs of each entity present, including the following:

 1) Interface requirements.
 2) Sequence of operations.
 3) Status of submittals.
 4) Deliveries.
 5) Off-site fabrication.
 6) Access.
 7) Site utilization.
 8) Temporary facilities and controls.
 9) Progress cleaning.
 10) Quality and work standards.
 11) Status of correction of deficient items.
 12) Field observations.
 13) Status of RFIs.
 14) Status of proposal requests.
 15) Pending changes.
 16) Status of Change Orders.
 17) Pending claims and disputes.
 18) Documentation of information for payment requests.

3. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.

 a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013100
SECTION 013200
CONSTRUCTION PROGRESS DOCUMENTATION

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes administrative and procedural requirements for documenting the progress of construction during performance of the Work, including the following:
 1. Contractor's construction schedule.
 2. Construction schedule updating reports.
 3. Site condition reports.

1.2 DEFINITIONS
A. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction project. Activities included in a construction schedule consume time and resources.
 1. Critical Activity: An activity on the critical path that must start and finish on the planned early start and finish times.
 2. Predecessor Activity: An activity that precedes another activity in the network.
 3. Successor Activity: An activity that follows another activity in the network.
B. CPM: Critical path method, which is a method of planning and scheduling a construction project where activities are arranged based on activity relationships. Network calculations determine when activities can be performed and the critical path of Project.
C. Critical Path: The longest connected chain of interdependent activities through the network schedule that establishes the minimum overall Project duration and contains no float.

1.3 INFORMATIONAL SUBMITTALS
A. Format for Submittals: Submit required submittals in the following format:
 1. PDF electronic file.
B. Contractor's Construction Schedule: Initial schedule, of size required to display entire schedule for entire construction period.
C. Construction Schedule Updating Reports: Submit with Applications for Payment.
D. Site Condition Reports: Submit at time of discovery of differing conditions.

1.4 COORDINATION
A. Coordinate Contractor's construction schedule with the schedule of values, submittal schedule, progress reports, payment requests, and other required schedules and reports.
 1. Secure time commitments for performing critical elements of the Work from entities involved.
2. Coordinate each construction activity in the network with other activities and schedule them in proper sequence.

PART 2 - PRODUCTS

2.1 CONTRACTOR'S CONSTRUCTION SCHEDULE, GENERAL

A. Time Frame: Extend schedule from date established for the Notice to Proceed to date of final completion.
 1. Contract completion date shall not be changed by submission of a schedule that shows an early completion date, unless specifically authorized by Change Order.

B. Activities: Treat each story or separate area as a separate numbered activity for each main element of the Work. Comply with the following:
 1. Activity Duration: Define activities so no activity is longer than 20 days, unless specifically allowed by Architect.
 2. Procurement Activities: Include procurement process activities for long lead items and major items, requiring a cycle of more than 60 days, as separate activities in schedule. Procurement cycle activities include, but are not limited to, submittals, approvals, purchasing, fabrication, and delivery.
 4. Substantial Completion: Indicate completion in advance of date established for Substantial Completion, and allow time for Architect's administrative procedures necessary for certification of Substantial Completion.
 5. Punch List and Final Completion: Include days for completion of punch list items and final completion.

C. Milestones: Include milestones indicated in the Contract Documents in schedule, including, but not limited to, the Notice to Proceed, Substantial Completion, and final completion.

D. Upcoming Work Summary: Prepare summary report indicating activities scheduled to occur or commence prior to submittal of next schedule update. Summarize the following issues:
 1. Unresolved issues.
 2. Unanswered Requests for Information.
 3. Rejected or unreturned submittals.
 4. Notations on returned submittals.

E. Recovery Schedule: When periodic update indicates the Work is 14 or more calendar days behind the current approved schedule, submit a separate recovery schedule indicating means by which Contractor intends to regain compliance with the schedule.

2.2 REPORTS

A. Site Condition Reports: Immediately on discovery of a difference between site conditions and the Contract Documents, prepare and submit a detailed report. Submit with a Request for Information. Include a detailed description of the differing conditions, together with recommendations for changing the Contract Documents.
PART 3 - EXECUTION

3.1 CONTRACTOR’S CONSTRUCTION SCHEDULE

A. Contractor’s Construction Schedule Updating: At monthly intervals, update schedule to reflect actual construction progress and activities. Issue schedule before each regularly scheduled progress meeting.

1. Revise schedule immediately after each meeting or other activity where revisions have been recognized or made. Issue updated schedule concurrently with the report of each such meeting.

2. Include a report with updated schedule that indicates every change, including, but not limited to, changes in logic, durations, actual starts and finishes, and activity durations.

3. As the Work progresses, indicate final completion percentage for each activity.

B. Distribution: Distribute copies of approved schedule to Architect, Owner, separate contractors, testing and inspecting agencies, and other parties identified by Contractor with a need-to-know schedule responsibility.

1. Post copies in Project meeting rooms and temporary field offices.

2. When revisions are made, distribute updated schedules to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in performance of construction activities.

END OF SECTION 013200
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.

B. Related Requirements:
1. Section 017839 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.

1.2 DEFINITIONS

A. Action Submittals: Written and graphic information and physical samples that require Architect's responsive action.

B. Informational Submittals: Written and graphic information and physical samples that do not require Architect's responsive action. Submittals may be rejected for not complying with requirements.

1.3 ACTION SUBMITTALS

A. Submittal Schedule: Submit a schedule of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or revisions to submittals noted by Architect and additional time for handling and reviewing submittals required by those corrections.

B. NOTE: ALL PRODUCTS OR EQUIPMENT WITH LONGER THAN A 4 WEEK LEAD TIME SHALL BE SUBMITTED TO OWNER/ARCHITECT WITHIN 2 WEEKS OF BID AWARD.

1.4 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

A. Architect's Digital Data Files: Electronic copies of digital data files of the Contract Drawings will be provided by Architect for Contractor's use in preparing submittals.

a. Architect makes no representations as to the accuracy or completeness of digital data drawing files as they relate to the Contract Drawings.

b. Contractor shall execute a data licensing agreement in the form of Agreement form acceptable to Owner and Architect.

B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.

1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.

1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.
2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
3. Resubmittal Review: Allow 15 days for review of each resubmittal.
4. NOTE: ALL PRODUCTS OR EQUIPMENT WITH LONGER THAN A 4 WEEK LEAD TIME SHALL BE SUBMITTED TO OWNER/ARCHITECT WITHIN 2 WEEKS OF BID AWARD.

D. Electronic Submittals: Identify and incorporate information in each electronic submittal file as follows:

1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
2. Name file with submittal number or other unique identifier, including revision identifier.
 a. File name shall use project identifier and Specification Section number followed by a decimal point and then a sequential number (e.g., LNHS-061000.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., LNHS-061000.01.A).
3. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by Architect.
4. Transmittal Form for Electronic Submittals: Use electronic form acceptable to Owner, containing the following information:
 a. Project name.
 b. Date.
 c. Name and address of Architect.
 d. Name of General Contractor.
 e. Names of subcontractor, manufacturer, and supplier.
 f. Category and type of submittal.
 g. Specification Section number and title.
 h. Specification paragraph number or drawing designation and generic name for each of multiple items.
 i. Drawing number and detail references, as appropriate.
 j. Location(s) where product is to be installed, as appropriate.
 k. Related physical samples submitted directly.
 l. Transmittal number
 m. Submittal and transmittal distribution record.
 n. Other necessary identification.
 o. Remarks.
5. Metadata: Include the following information as keywords in the electronic submittal file metadata:
 a. Project name.
 b. Number and title of appropriate Specification Section.
 c. Manufacturer name.
 d. Product name.

E. Options: Identify options requiring selection by Architect.

F. Deviations: Identify deviations from the Contract Documents on submittals.

G. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
1. Note date and content of previous submittal.
2. Note date and content of revision in label or title block and clearly indicate extent of revision.
3. Resubmit submittals until they are marked with approval notation from Architect's action stamp.

H. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

I. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Architect's action stamp.

PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

A. General Submittal Procedure Requirements:

1. Submit electronic submittals via email as PDF electronic files.

2. Certificates and Certifications Submittals: Provide a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity.
 a. Provide a digital signature with digital certificate on electronically-submitted certificates and certifications where indicated.

B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.

1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.
2. Mark each copy of each submittal to show which products and options are applicable.
3. Include the following information, as applicable:
 a. Manufacturer's catalog cuts.
 b. Manufacturer's product specifications.
 c. Standard color charts.
 d. Statement of compliance with specified referenced standards.
 e. Testing by recognized testing agency.
 f. Application of testing agency labels and seals.
 g. Notation of coordination requirements.
 h. Availability and delivery time information.
4. For equipment, include the following in addition to the above, as applicable:
 a. Wiring diagrams showing factory-installed wiring.
 b. Printed performance curves.
 c. Operational range diagrams.
 d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
5. Submit Product Data before or concurrent with Samples.
6. Submit Product Data in the following format:
 a. PDF electronic file.
C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data, unless submittal based on Architect's digital data drawing files is otherwise permitted.

1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 a. Identification of products.
 b. Schedules.
 c. Compliance with specified standards.
 d. Notation of coordination requirements.
 e. Notation of dimensions established by field measurement.
 f. Relationship and attachment to adjoining construction clearly indicated.
 g. Seal and signature of professional engineer if specified.

2. Submit Shop Drawings in the following format:
 a. PDF electronic file.

D. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other elements and for a comparison of these characteristics between submittal and actual component as delivered and installed.

1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.

2. Identification: Attach label on unexposed side of Samples that includes the following:
 a. Generic description of Sample.
 b. Product name and name of manufacturer.
 c. Sample source.
 d. Number and title of applicable Specification Section.

3. For projects where electronic submittals are required, provide corresponding electronic submittal of Sample transmittal, digital image file illustrating Sample characteristics, and identification information for record.

4. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.
 a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use.
 b. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.

E. Product Schedule: As required in individual Specification Sections, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form:

1. Submit product schedule in the following format:
 a. PDF electronic file.

F. Application for Payment and Schedule of Values: Comply with requirements specified in Section 012900 "Payment Procedures."

G. Test and Inspection Reports and Schedule of Tests and Inspections Submittals: Comply with requirements specified in Section 014000 "Quality Requirements."

H. Closeout Submittals and Maintenance Material Submittals: Comply with requirements specified in Section 017700 "Closeout Procedures."
I. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of architects and owners, and other information specified.

J. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.

K. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.

L. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.

M. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.

N. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.

O. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.

P. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.

Q. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project.

R. Schedule of Tests and Inspections: Comply with requirements specified in Section 014000 "Quality Requirements."

S. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.

T. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.

U. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.

V. Design Data: Prepare and submit written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers.

2.2 DELEGATED-DESIGN SERVICES

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect.

B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit digitally signed PDF electronic file paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.

1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

A. Action and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.

B. Project Closeout and Maintenance Material Submittals: See requirements in Section 017700 "Closeout Procedures."

C. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.

3.2 ARCHITECT'S ACTION

A. General: Architect will not review submittals that do not bear Contractor's approval stamp and will return them without action.

B. Action Submittals: Architect will review each submittal, make marks to indicate corrections or revisions required, and return it. Architect will attach a review statement indicating action required, or stamp each submittal with an action stamp and will mark stamp appropriately to indicate action.

C. Informational Submittals: Architect will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect will forward each submittal to appropriate party.

D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.

E. Submittals not required by the Contract Documents may not be reviewed and may be discarded.

END OF SECTION 013300
SECTION 014000
QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for quality assurance and quality control.

B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services will be contracted and paid for by the Owner unless noted otherwise. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.

1. Specified tests, inspections, and related actions do not limit Contractor’s other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements.

2. Requirements for Contractor to coordinate quality-assurance and control services required by Architect, Owner or authorities having jurisdiction are not limited by provisions of this Section.

3. Specific test and inspection requirements are not specified in this Section.

C. All testing and delegated-design required to provide Owner with Windstorm Certification of any new work that may require a windstorm certificate will be the responsibility of the Contractor.

1.2 DEFINITIONS

A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.

B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Architect.

C. Mockups: Full-size physical assemblies that are constructed on-site. Mockups are constructed to verify selections made under Sample submittals; to demonstrate aesthetic effects and, where indicated, qualities of materials and execution; to review coordination, testing, or operation; to show interface between dissimilar materials; and to demonstrate compliance with specified installation tolerances. Mockups are not Samples. Unless otherwise indicated, approved mockups establish the standard by which the Work will be judged.

1. Laboratory Mockups: Full-size physical assemblies constructed at testing facility to verify performance characteristics.

D. Preconstruction Testing: Tests and inspections performed specifically for Project before products and materials are incorporated into the Work, to verify performance or compliance with specified criteria.

E. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.

F. Source Quality-Control Testing: Tests and inspections that are performed at the source, e.g., plant, mill, factory, or shop.

G. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.
H. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.

I. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.

1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).

1.3 CONFLICTING REQUIREMENTS

A. Referenced Standards: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Architect for a decision before proceeding.

B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.4 REPORTS AND DOCUMENTS

A. Manufacturer's Field Reports: Prepare written information documenting tests and inspections specified in other Sections. Include the following:

1. Name, address, and telephone number of representative making report.
2. Statement on condition of substrates and their acceptability for installation of product.
3. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
4. Results of operational and other tests and a statement of whether observed performance complies with requirements.
5. Other required items indicated in individual Specification Sections.

B. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.

1.5 QUALITY ASSURANCE

A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.

B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.

C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
D. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance. Where required, must be authorized or licensed by manufacturer to install specified systems or products.

E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or product that are similar in material, design, and extent to those indicated for this Project.

F. Specialists: Certain Specification Sections require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated.

1. Requirements of authorities having jurisdiction shall supersede requirements for specialists.

G. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspecting indicated, as documented according to ASTM E 329; and with additional qualifications specified in individual Sections; and, where required by authorities having jurisdiction, that is acceptable to authorities.

H. Manufacturer's Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

I. Mockups: Before installing portions of the Work requiring mockups, build mockups for each form of construction and finish required to comply with the following requirements, using materials indicated for the completed Work:

1. Build mockups in location and of size indicated or, if not indicated, as directed by Architect.
2. Notify Architect seven days in advance of dates and times when mockups will be constructed.
3. Demonstrate the proposed range of aesthetic effects and workmanship.
4. Obtain Architect's approval of mockups before starting work, fabrication, or construction.
 a. Allow seven days for initial review and each re-review of each mockup.
5. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
6. Demolish and remove mockups when directed unless otherwise indicated.

1.6 QUALITY CONTROL

A. Owner Responsibilities: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to perform these services.

1. Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspecting they are engaged to perform.
2. Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor.

B. Contractor Responsibilities: Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Perform additional quality-control activities required to verify that the Work complies with requirements, whether specified or not.

1. Where services are indicated as Contractor's responsibility, engage a qualified testing agency to perform these quality-control services.
 a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.
2. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspecting will be performed.
3. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
4. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
5. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.

C. Manufacturer's Field Services: Where indicated, engage a manufacturer's representative to observe and inspect the Work. Manufacturer's representative's services include examination of substrates and conditions, verification of materials, inspection of completed portions of the Work, and submittal of written reports.

D. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.

E. Associated Services: Cooperate with agencies performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:

1. Access to the Work.
2. Incidental labor and facilities necessary to facilitate tests and inspections.
3. Adequate quantities of representative samples of materials that require testing and inspecting. Assist agency in obtaining samples.
4. Facilities for storage and field curing of test samples.
5. Delivery of samples to testing agencies.
6. Preliminary design mix proposed for use for material mixes that require control by testing agency.
7. Security and protection for samples and for testing and inspecting equipment at Project site.

F. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.

1. Schedule times for tests, inspections, obtaining samples, and similar activities.

1.7 SPECIAL TESTS AND INSPECTIONS

A. Special Tests and Inspections: Owner will engage a qualified testing agency to conduct special tests and inspections required by authorities having jurisdiction as the responsibility of Owner, and as follows:

1. Notifying Architect and Contractor promptly of irregularities and deficiencies observed in the Work during performance of its services.
2. Submitting a certified written report of each test, inspection, and similar quality-control service to Architect with copy to Contractor and to authorities having jurisdiction.
3. Submitting a final report of special tests and inspections at Substantial Completion, which includes a list of unresolved deficiencies.
4. Interpreting tests and inspections and stating in each report whether tested and inspected work complies with or deviates from the Contract Documents.
5. Retesting and reinspecting corrected work.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:

1. Date test or inspection was conducted.
2. Description of the Work tested or inspected.
3. Date test or inspection results were transmitted to Architect.
4. Identification of testing agency or special inspector conducting test or inspection.

B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Architect's reference during normal working hours.

3.2 REPAIR AND PROTECTION

A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.

1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible.

B. Protect construction exposed by or for quality-control service activities.

C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION 014000
SECTION 015000
TEMPORARY FACILITIES AND CONTROLS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes requirements for temporary utilities, support facilities, and security and protection facilities.
B. Related Requirements:
 1. Section 011000 "Summary" for work restrictions and limitations on utility interruptions.

1.2 USE CHARGES
A. General: Installation and removal of and use charges for temporary facilities shall be included in the Contract Sum unless otherwise indicated. Allow other entities to use temporary services and facilities without cost, including, but not limited to, testing agencies, and authorities having jurisdiction.

1.3 INFORMATIONAL SUBMITTALS
A. Site Plan: Show temporary facilities, utility hookups, staging areas, and parking areas for construction personnel.
B. Erosion- and Sedimentation-Control Plan: Show compliance with requirements of EPA Construction General Permit or authorities having jurisdiction, whichever is more stringent.
C. Fire-Safety Program: Show compliance with requirements of NFPA 241 and authorities having jurisdiction. Indicate Contractor personnel responsible for management of fire prevention program.

1.4 QUALITY ASSURANCE
A. Electric Service: Comply with NECA, NEMA, and UL standards and regulations for temporary electric service. Install service to comply with NFPA 70.
B. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits.

PART 2 - PRODUCTS

2.1 MATERIALS

2.2 EQUIPMENT
A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.
PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.

B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.2 TEMPORARY UTILITY INSTALLATION

A. General: Install temporary service or connect to existing service.

1. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services.

B. Sewers and Drainage: Provide temporary utilities to remove effluent lawfully.

C. Water Service: Install water service and distribution piping in sizes and pressures adequate for construction.

D. Sanitary Facilities: Provide temporary toilets, wash facilities, and drinking water for use of construction personnel. Comply with requirements of authorities having jurisdiction for type, number, location, operation, and maintenance of fixtures and facilities.

E. Electric Power Service: Provide electric power service and distribution system of sufficient size, capacity, and power characteristics required for construction operations.

F. Lighting: Provide temporary lighting with local switching that provides adequate illumination for construction operations, observations, inspections, and traffic conditions.

1. Install and operate temporary lighting that fulfills security and protection requirements without operating entire system.

G. Telephone Service: Provide temporary telephone service in common-use facilities for use by all construction personnel. Install one telephone line(s) for each field office.

1. At each telephone, post a list of important telephone numbers.

 a. Police and fire departments.
 b. Ambulance service.
 c. Contractor's home office.
 d. Contractor's emergency after-hours telephone number.
 e. Architect's office.
 f. Engineers' offices.
 g. Owner's office.
 h. Principal subcontractors' field and home offices.

2. Provide superintendent with cellular telephone or portable two-way radio for use when away from field office.

3.3 SUPPORT FACILITIES INSTALLATION

A. General: Comply with the following:
1. Provide construction for temporary offices, shops, and sheds located within construction area or within 30 feet of building lines that is noncombustible according to ASTM E 136. Comply with NFPA 241.

2. Maintain support facilities until Architect schedules Substantial Completion inspection. Remove before Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to Owner.

B. Parking: Provide temporary parking areas for construction personnel.

C. Lifts and Hoists: Provide facilities necessary for hoisting materials and personnel.

D. Temporary Stairs: Until permanent stairs are available, provide temporary stairs where ladders are not adequate.

E. Temporary Use of Permanent Stairs: Use of new stairs for construction traffic will be permitted, provided stairs are protected and finishes restored to new condition at time of Substantial Completion.

3.4 SECURITY AND PROTECTION FACILITIES INSTALLATION

A. Protection of Existing Facilities: Protect existing vegetation, equipment, structures, utilities, and other improvements at Project site and on adjacent properties, except those indicated to be removed or altered. Repair damage to existing facilities.

B. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction as required to comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects.

C. Barricades, Warning Signs, and Lights: Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting.

D. Temporary Egress: Maintain temporary egress from existing occupied facilities as indicated and as required by authorities having jurisdiction.

E. Temporary Enclosures: Provide temporary enclosures for protection of construction, in progress and completed, from exposure, foul weather, other construction operations, and similar activities. Provide temporary weather tight enclosure for building exterior.

1. Where heating or cooling is needed and permanent enclosure is not complete, insulate temporary enclosures.

F. Temporary Fire Protection: Install and maintain temporary fire-protection facilities of types needed to protect against reasonably predictable and controllable fire losses. Comply with NFPA 241; manage fire prevention program.

1. Prohibit smoking in construction areas.

2. Supervise welding operations, combustion-type temporary heating units, and similar sources of fire ignition according to requirements of authorities having jurisdiction.

3. Develop and supervise an overall fire-prevention and protection program for personnel at Project site. Review needs with local fire department and establish procedures to be followed. Instruct personnel in methods and procedures. Post warnings and information.

4. Provide temporary standpipes and hoses for fire protection. Hang hoses with a warning sign stating that hoses are for fire-protection purposes only and are not to be removed. Match hose size with outlet size and equip with suitable nozzles.
3.5 MOISTURE AND MOLD CONTROL

B. Exposed Construction Phase: Before installation of weather barriers, when materials are subject to wetting and exposure and to airborne mold spores, protect materials from water damage and keep porous and organic materials from coming into prolonged contact with concrete.

C. Partially Enclosed Construction Phase: After installation of weather barriers but before full enclosure and conditioning of building, when installed materials are still subject to infiltration of moisture and ambient mold spores, protect as follows:
 1. Do not load or install drywall or other porous materials or components, or items with high organic content, into partially enclosed building.
 2. Keep interior spaces reasonably clean and protected from water damage.
 3. Discard or replace water-damaged and wet material.
 4. Discard, replace, or clean stored or installed material that begins to grow mold.
 5. Perform work in a sequence that allows any wet materials adequate time to dry before enclosing the material in drywall or other interior finishes.

D. Controlled Construction Phase of Construction: After completing and sealing of the building enclosure but prior to the full operation of permanent HVAC systems, maintain as follows:
 1. Control moisture and humidity inside building by maintaining effective dry-in conditions.
 2. Remove materials that cannot be completely restored to their manufactured moisture level within 48 hours.

3.6 OPERATION, TERMINATION, AND REMOVAL

A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses.

B. Temporary Facility Changeover: Do not change over from using temporary security and protection facilities to permanent facilities until Substantial Completion.

C. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.
 1. Materials and facilities that constitute temporary facilities are property of Contractor. Owner reserves right to take possession of Project identification signs.
 2. At Substantial Completion, repair, renovate, and clean permanent facilities used during construction period. Comply with final cleaning requirements specified in Section 017700 "Closeout Procedures."

END OF SECTION 015000
SECTION 016000 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.

B. Related Requirements:

1. Section 012500 "Substitution Procedures" for requests for substitutions.

1.2 DEFINITIONS

A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.

1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature, that is current as of date of the Contract Documents.

2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.

3. Comparable Product: Product that is demonstrated and approved through submittal process to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.

B. Basis-of-Design Product Specification: A specification in which a specific manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.3 ACTION SUBMITTALS

A. Comparable Product Requests: Submit request for consideration of each comparable product. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.

1. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within one week of receipt of a comparable product request. Architect will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

 a. Form of Approval: As specified in Section 013300 "Submittal Procedures."

 b. Use product specified if Architect does not issue a decision on use of a comparable product request within time allocated.

1.4 QUALITY ASSURANCE

A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.

1.5 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.

B. Delivery and Handling:
 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.

C. Storage:
 1. Store products to allow for inspection and measurement of quantity or counting of units.
 2. Store materials in a manner that will not endanger Project structure.
 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
 4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
 5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
 6. Protect stored products from damage and liquids from freezing.

1.6 PRODUCT WARRANTIES

A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.

 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.

B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.

 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
 2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
 3. Refer to other Sections for specific content requirements and particular requirements for submitting special warranties.

C. Submittal Time: Comply with requirements in Section 017700 "Closeout Procedures."
PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.

1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.

2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.

3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.

4. Where products are accompanied by the term "as selected," Architect will make selection.

B. Product Selection Procedures:

1. Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.

2. Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.

3. Products:
 a. Restricted List: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered unless otherwise indicated.
 b. Nonrestricted List: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product.

4. Manufacturers:
 a. Restricted List: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 b. Nonrestricted List: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed manufacturer's product.

5. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.

C. Visual Matching Specification: Where Specifications require "match Architect's sample", provide a product that complies with requirements and matches Architect's sample. Architect's decision will be final on whether a proposed product matches.

1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Section 012500 "Substitution Procedures" for proposal of product.
D. Visual Selection Specification: Where Specifications include the phrase "as selected by Architect from manufacturer's full range" or similar phrase, select a product that complies with requirements. Architect will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 COMPARABLE PRODUCTS

A. Conditions for Consideration: Architect will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect may return requests without action, except to record noncompliance with these requirements:

1. Evidence that the proposed product does not require revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work.
2. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
3. Evidence that proposed product provides specified warranty.
4. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested.
5. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION 016000
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:

2. Field engineering and surveying.
3. Installation of the Work.
4. Cutting and patching.
5. Coordination of Owner-installed products.
6. Progress cleaning.
7. Starting and adjusting.
8. Protection of installed construction.

B. Related Requirements:

1. Section 011000 "Summary" for limits on use of Project site.
2. Section 017700 "Closeout Procedures" for submitting final property survey with Project Record Documents, recording of Owner-accepted deviations from indicated lines and levels, and final cleaning.
3. Section 078413 "Penetration Firestopping" for patching penetrations in fire-rated construction.

1.2 INFORMATIONAL SUBMITTALS

A. Certificates: Submit certificate signed by professional engineer certifying that location and elevation of improvements comply with requirements.

1.3 QUALITY ASSURANCE

A. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.

1. Structural Elements: When cutting and patching structural elements, notify Architect of locations and details of cutting and await directions from Architect before proceeding. Shore, brace, and support structural element during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection

2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety

3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety.
4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect’s opinion, reduce the building’s aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.

PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Comply with requirements specified in other Sections.

B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.

1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Architect for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning site work, investigate and verify the existence and location of underground utilities, and other construction affecting the Work.

1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services, and other utilities.
2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.

B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.

1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.
2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.

C. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Existing Utility Information: Furnish information to local utility that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.

B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other
construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.

D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Architect according to requirements in Section 013100 "Project Management and Coordination."

3.3 CONSTRUCTION LAYOUT

A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the property survey and existing benchmarks. If discrepancies are discovered, notify Architect promptly.

B. General: Engage a professional engineer to lay out the Work using accepted surveying practices.

1. Establish benchmarks and control points to set lines and levels at each story of construction and elsewhere as needed to locate each element of Project.
2. Establish limits on use of Project site.
3. Establish dimensions within tolerances indicated. Do not scale Drawings to obtain required dimensions.
4. Inform installers of lines and levels to which they must comply.
5. Check the location, level and plumb, of every major element as the Work progresses.
6. Notify Architect when deviations from required lines and levels exceed allowable tolerances.
7. Close site surveys with an error of closure equal to or less than the standard established by authorities having jurisdiction.

C. Site Improvements: Locate and lay out site improvements, including pavements, grading, fill and topsoil placement, utility slopes, and rim and invert elevations.

D. Building Lines and Levels: Locate and lay out control lines and levels for structures, building foundations, column grids, and floor levels, including those required for mechanical and electrical work. Transfer survey markings and elevations for use with control lines and levels. Level foundations and piers from two or more locations.

E. Record Log: Maintain a log of layout control work. Record deviations from required lines and levels. Include beginning and ending dates and times of surveys, weather conditions, name and duty of each survey party member, and types of instruments and tapes used. Make the log available for reference by Architect.

3.4 FIELD ENGINEERING

A. Reference Points: Locate existing permanent benchmarks, control points, and similar reference points before beginning the Work. Preserve and protect permanent benchmarks and control points during construction operations.

B. Benchmarks: Establish and maintain a minimum of two permanent benchmarks on Project site, referenced to data established by survey control points. Comply with authorities having jurisdiction for type and size of benchmark.

1. Record benchmark locations, with horizontal and vertical data, on Project Record Documents.
3.5 INSTALLATION

A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 1. Make vertical work plumb and make horizontal work level.
 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.

B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.

C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.

D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.

E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.

F. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.

G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.

H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect.
 2. Allow for building movement, including thermal expansion and contraction.
 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.

J. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.6 CUTTING AND PATCHING

A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.
C. Temporary Support: Provide temporary support of work to be cut.

D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.

E. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.

1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
3. Concrete: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
4. Excavating and Backfilling: Comply with requirements in applicable Sections where required by cutting and patching operations.
5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.

F. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.

1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
3. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.

G. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.7 PROGRESS CLEANING

A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.

2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F (27 deg C).
3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.

B. Site: Maintain Project site free of waste materials and debris.

C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.

1. Remove liquid spills promptly.
2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.

D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If
specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.

E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.

F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.

G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways.

H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.

I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

J. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.8 PROTECTION OF INSTALLED CONSTRUCTION

A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.

B. Comply with manufacturer's written instructions for temperature and relative humidity.

END OF SECTION 017300
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:

1. Substantial Completion procedures.
2. Final completion procedures.
3. Warranties.
4. Final cleaning.
5. Repair of the Work.

B. Related Requirements:
 1. Section 017839 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.

1.2 ACTION SUBMITTALS

A. Product Data: For cleaning agents.

B. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.

C. Certified List of Incomplete Items: Final submittal at Final Completion.

1.3 CLOSEOUT SUBMITTALS

A. Certificates of Release: From authorities having jurisdiction.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.

1.5 SUBSTANTIAL COMPLETION PROCEDURES

A. The Owner reserves the right to grant partial Substantial Completion for each individual Project Site.

B. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.

C. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.

 1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, final completion construction photographic documentation, damage or settlement surveys, property surveys, and similar final record information.
3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Architect. Label with manufacturer's name and model number where applicable.
 a. Schedule of Maintenance Material Items: Prepare and submit schedule of maintenance material submittal items, including name and quantity of each item and name and number of related Specification Section. Obtain Architect's signature for receipt of submittals.
5. Submit test/adjust/balance records.
6. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.

D. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 1. Advise Owner of pending insurance changeover requirements.
 2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
 3. Complete startup and testing of systems and equipment.
 4. Perform preventive maintenance on equipment used prior to Substantial Completion.
 5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training video recordings.
 6. Advise Owner of changeover in heat and other utilities.
 7. Participate with Owner in conducting inspection and walkthrough with local emergency responders.
 8. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
 9. Complete final cleaning requirements, including touchup painting.
 10. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.

E. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 5 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.
 1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.
 2. Results of completed inspection will form the basis of requirements for final completion.

1.6 FINAL COMPLETION PROCEDURES

A. Preliminary Procedures: Before requesting final inspection for determining final completion, complete the following:
 1. Submit a final Application for Payment according to Section 012900 "Payment Procedures."
 2. Certified List of Incomplete Items: Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
 3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.
 4. Submit pest-control final inspection report and warranty.
5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training video recordings.

B. Inspection: Submit a written request for final inspection to determine acceptance. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.7 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.

1. Organize list of spaces in sequential order, starting with exterior areas first.
2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
3. Submit list of incomplete items in the following format:
 a. PDF electronic file. Architect will return annotated copy.

1.8 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties on request of Architect for designated portions of the Work where commencement of warranties other than date of Substantial Completion is indicated, or when delay in submittal of warranties might limit Owner's rights under warranty.

B. Organize warranty documents into an orderly sequence based on the table of contents of the Project Manual.

1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch paper.
2. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer.
3. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of Contractor.
4. Warranty Electronic File: Scan warranties and bonds and assemble complete warranty and bond submittal package into a single indexed electronic PDF file with links enabling navigation to each item. Provide bookmarked table of contents at beginning of document.

C. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.
PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.

B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.

1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 c. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
 d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 e. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 f. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 g. Sweep concrete floors broom clean in unoccupied spaces.
 h. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.
 i. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Replace chipped or broken glass and other damaged transparent materials. Polish mirrors and glass, taking care not to scratch surfaces.
 j. Remove labels that are not permanent.
 k. Wipe surfaces of mechanical and electrical equipment and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
 l. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
 m. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
 n. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.
 o. Leave Project clean and ready for occupancy.

C. Pest Control: Comply with pest control requirements in Section 015000 "Temporary Facilities and Controls." Prepare written report.

3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.

B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.
1. Remove and replace chipped, scratched, and broken glass, reflective surfaces, and other damaged transparent materials.
2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that already show evidence of repair or restoration.
 a. Do not paint over “UL” and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.
3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.
4. Replace burned-out bulbs, bulbs noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.

END OF SECTION 017700
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:

1. Operation and maintenance documentation directory.
2. Operation manuals for systems, subsystems, and equipment.
3. Product maintenance manuals.
4. Systems and equipment maintenance manuals.

1.2 CLOSEOUT SUBMITTALS

A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.

1. Architect will comment on whether content of operations and maintenance submittals are acceptable.
2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.

B. Format: Submit operations and maintenance manuals in the following format:

 a. Name each indexed document file in composite electronic index with applicable item name.
 b. Include a complete electronically linked operation and maintenance directory.
 c. Enable inserted reviewer comments on draft submittals.

2. Three paper copies. Include a complete operation and maintenance directory. Enclose title pages and directories in clear plastic sleeves.

C. Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 5 days before commencing demonstration and training.

PART 2 - PRODUCTS

2.1 REQUIREMENTS FOR OPERATION, AND MAINTENANCE MANUALS

A. Directory: Prepare a single, comprehensive directory of emergency, operation, and maintenance data and materials, listing items and their location to facilitate ready access to desired information.

B. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
1. Title page.
2. Table of contents.

C. Title Page: Include the following information:

1. Subject matter included in manual.
2. Name and address of Project.
3. Name and address of Owner.
4. Date of submittal.
5. Name and contact information for Contractor.
6. Name and contact information for Architect.
7. Names and contact information for major consultants to the Architect that designed the systems contained in the manuals.

D. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.

E. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

F. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.

1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.

G. Manuals, Paper Copy: Submit manuals in the form of hard copy, bound and labeled volumes.

1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 a. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name.
2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.
3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment.
4. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.
2.2 OPERATION MANUALS

A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:

2. Performance and design criteria if Contractor is delegated design responsibility.
3. Operating standards.
4. Operating procedures.
5. Operating logs.
6. Wiring diagrams.
7. Control diagrams.
8. Piped system diagrams.
9. Precautions against improper use.
10. License requirements including inspection and renewal dates.

B. Descriptions: Include the following:

1. Product name and model number. Use designations for products indicated on Contract Documents.
2. Manufacturer's name.
3. Equipment identification with serial number of each component.
4. Equipment function.
5. Operating characteristics.
6. Limiting conditions.
7. Performance curves.
8. Engineering data and tests.
9. Complete nomenclature and number of replacement parts.

C. Operating Procedures: Include the following, as applicable:

1. Startup procedures.
2. Equipment or system break-in procedures.
3. Routine and normal operating instructions.
4. Regulation and control procedures.
5. Instructions on stopping.
7. Seasonal and weekend operating instructions.
8. Required sequences for electric or electronic systems.
9. Special operating instructions and procedures.

D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.3 PRODUCT MAINTENANCE MANUALS

A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

C. Product Information: Include the following, as applicable:

1. Product name and model number.
2. Manufacturer's name.
3. Color, pattern, and texture.
5. Reordering information for specially manufactured products.

D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 1. Inspection procedures.
 2. Types of cleaning agents to be used and methods of cleaning.
 3. List of cleaning agents and methods of cleaning detrimental to product.
 4. Schedule for routine cleaning and maintenance.
 5. Repair instructions.

E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

2.4 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers’ maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

C. Manufacturers’ Maintenance Documentation: Manufacturers’ maintenance documentation including the following information for each component part or piece of equipment:
 1. Standard maintenance instructions and bulletins.
 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 3. Identification and nomenclature of parts and components.
 4. List of items recommended to be stocked as spare parts.

D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 1. Test and inspection instructions.
 2. Troubleshooting guide.
 3. Precautions against improper maintenance.
 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 5. Aligning, adjusting, and checking instructions.
 6. Demonstration and training video recording, if available.

E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers’ maintenance documentation and local sources of maintenance materials and related services.
G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.

H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

A. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

B. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.

C. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.

D. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.

1. Do not use original project record documents as part of operation and maintenance manuals.

E. Comply with Section 017700 "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION 017823
SECTION 017839
PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for project record documents, including the following:

1. Record Drawings.
2. Record Specifications.
3. Record Product Data.

1.2 CLOSEOUT SUBMITTALS

A. Record Drawings: Comply with the following:

1. Number of Copies: Submit 1 set(s) of marked-up record prints and 1 digital copy.

B. Record Specifications: Submit 1 paper copies of Project's Specifications and 1 digital copy, including addenda and contract modifications.

C. Record Product Data: Submit one paper copy and one digital copy of each submittal.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised Drawings as modifications are issued.

1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.

 a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 b. Record data as soon as possible after obtaining it.
 c. Record and check the markup before enclosing concealed installations.

2. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.

3. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.

4. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.

B. Record Digital Data Files: Immediately before inspection for Certificate of Substantial Completion, review marked-up record prints with Architect. When authorized, prepare a full set of corrected digital data files of the Contract Drawings, as follows:

1. Format: Annotated PDF electronic file with comment function enabled.
2. Incorporate changes and additional information previously marked on record prints. Delete, redraw, and add details and notations where applicable.
3. Refer instances of uncertainty to Architect for resolution.

C. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.

1. Record Prints: Organize record prints and newly prepared record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
3. Record Digital Data Files: Organize digital data information into separate electronic files that correspond to each sheet of the Contract Drawings. Name each file with the sheet identification. Include identification in each digital data file.
4. Identification: As follows:
 a. Project name.
 b. Date.
 c. Designation "PROJECT RECORD DRAWINGS."
 d. Name of Architect.
 e. Name of Contractor.

2.2 RECORD SPECIFICATIONS

A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.

1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
2. Note related Change Orders, record Product Data, and record Drawings where applicable.

B. Format: Submit record Specifications as scanned PDF electronic file(s) of marked-up paper copy of Specifications.

2.3 RECORD PRODUCT DATA

A. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.

1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
3. Note related Change Orders, record Specifications, and record Drawings where applicable.

B. Format: Submit record Product Data as scanned PDF electronic file(s) of marked-up paper copy of Product Data.
PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.

B. Maintenance of Record Documents and Samples: Store record documents and Samples in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Architect's reference during normal working hours.

END OF SECTION 017839
SECTION 017900

DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:

1. Demonstration of operation of systems, subsystems, and equipment.
2. Training in operation and maintenance of systems, subsystems, and equipment.
3. Demonstration and training video recordings.

1.2 INFORMATIONAL SUBMITTALS
A. Instruction Program: Submit outline of instructional program for demonstration and training, including a list of training modules and a schedule of proposed dates, times, length of instruction time, and instructors’ names for each training module. Include learning objective and outline for each training module.

1. Indicate proposed training modules using manufacturer-produced demonstration and training video recordings for systems, equipment, and products in lieu of video recording of live instructional module.

1.3 CLOSEOUT SUBMITTALS
1. At completion of training, submit complete training manual(s) for Owner's use prepared and bound in format matching operation and maintenance manuals & in PDF electronic file format.

1.4 QUALITY ASSURANCE
A. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.

B. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Section 014000 "Quality Requirements," experienced in operation and maintenance procedures and training.

1.5 COORDINATION
A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations and to ensure availability of Owner's personnel.

B. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Architect.
PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

A. Program Structure: Develop an instruction program that includes individual training modules for each system and for equipment not part of a system, as required by individual Specification Sections.

B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following as applicable to the system, equipment, or component:

1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 a. System, subsystem, and equipment descriptions.
 b. Performance and design criteria if Contractor is delegated design responsibility.
 c. Operating standards.
 d. Regulatory requirements.
 e. Equipment function.
 f. Operating characteristics.
 g. Limiting conditions.
 h. Performance curves.

2. Documentation: Review the following items in detail:
 a. Emergency manuals.
 b. Operations manuals.
 c. Maintenance manuals.
 d. Project record documents.
 e. Identification systems.
 f. Warranties and bonds.
 g. Maintenance service agreements and similar continuing commitments.

3. Emergencies: Include the following, as applicable:
 a. Instructions on meaning of warnings, trouble indications, and error messages.
 b. Instructions on stopping.
 c. Shutdown instructions for each type of emergency.
 d. Operating instructions for conditions outside of normal operating limits.
 e. Sequences for electric or electronic systems.
 f. Special operating instructions and procedures.

4. Operations: Include the following, as applicable:
 a. Startup procedures.
 b. Equipment or system break-in procedures.
 c. Routine and normal operating instructions.
 d. Regulation and control procedures.
 e. Control sequences.
 f. Safety procedures.
 g. Instructions on stopping.
 h. Normal shutdown instructions.
 i. Operating procedures for emergencies.
 j. Operating procedures for system, subsystem, or equipment failure.
 k. Seasonal and weekend operating instructions.
 l. Required sequences for electric or electronic systems.
 m. Special operating instructions and procedures.

5. Adjustments: Include the following:
a. Alignments.
b. Checking adjustments.
c. Noise and vibration adjustments.
d. Economy and efficiency adjustments.

6. Troubleshooting: Include the following:
 a. Diagnostic instructions.
 b. Test and inspection procedures.

7. Maintenance: Include the following:
 a. Inspection procedures.
 b. Types of cleaning agents to be used and methods of cleaning.
 c. List of cleaning agents and methods of cleaning detrimental to product.
 d. Procedures for routine cleaning
 e. Procedures for preventive maintenance.
 f. Procedures for routine maintenance.
 g. Instruction on use of special tools.

8. Repairs: Include the following:
 a. Diagnosis instructions.
 b. Repair instructions.
 c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 d. Instructions for identifying parts and components.
 e. Review of spare parts needed for operation and maintenance.

PART 3 - EXECUTION

3.1 PREPARATION

 A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a training manual organized in coordination with requirements in Section 017823 "Operation and Maintenance Data."

3.2 INSTRUCTION

 A. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Owner for number of participants, instruction times, and location.

 B. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 1. Owner will furnish an instructor to describe Owner's operational philosophy.
 2. Owner will furnish Contractor with names and positions of participants.

 C. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.
 1. Schedule training with Owner, through Architect, with at least seven days' advance notice.

 D. Training Location and Reference Material: Conduct training on-site in the completed and fully operational facility using the actual equipment in-place. Conduct training using final operation and maintenance data submittals.
E. **Evaluation:** At conclusion of each training module, assess and document each participant's mastery of module by use of a demonstration performance-based test.

END OF SECTION 017900
SECTION 019113
GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

A. Basis-of-Design documentation is referenced for information only, and not included here.

1.2 SUMMARY

A. Section Includes:

1. General requirements for coordinating and scheduling commissioning.
2. Commissioning meetings.
3. Commissioning reports.
4. Equipment and systems installation, startup, and field quality-control testing indicated in the Contract Documents.
5. Use of test equipment, instrumentation, and tools for commissioning.
6. System readiness checklists, including, but not limited to, installation checks, startup, performance tests, and performance test demonstration.
7. Commissioning tests and commissioning test demonstration.
8. Work to correct commissioning issues.
9. Work to repeat tests when equipment and systems fail acceptance criteria.
10. Adjusting, verifying, and documenting identified systems and assemblies.

B. Related Requirements:

1. Section 013300 "Submittal Procedures" for submittal procedures requirements for commissioning.
2. Section 017700 "Closeout Procedures" for certificate of Construction Phase Commissioning Completion submittal requirements.
3. Section 017823 "Operation and Maintenance Data" for preliminary operation and maintenance data submittal.
4. Section 230800 "Commissioning of HVAC" for technical commissioning requirements for HVAC.
5. Section 260800 "Commissioning of Electrical Systems" for technical commissioning requirements for electrical systems.

1.3 DEFINITIONS

A. Acceptance Criteria: Threshold of acceptable work quality or performance specified for a commissioning activity, including, but not limited to, system readiness checklists, performance tests, performance test demonstrations, commissioning tests and commissioning test demonstrations.

B. Basis-of-Design Document (BoD): A document prepared by Engineer, or Commissioning Authority that records concepts, calculations, decisions, and product selections used to comply with Owner's Project Requirements and to suit applicable regulatory requirements, standards, and guidelines.

C. Commissioning Authority (CxA): An entity engaged by Owner, and identified in Section 011000 "Summary," to evaluate Commissioning-Process Work.

D. Commissioning Plan: A document, prepared by Commissioning Authority, that outlines the organization, schedule, allocation of resources, and documentation requirements of commissioning.
E. Commissioning (Cx): A quality-focused process for verifying and documenting that the facility and all of its systems and assemblies are planned, designed, installed, and tested to comply with Owner's Project Requirements. The requirements specified here are limited to the construction phase commissioning activities. The scope of commissioning is defined in Div. 23 and Div. 26 specifications, in this section and is in accordance with the requirements in the IECC.

F. Construction Phase Commissioning Completion: The stage of completion and acceptance of commissioning when resolution of deficient conditions and issues discovered during commissioning and retesting until acceptable results are obtained has been accomplished. Owner will establish in writing the date Construction Phase Commissioning Completion is achieved. See Section 017700 "Closeout Procedures" for certificate of Construction Phase Commissioning Completion submittal requirements.

1. Commissioning is complete when the work specified in this Section and related Sections has been completed and accepted, including, but not limited to, the following:
 a. Completion of tests and acceptance of test results.
 b. Resolution of issues, as verified by retests performed and documented with acceptance of retest results.
 c. Comply with requirements in Section 017900 "Demonstration and Training."
 d. Completion and acceptance of submittals and reports.

G. Functional Test: Test of dynamic function of systems, as opposed to components, under full operation in various modes through all control system's sequences of operation using manual (direct observation) or monitoring methods following prescribed test procedures in sequential written form.

H. Owner's Project Requirements (OPR): A document that details the functional requirements of a project and the expectations of how it will be used and operated, including Project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information.

I. Owner's Witness: Commissioning Authority, Owner's Project Manager, or Architect-designated witness authorized to authenticate test demonstration data and to sign completed test data forms.

J. Construction or System readiness Checklist: List, provided by Commissioning Authority to installer, of items to inspect and elementary component tests to conduct to verify proper installation of equipment prior to functional testing.

K. Sampling: Functionally testing only a fraction of total number of identical or near identical pieces of equipment.

L. Seasonal Commissioning: Testing of equipment that can be done only during periods of peak heating or cooling, when HVAC equipment is operating at full-load or heavy-load conditions.

M. Simulated Condition: Condition created for purpose of testing response of system.

N. "Systems," "Assemblies," "Subsystems," "Equipment," and "Components": Where these terms are used together or separately, they shall mean "as-built" systems, assemblies, subsystems, equipment, and components.

O. Test: Performance tests, performance test demonstrations, commissioning tests, and commissioning test demonstrations.

P. Trending: Monitoring using building control system.

1.4 COMPENSATION

A. Should Architect, Commissioning Authority, other Owner's witness, or Owner's staff perform additional services or incur additional expenses due to actions of Contractor listed below, compensate Owner for such additional services and expenses.
1. Failure to provide timely notice of commissioning activities schedule changes.
2. Failure to meet acceptance criteria for test demonstrations.

B. Contractor shall compensate Owner for such additional services and expenses at the rate of $150.00 per labor hour plus $100.00 per round trip plus per diem allowances for meals and lodging according to current U.S. General Services Administration (GSA) Per Diem Rates.

1.5 COMMISSIONING TEAM

A. Members Appointed by Contractor(s):

1. Commissioning Coordinator: A person or entity employed by Contractor to manage, schedule, and coordinate commissioning.
2. Project superintendent and other employees that Contractor may deem appropriate for a particular portion of the commissioning.
3. Subcontractors, installers, suppliers, and specialists that Contractor may deem appropriate for a particular portion of the commissioning.
4. Appointed team members shall have the authority to act on behalf of the entity they represent.

B. Members Appointed by Owner:

1. Commissioning Authority (CxA), plus consultants that CxA may deem appropriate for a particular portion of the commissioning.
 a. CxA: Ethos Engineering, Cesar Gonzalez, PE. Cell (956) 564.2827
2. Owner representative(s), facility operations and maintenance personnel, plus other employees, separate contractors, and consultants that Owner may deem appropriate for a particular portion of the commissioning.
3. Architect, plus employees and consultants that Architect may deem appropriate for a particular portion of the commissioning.
4. MEP Engineer, plus employees and consultants that Architect may deem appropriate for a particular portion of the commissioning.

1.6 INFORMATIONAL SUBMITTALS

A. Comply with requirements in Section 013300 "Submittal Procedures" for submittal procedures general requirements for commissioning.

B. Commissioning Plan Information:

1. List of Contractor-appointed commissioning team members to include specific personnel and subcontractors to the performance of the various commissioning requirements.
2. Schedule of commissioning activities, integrated with the construction schedule. Comply with requirements in Section 013200 "Construction Progress Documentation" for construction schedule general requirements for commissioning.
3. Contractor personnel and subcontractors to participate in each test.
4. List of instrumentation required for each test to include identification of parties that will provide instrumentation for each test.

C. Commissioning schedule.

D. Two-week look-ahead schedules.

E. Commissioning Coordinator Letter of Authority:
1. Within 10 days after approval of Commissioning Coordinator qualifications, submit a letter of authority for Commissioning Coordinator, signed by a principal of Contractor's firm. Letter shall authorize Commissioning Coordinator to do the following:

 a. Make inspections required for commissioning.
 b. Coordinate, schedule, and manage commissioning of Contractor, subcontractors, and suppliers.
 c. Obtain documentation required for commissioning from Contractor, subcontractors, and suppliers.
 d. Report issues, delayed resolution of issues, schedule conflicts, and lack of cooperation or expertise on the part of members of the commissioning team.

F. Test Reports:

1. Pre-Startup Report: Prior to startup of equipment or a system, submit signed, completed system readiness checklists.
2. Test Data Reports: At the end of each day in which tests are conducted, submit test data for tests performed.
3. Commissioning Issues Reports: Daily, at the end of each day in which tests are conducted, submit commissioning issue reports for tests for which acceptable results were not achieved.
4. Weekly Progress Report: Weekly, at the end of each week in which tests are conducted, submit a progress report.
5. Data Trend Logs: Submit data trend logs at the end of the trend log period.
6. System Alarm Logs: Daily, at the start of days following a day in which tests were performed, submit print-out of log of alarms that occurred since the last log was printed.

G. System readiness checklists:

1. Material checks.
2. Installation checks.
3. Startup procedures, where required.

1.7 CLOSEOUT SUBMITTALS

A. Commissioning Report:

1. At Construction Phase Commissioning Completion, include the following:

 a. Pre-startup reports.
 b. Test data forms, completed and signed.
 c. Commissioning issues report log.
 d. Commissioning issues reports showing resolution of issues.
 e. Correspondence or other documents related to resolution of issues.
 f. Other reports required by commissioning.
 g. List unresolved issues and reasons they remain unresolved and should be exempted from the requirements for Construction Phase Commissioning Completion.
 h. Report shall include commissioning work of Contractor.

B. Request for Certificate of Construction Phase Commissioning Completion.

C. Operation and Maintenance Data: For proprietary test equipment, instrumentation, and tools to include in operation and maintenance manuals.

1.8 COMMISSIONING TEAM RESPONSIBILITIES

A. COMMISSIONING AUTHORITY: Responsibilities of the CxA during the Construction Phase include the following:
1. Coordinate and direct steps of the total Commissioning Process for systems being installed as part of this contract. Coordinate commissioning work schedule with Owner and Contractor.

2. Provide Commissioning Plan.

3. Attend planning and construction-site meetings as required to obtain information relating to Commissioning Process. Convene commissioning team meetings as required.

4. Plan and conduct commissioning scoping and coordination meetings. Provide notice to all Team members to attend scheduled commissioning meetings.

5. Request all information required for Commissioning Process from manufacturers, Contractor, and Design Professionals.

6. Verify that systems and equipment have been installed and started in accordance with manufacturer's recommendations and with generally recognized construction standards, and that documentation of such has been provided.

7. Assist in resolving discrepancies.

8. Prepare System readiness checklists to ensure systems have been installed according to project specifications. Verify that System readiness checklists have been addressed by Contractor and are accurate. Deliver final System readiness checklists to Owner.

9. Prepare Functional Test procedures to demonstrate performance of systems according to project specifications. Observe and document performance of systems, as per process detailed in Functional Test procedures.

10. Verify the execution of commissioning process activities using random sampling. The sampling rate may vary from 1 to 100 percent. Verification will include, but is not limited to, equipment submittals, system readiness checklists, training, operating and maintenance data, tests, and test reports to verify compliance with the OPR. When a random sample does not meet the requirement, the CxA will report the failure in the Issues Log.

11. Prepare and maintain an Issues Log.

12. Compile test data, inspection reports, and certificates; include them in the systems manual and commissioning process report.

13. Review testing and balancing (TAB) reports; notify Owner of deficiencies.

14. Recommend acceptance or non-acceptance of systems to Owner.

15. Verify that training has taken place by collecting training documentation from Contractor.

16. Compile and maintain commissioning record.

17. Provide pre-final and final commissioning reports to all commissioning team members. The report shall include:

 a. Communications between Owner, CxA, Design Professionals, Vendors, and/or Contractor and Subcontractors related to Commissioning Process.

 b. Minutes of commissioning meetings.

 c. Findings and pertinent observations.

 d. A listing of any deficiencies, unresolved issues, and compromises in the environmentally responsive features

 e. Manufacturer’s start-up reports.

 f. An Issues Log which:

 1) Describes design, installation, and performance issues which are at variance with the Owner’s project requirements and Contract Documents.

 2) Identifies and tracks issues as they are encountered, documenting the status of unresolved and resolved issues.

 3) Documents corrective modifications made.

 g. System readiness checklists.

 h. Testing plans and Functional Test reports.

 i. Listing of off-season test(s) not performed and a schedule for their completion.

18. Conduct an inspection of the building and its systems within 10 months after substantial completion and prior to the expiration of warranties. Prepare a report documenting findings that should be addressed prior to expiration of warranties.

B. CONTRACTOR: Responsibilities of the General Contractor (GC) as related to Commissioning Process include, but are not limited to the following:

1. Facilitate coordination of Commissioning work by CxA.

2. Attend Commissioning meetings or other meetings called by CxA to facilitate the Commissioning Process.

3. Integrate and coordinate commissioning process activities with construction schedule.

4. Review CxA’s Functional Test procedures for feasibility, safety, and impact on warranty, and provide CxA with written comment on same.
5. Provide all documentation relating to manufacturer’s recommended performance testing of equipment and systems.

6. Provide Operations and Maintenance Data to CxA for preparation of checklists and training manuals.

7. Provide testing and balancing report.

8. Provide As-built drawings and documentation to facilitate Functional Testing.

9. Assure and facilitate participation and cooperation of specialty subcontractors (electrical, mechanical, Building Automation, etc.), and equipment suppliers as required for the Commissioning Process.

10. Require subcontractors to inspect systems installed and fill-out System readiness checklists (provided by CxA) to verify installation has taken place in accordance with manufacturer’s instructions, and in a workmanlike manner in accordance with project documents and generally accepted construction practices. Certify to CxA that installation work listed in System readiness checklists has been completed and accompany CxA during verification of completed System readiness checklists.

11. Install systems and equipment in strict conformance with project specifications, manufacturer’s recommended installation procedures, and System readiness checklists, as prepared by CxA.

12. Provide data concerning performance, installation, and start-up of systems.

13. Provide copy of manufacturer’s filled-out start-up forms for equipment and systems.

14. Ensure systems have been started and fully checked for proper operation prior to arranging for Functional Testing with CxA. Prepare and submit to CxA written certification that each piece of equipment and/or system has been started according to manufacturer’s recommended procedure, and that system has been tested for compliance with operational requirements.
 a. GC shall carry out manufacturer’s recommended start-up and testing procedures, regardless of whether or not they are specifically listed in CxA’s Functional Test procedures.
 b. GC is not relieved of obligation for systems / equipment demonstration where performance testing is required by specifications, but a Functional Performance Test is not specifically designated by CxA.

15. Coordinate with CxA to determine mutually acceptable date of Functional Performance Tests.

16. Review and accept construction checklists provided by the CxA.

17. Direct and coordinate commissioning testing among subcontractors, suppliers, and vendors.

18. Complete commissioning process test procedures.

19. Provide qualified personnel to assist and participate in Commissioning.

20. Provide test instruments and communications devices, as prescribed by CxA and where identified in this specifications manual, as required for carrying out Functional Testing of systems.

21. Evaluate performance deficiencies identified in test reports and, in collaboration with entity responsible for system and equipment installation, recommend corrective action.

22. Cooperate with the CxA for resolution of issues recorded in the Issues Log.

23. Ensure deficiencies found in the Commissioning Process are corrected within the time schedule shown in the CA report.

24. Provide CxA with all submittals, start-up instructions manuals, operating parameters, and other pertinent information related to Commissioning Process. This information shall be provided directly to the CxA as a digital PDF file at the same time that the submittals are made to the architect and/or engineer.

25. Prepare and submit to CxA proposed Training Program outline for each system.

26. Coordinate and provide training of Owner’s personnel. Provide CxA with proposed training agenda no less than 14 days prior to scheduled training sessions. Provide documentation that training took place (including system being trained on, trainer’s name and contact information, sign-in sheet verifying who attended training, length of training, and signature of owner’s authorized person certifying training took place satisfactorily).

27. Prepare Operation and Maintenance manuals and As-Built drawings in accordance with specifications; submit copy to CxA in addition to other contractually required submissions. Revise and resubmit manuals in accordance with Design Professionals and CxA’s comments.

28. All costs associated with the participation of GC, Sub-Contractors, Design Professionals, and Equipment Vendors in the Commissioning Process shall be included as part of the Construction Contract.

C. Subcontractors and vendors shall prepare and submit to Commissioning Authority Manufacturer’s installation and performance test procedures to demonstrate performance of systems according to these specifications and checklists prepared by Commissioning Authority.
D. Owner’s Representative: Responsibilities of the Owner’s Representative as related to Commissioning Process include, but are not limited to the following:

1. Provide the OPR documentation to the CxA and GC for information and use.
2. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities.
3. Provide the BoD documentation, prepared by Architect and approved by Owner, to the CxA and GC for use in developing the commissioning plan, systems manual, and operation and maintenance training plan.
4. Manage contracts of Architect and GC.
5. Arrange for facility operating and maintenance personnel to attend various field commissioning activities and field training sessions.
6. Provide final approval for completion of Commissioning Work.
7. Warranty Period: Ensure that seasonal or deferred testing and deficiency issues are addressed.

E. Architect: Responsibilities of the Architect as related to Commissioning Process include, but are not limited to the following:

1. Attend commissioning scoping meeting and other commissioning team meetings as requested by Commissioning Authority and as selected by Architect.
2. Perform normal submittal review, construction observation, record drawing preparation, and operations and maintenance data preparation, as required by Contract Documents.
3. Coordinate resolution of system deficiencies identified during commissioning, as required by Contract Documents. Review Commissioning Issues Logs and issue directives to GC and/or Design Professionals as applicable.
5. Review Commissioning Report and issue directive to resolve all outstanding deficiencies prior to project close-out.
6. Warranty Period: Coordinate resolution of design non-conformance and design deficiencies identified during warranty period commissioning.

F. Design Professionals Responsible for Design of Each Portion of Work Being Commissioned:

1. Perform normal submittal review, construction observations, and record drawing preparation, as required by Contract Documents. Perform site observation immediately preceding system startup.
2. Respond to deficiencies identified by Commissioning Authority as directed by Architect.
3. Provide design narrative and sequence documentation requested by Commissioning Authority. Assist, along with GC, in clarifying operation and control of commissioned equipment in areas where specifications, control drawings, or equipment documentation are not sufficient for writing detailed testing procedures.
4. Attend commissioning scoping meetings and other commissioning team meetings as requested by Commissioning Authority and as selected by Architect or responsible design professional.
5. Participate in resolution of system deficiencies identified during commissioning, as required by Contract Documents.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT, INSTRUMENTATION, AND TOOLS

A. Test equipment and instrumentation required to perform the commissioning shall remain the property of Contractor unless otherwise indicated.
2.2 REPORT FORMAT AND ORGANIZATION

A. General Format and Organization:
 2. Label the front cover and spine of each binder with the report title, volume number, project name, Contractor's name, and date of report.
 3. Record report on compact disk.
 4. Electronic Data: Portable document format (PDF); a single file with outline-organized bookmarks for major and minor tabs and tab contents itemized for specific reports.

B. Commissioning Report:
 1. Include a table of contents and an index to each test.
 2. Include major tabs for each Specification Section.
 3. Include minor tabs for each test.
 4. Within each minor tab, include the following:
 a. Test specification.
 b. Pre-startup reports.
 c. Test data forms, completed and signed.
 d. Commissioning issue reports, showing resolution of issues, and documentation related to resolution of issues pertaining to a single test. Group data forms, commissioning issue reports showing resolution of issues, and documentation related to resolution of issues for each test repetition together within the minor tab, in reverse chronological order (most recent on top).

PART 3 - EXECUTION

3.1 PREPARATION

A. Review preliminary system readiness checklists and preliminary test procedures and data forms.

3.2 GENERAL

A. Authority
 1. The Commissioning Authority carries out the Cx responsibilities as the Owner’s authorized agent in accordance with plans, specifications, and contractual requirements.
 2. CxA reports deficiencies found to the GC, Architect and Owner.
 3. The Architect evaluates deficiencies and issues directive to GC to remedy CxA’s deficiencies lists, in accordance with contract documents.
 4. No change in scope work is to take place without express written consent of Owner. Any deficiencies identified by CxA that are deemed by Architect to be outside of the scope of work shall be discussed with Owner for consideration.
 5. GC and CxA are to copy Architect on all correspondence related to the commissioning process.

B. Participation In The Commissioning Process
 1. GC shall attend meetings related to Commissioning process and arrange for attendance by subcontractors and vendors prior to commissioning of their systems, at the discretion of CxA.
 2. Provide skilled technicians to start and test all systems, and place systems in complete and fully functioning service in accordance with contract documents and design intent.
 3. Provide skilled technicians, experienced and familiar with systems being commissioned, to assist CxA in commissioning process.
 4. Attend initial commissioning team scoping meeting, pre-commissioning meetings specific to each system, and other meetings requested by CxA as required to discuss resolution of deficiencies.
 5. Coordinate with sub-Contractors and equipment vendors/representatives to set aside adequate time to address System readiness Checklists, Functional Testing, Operations and Maintenance Training, and associated coordination meetings.
C. Work Prior To Testing

1. A commissioning team scoping meeting shall be held at a time and place designated by Commissioning Authority. Owner, Architect, Commissioning Authority, Contractor, and Mechanical, Electrical, and Controls Contractors, shall be present at this meeting. The main objectives of the meeting are to familiarize all parties with the requirements of the commissioning process; to ensure that the responsibilities of each party are clearly understood; and obtain information to develop the preliminary commissioning plan, including:
 a. Personnel representing the various entities participating in the process (GC, subcontractors, Owner, Architect, Engineer, CxA)
 b. Lines of communications;
 c. Assignment of responsibilities;
 d. Review system readiness checklists;
 e. Submittal schedule;
 f. Preliminary construction schedule

2. Following the initial commissioning team scoping meeting, and upon reviewing submittals, CxA shall prepare a preliminary Commissioning Plan outlining procedures and responsibilities, including names and contact information of responsible parties, tentative dates for commissioning activities, and system readiness checklists. Preliminary Commissioning Plan shall be distributed to GC and Owner electronically for review and comment. CxA shall modify the Commissioning Plan based on feedback from GC and Owner and will generate a final Cx Plan.

3. Prior to system readiness and functional testing, CxA will conduct site inspections at critical times and issue Cx Field Reports with observations on installation deficiencies so that they may be issued by Architect as deemed appropriate

4. GC shall complete all phases of the work so the systems can be started, tested, adjusted, balanced, and otherwise commissioned.

5. GC shall verify requirements of Divisions 22, 23 and 26 outlining responsibilities for start-up of equipment with obligations to complete systems, including all sub-systems so that they are fully functional.

6. A minimum of fourteen (14) days prior to date of system readiness performance test, submit to Commissioning Authority for review, detailed description of equipment start-up procedures which GC proposes to perform to demonstrate conformance of systems to specifications and commissioning checklists.

7. Convene system-specific pre-commissioning meetings prior to start of system readiness testing of each system. The GC shall hold a pre-commissioning meeting with all Team members in attendance. The purpose of the meeting is to review the system readiness checklists, and equipment start-up procedures for each system to be commissioned, confirm that systems are ready for testing, and define a schedule for testing activities.

D. System readiness checks and functional performance tests

1. The GC shall provide all materials, services, and labor required to operate equipment and/or system in order to perform the system readiness checks and functional performance tests. A system readiness check or functional performance test shall be aborted if any system deficiency prevents the successful completion of the test or if any participating commissioning team member of which participation is specified is not present for the test. The GC shall reimburse the Owner and A/E for all costs associated with effort lost due to tests that are aborted. These costs shall include salary, travel costs and per diem (where applicable).

2. Functional performance tests may sometimes duplicate the checking, testing, and inspection methods established in related Sections. Where checking, testing, and inspection methods are not specified in other Sections, methods shall be established which will provide required information. Testing and verification required by this section shall be performed during the Commissioning phase. Requirements in related Sections are independent from the requirements of this Section and shall not be used to satisfy any of the requirements specified in this Section without the approval of CxA.

3. Follow start-up and initial checkout procedures listed in article titled “RESPONSIBILITIES” in Part 1, and additional requirements specified in this Section. Divisions 22, 23 and 26 have startup responsibilities and are required to complete systems and sub-systems so systems are fully functional, meeting design requirements of Contract Documents. Commissioning procedures and functional testing do not relieve or lessen this responsibility or shift this responsibility, in whole or in part, to Commissioning Agent or Owner.

E. Work To Resolve Deficiencies
1. Complete corrective work in a timely manner to allow expeditious completion of commissioning process. If deadlines pass without resolution of identified problems, Owner reserves the right to obtain supplementary services and/or equipment to resolve the problem. Costs thus incurred will be GC’s responsibility.

3.3 SUSTAINABILITY REQUIREMENTS

A. Comply with requirements listed in specifications and drawings as it relates to sustainability features that will be verified during the Commissioning process.

3.4 SYSTEM READINESS CHECKLISTS

A. General

1. System readiness checklists are important to ensure that equipment and systems are properly connected and operational, and installed in accordance with specifications, drawings, manufacturer's requirements, and all applicable codes.
2. Checklists ensure that functional performance testing (in-depth checkout) may proceed without unnecessary delays.
3. Performance of system readiness checklists, startup, and checkout shall be directed and executed by subcontractor or vendor. Only individuals that have direct knowledge and who witnessed that line item task on system readiness checklist was performed shall initial or check item off.
4. Each piece of equipment and major distribution system receive full system readiness checkout. No sampling strategies are used.
5. System readiness checkout for given system must be successfully completed prior to formal functional performance testing of equipment or subsystems of given system.

B. System readiness Checklist

1. System readiness performance tests shall be documented in a checklist format, as prepared and provided by CxA, for each piece of equipment. Each checklist shall be initialed by GC, verifying that all items on checklist have been addressed and completed.
2. Commissioning System readiness checklists are not to preclude GC from applying his own construction inspection checklists.
3. All system elements shall be checked to verify that they have been installed, adjusted, and calibrated properly, that all connections have been made correctly, and that it is ready to function as specified. Verify that each piece of equipment or system has been checked for proper lubrication, drive rotation, control sequence, and other conditions which may cause damage.
4. Verify that tests, meter readings and specific electrical characteristics agree with those required by equipment or system manufacturer.
5. All discrete elements and sub-systems shall be adjusted and shall be checked for proper operation. Verify wiring and support components for equipment are complete and tested.
6. Do not conduct start-up procedure recommended by equipment/system manufacturer at prior to system readiness testing.
7. Subcontractors shall clearly list outstanding items of initial start-up and system readiness procedures that were not completed successfully at bottom of procedures form or on separate sheet attached to form. Completed forms and attached sheets shall be provided to Commissioning Authority within 2 days of test completion. Installing subcontractor or vendor shall correct deficient or incomplete areas in timely manner and shall submit updated system readiness checklist and startup report with statement of correction on original non-compliance report.
8. When system readiness checklists for a particular system or subsystems are completed, GC will request verification by CxA. GC and subcontractors shall accompany CxA during system readiness checklist verification.
9. If during system readiness checklist verification, CxA finds a significant number of deficiencies, GC shall have all the checklists associated with similar system redone.

3.5 SYSTEM START-UP

A. GC will arrange for start-up of operating equipment and systems after (or at the same time as) system readiness testing and prior to scheduling Functional Testing.
B. Start-up of equipment and systems shall be performed only by a manufacturer’s representative, or person(s) who are specifically manufacturer-approved. All start-up personnel shall be trained and authorized, experienced and knowledgeable in the operations of such equipment and systems.

C. Coordinate schedule for start-up of various equipment and systems so that subsystems required for major systems operation are tested first.

D. Manufacturer’s start-up reports must be submitted to CxA prior to scheduling Functional Testing.

3.6 FUNCTIONAL TESTING

A. The objective of Functional Testing is to demonstrate that each system is operating according to documented design intent and Contract Documents, through all possible modes of operation.

B. GC and sub-Contractors shall include in his bid proposal all costs associated with preparation and execution of Testing Procedures for all systems to be commissioned.

C. Functional testing is intended to begin upon completion of each system and after system readiness checklists have been completed. Functional testing may proceed prior to completion of systems or subsystems at discretion of Commissioning Authority. Beginning system testing before completion does not relieve GC from fully completing system, including system readiness checklists as early as possible.

D. GC and sub-Contractors shall provide detailed Testing Procedures that will allow all items on checklists to be verified.

E. Testing shall be conducted under specified operating conditions as recommended or approved by Commissioning Authority.

F. A Functional Performance Test shall be performed on each complete system. Each function shall be demonstrated to the satisfaction of Commissioning Authority in accordance with proposed test procedures developed to demonstrate compliance with specifications.

G. Each Functional Test shall be witnessed and signed off by Commissioning Authority upon satisfactory completion. Functional Test is not to be considered complete until Owner accepts Commissioning Authority’s recommendation for completion.

H. All elements of system shall be tested to demonstrate that total systems satisfy all requirements of these specifications. Testing shall be accomplished on hierarchical basis. Test each piece of equipment for proper operation, followed by each subsystem, followed by the entire system, followed by any inter-ties to other major systems.

I. Notification, Scheduling Of Functional Testing and Re-Testing

1. Notify CxA and Owner, in writing, of request for scheduling Functional Testing. Submit request no fewer than five days prior to desired date for beginning functional testing.
 a. GC must certify that systems and equipment are functioning satisfactorily, according to specifications and design intent, prior to requesting Functional Testing. Upon receipt of such certification, CxA will schedule with GC a time for the particular system test.
 1) CxA will attempt to schedule Functional Testing when convenient for GC and his vendors, and to minimize lost time to GC.
 b. GC will resolve all deficiencies identified during initial test prior to submitting request, in writing, for re-testing. Such request for re-testing shall certify that GC has resolved all deficiencies, or list reason why any deficiencies remain which cannot be resolved.
 c. CxA will re-test to ensure that all deficiencies have been resolved.
 1) Deficiencies that were not detected in first Functional Test, but are discovered in subsequent re-testing, are to be resolved by GC as if they had been discovered in initial testing.

J. Functional Testing Requirements And Procedures
1. GC and sub-Contractors shall perform tests in the presence of CxA. Tests not witnessed by CxA shall not be considered complete.

2. To facilitate Functional Testing, when requested by CxA, GC shall provide services of personnel to accompany CxA for the duration of Functional Testing, including any follow-up testing. Such personnel must be experienced, qualified, and intimately familiar with the system being tested.
 a. Participation by representative(s) of direct digital controls (DDC) systems is of particular importance in Functional Testing. All systems which are controlled and/or monitored by DDC are to be thoroughly tested, point by point, through all modes of operation, with the assistance of manufacturer’s representative. DDC graphics, setpoints, and programming are to be included as a part of Functional Testing as well.
 b. GC must provide services of personnel to accompany CxA for equipment and systems which may pose particular health and safety concerns, such as boilers.
 c. Should he fail to provide representative to accompany CxA during Functional Testing, GC continues to bear full responsibility for equipment warranty. Owner and CxA will not be held responsible for damage to equipment, or other actions which might impact warranty, when performing Functional Testing of systems where GC has not provided authorized accompanying representative to operate equipment.

3. Each system shall be operated through all modes of operation including, but not limited to seasonal, occupied, unoccupied, warm-up, cool-down, part-load, and full-load, where system response is specified.
 a. For multiple units, sampling strategy established by Commissioning Authority and subject to approval of Owner may be used.
 b. Verification of each sequence in sequences of operation is required.
 c. Proper responses to such modes and conditions as power failure, freeze condition, low oil pressure, no flow, equipment failure, and the like, shall also be tested.

4. Where possible, inspections carried out on systems by local Authorities Having Jurisdiction (AHJ) may serve as Functional Testing for purposes of Commissioning.
 a. CxA will accompany AHJ during testing procedures required by AHJ.
 b. It is responsibility of GC to arrange for testing by AHJ and to coordinate with CxA to find mutually convenient times for testing. Provide CxA a minimum of four days in advance of intent to schedule testing by AHJ.
 c. CxA will issue a separate report on results of testing.
 d. CxA reserves the right to require additional testing, should testing by AHJ not adequately cover all system components in all modes of operation.

5. Functional Testing is to be dedicated solely to testing of equipment and systems, and not to resolution of deficiencies. Deficiencies identified during testing process must be corrected by GC at a time other than during Functional Testing.

6. Within six days of performing functional test, CxA will issue test report with findings a list of deficiencies that must be addressed by GC or sub-Contractors.

7. Commissioning Authority shall submit a Final Report to Owner recommending acceptance or non-acceptance of individual system components as well as the systems as a whole.

K. Re-Testing And Failure To Remedy Deficiencies

1. Despite GC’s best efforts to ensure systems are problem-free, it is expected that some deficiencies will be found during initial inspection of System readiness Checklist, and during initial Functional Testing; such deficiencies are expected to be minimal.

2. It is GC’s responsibility to remedy identified deficiencies, both in System readiness Checklist and in Functional Testing phases of work, in a timely and thorough manner.

3. It is GC’s responsibility to ensure that all deficiencies are corrected prior to requesting a re-inspection or re-test of systems and equipment. Do not request re-inspection or re-test until deficiencies are corrected.
 a. At his discretion, CxA may agree to re-testing systems or equipment where deficiencies remain which are beyond GC’s control to resolve expeditiously.
 b. Typically such re-testing of incomplete systems and equipment will take place only if remaining deficiencies are minor in scope and nature, and are of such nature that they cannot be resolved in a timely manner (such as those due to difficulties in obtaining parts, or where Owner has requested a change that has delayed work, etc.)

4. CxA will carry out a second re-inspection or re-test of systems and equipment subsequent to receiving GC’s request.
 a. If CxA finds deficiencies identified in initial inspection or test have not been remedied (with exception of un-resolvable deficiencies noted above), and such remaining deficiencies are
3.7 DEFERRED TESTING

A. “Seasonal Commissioning” pertains to testing during peak heating or cooling seasons when HVAC equipment is operating at full-load or heavy-load conditions. Initial commissioning will be done as soon as contract work is completed, regardless of season. Seasonal Commissioning under full- or heavy-load conditions other than the current season will be handled at later time by GC and CxA.

1. If adequate load may be artificially placed upon heating or cooling equipment, CxA, at his discretion, may perform functional testing during non-peak load periods.
2. GC is to provide services of personnel and participate in seasonal testing process in the same manner as he would in non-seasonal testing.
3. Until off-season commissioning can be accomplished, Owner may retain an amount from GC’s payment sufficient to cover the cost of off-season testing.

B. Unforeseen Deferred Tests: If any check or test cannot be completed due to building structure, required occupancy condition, or other reason, execution of checklists and functional testing may be delayed upon approval of Owner. Tests shall be conducted in same manner as seasonal tests, as soon as possible. Services of required parties will be negotiated. Make final adjustments to Operation and Maintenance Manuals and record drawings due to unforeseen deferred tests.

1. GC is to provide services of personnel and participate in deferred testing in the same manner as he would for normal commissioning.
2. Until deferred testing can be accomplished, Owner may retain an amount from GC’s payment sufficient to cover the cost of deferred testing.

3.8 TRAINING

A. The following requirements are in addition to operation and maintenance requirements specified elsewhere in this specifications manual. GC shall be responsible for training coordination and scheduling, and ultimately to ensure that training is completed.

B. Scheduling

1. Organize training to fit Owner’s schedule and to optimize the learning experience. Limit continuous sessions to no more than four hours, or otherwise only as approved by Owner and/or Architect.
2. Provide an outline of the proposed training agenda for review by Owner and CxA a minimum of 10 days prior to proposed date for training session.
3. Provide CxA a minimum 5 days advance notice of intent to carry out a training session.
4. The CxA will not be required to attend all training sessions for building personnel, but will attend selected sessions and monitor progress and content.
5. No training will take place prior to successful completion of Functional Testing.

C. Training Materials

1. Develop Training Manuals to meet requirements of individual equipment specification sections.
2. Operating and Maintenance Manuals alone are NOT considered training manuals. O&M Manuals may be used as reference, but shall not be considered to meet requirements for training materials.
3. Develop a detailed outline showing how training program will be organized, including classroom and hands-on training as required by individual specifications sections.
4. Provide with training materials, a quick-reference “how-to” index which will allow operators to easily access information included in Training Manuals and/or O&M Manuals. This reference will include, as a minimum; routine normal operating instructions and sequences. Include regulation, control, stopping, shut-down, and emergency instructions.
5. Refer to individual equipment or system specifications for minimum material to be covered as part of the training program.

D. Documentation

1. All training sessions are to be fully documented. Document:
 a. Basic information on training session (name of system, time, date, and location of training, name of presenter, length of training session, etc.).
b. Names of persons who attended the training session (provide a sign-in sheet).
c. Signature from authorized Owner’s representative indicating that training took place and was satisfactory.

2. Provide CxA copy of sign-in sheet with training session documentation.

3.9 O&M MANUALS

A. Provide operation and maintenance manuals as specified in section 017700 Closeout Submittals, and as outlined in individual sections of Divisions 22, 23 and 26.

B. Provide CxA with a single copy of Operation and Maintenance Manuals for review. CxA’s copy of O&M manuals shall be submitted through Architect.

C. CxA shall review O&M Manuals and submit comments through the Architect.

3.10 SYSTEMS TO BE COMMISSIONED

A. Refer to commissioning specifications sections in Related Sections, including the following:
 1. 230100 - COMMISSIONING OF MECHANICAL SYSTEMS: HVAC and Controls.
 2. 260100 - COMMISSIONING OF ELECTRICAL SYSTEMS: Lighting and Lighting Controls.

END OF SECTION 019113
SECTION 054000
COLD-FORMED METAL FRAMING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Interior and Exterior non-load-bearing wall framing.

1.2 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings:
 1. Include layout, spacings, sizes, thicknesses, and types of cold-formed steel framing; fabrication; and fastening and anchorage details, including mechanical fasteners.
 2. Indicate reinforcing channels, opening framing, supplemental framing, strapping, bracing, bridging, splices, accessories, connection details, and attachment to adjoining work.

1.4 INFORMATIONAL SUBMITTALS
A. Welding certificates.
B. Product certificates.
C. Product test reports.

1.5 QUALITY ASSURANCE
A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.
B. Product Tests: Mill certificates or data from a qualified independent testing agency.
C. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
D. Comply with AISI S230 "Standard for Cold-Formed Steel Framing - Prescriptive Method for One and Two Family Dwellings."
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Contractor to specify all stud gauges to comply with sizes shown on drawings and all Code Mandated lateral loads and deflections provisions.

B. Cold-Formed Steel Framing Standards: Unless more stringent requirements are indicated, framing shall comply with AISI S100, AISI S200, and the following:
 1. Wall Studs: AISI S211.

C. Fire-Resistance Ratings: Comply with ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

2.2 COLD-FORMED STEEL FRAMING MATERIALS

A. Steel Sheet: ASTM A1003/A1003M, Structural Grade, Type H, metallic coated, of grade and coating designation as follows:
 1. Grade: ST33H.
 2. Coating: G60, A60, AZ50, or GF30.

B. Steel Sheet for Vertical Deflection Clips: ASTM A653/A653M, structural steel, zinc coated, of grade and coating as follows:
 1. Grade: As required by structural performance.
 2. Coating: G60.

2.3 EXTERIOR NON-LOAD-BEARING WALL FRAMING

A. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:
 1. Minimum Base-Metal Thickness: 20 gauge. Where wall mounted equipment, woodwork, and casework items are indicated or elsewhere as shown on drawings provide minimum 16 gauge studs.

B. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with unstiffened flanges, and matching minimum base-metal thickness of steel studs.

C. Vertical Deflection Clips: Manufacturer's standard head clips, capable of accommodating upward and downward vertical displacement of primary structure through positive mechanical attachment to stud web.

D. Single Deflection Track: Manufacturer's single, deep-leg, U-shaped steel track; unpunched, with unstiffened flanges, of web depth to contain studs while allowing free vertical movement, with flanges designed to support horizontal loads and transfer them to the primary structure.

E. Double Deflection Tracks: Manufacturer's double, deep-leg, U-shaped steel tracks, consisting of nested inner and outer tracks; unpunched, with unstiffened flanges.

F. Drift Clips: Manufacturer's standard bypass or head clips, capable of isolating wall stud from upward and downward vertical displacement and lateral drift of primary structure through positive mechanical attachment to stud web and structure.
2.4 INTERIOR NON-LOAD-BEARING WALL FRAMING

A. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:
 1. Minimum Base-Metal Thickness: 20 gauge. Where wall mounted equipment, woodwork, and casework items are indicated or elsewhere as shown on drawings provide minimum 16 gauge studs.

B. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with unstiffened flanges, and matching minimum base-metal thickness of steel studs.

C. Vertical Deflection Clips: Manufacturer's standard head clips, capable of accommodating upward and downward vertical displacement of primary structure through positive mechanical attachment to stud web.

D. Single Deflection Track: Manufacturer's single, deep-leg, U-shaped steel track; unpunched, with unstiffened flanges, of web depth to contain studs while allowing free vertical movement, with flanges designed to support horizontal loads and transfer them to the primary structure.

E. Double Deflection Tracks: Manufacturer's double, deep-leg, U-shaped steel tracks, consisting of nested inner and outer tracks; unpunched, with unstiffened flanges.

F. Drift Clips: Manufacturer's standard bypass or head clips, capable of isolating wall stud from upward and downward vertical displacement and lateral drift of primary structure through positive mechanical attachment to stud web and structure.

2.5 FRAMING ACCESSORIES

A. Fabricate steel-framing accessories from ASTM A1003/A1003M, Structural Grade, Type H, metallic coated steel sheet, of same grade and coating designation used for framing members.

B. Provide accessories of manufacturer's standard thickness and configuration, unless otherwise indicated.

2.6 ANCHORS, CLIPS, AND FASTENERS

A. Steel Shapes and Clips: ASTM A36/A36M, zinc coated by hot-dip process according to ASTM A123/A123M.

B. Anchor Bolts: ASTM F1554, Grade 36, threaded carbon-steel hex-headed bolts, carbon-steel nuts, and flat, hardened-steel washers; zinc coated by hot-dip process according to ASTM A153/A153M, Class C.

C. Post-Installed Anchors: Fastener systems with bolts of same basic metal as fastened metal, if visible, unless otherwise indicated; with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC01 as appropriate for the substrate.
 1. Uses: Securing cold-formed steel framing to structure.
 2. Type: Torque-controlled expansion anchor.
 3. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B633 or ASTM F1941, Class Fe/Zn 5, unless otherwise indicated.

D. Power-Actuated Anchors: Fastener systems with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.
E. Mechanical Fasteners: ASTM C1513, corrosion-resistant-coated, self-drilling, self-tapping, steel drill screws.
 1. Head Type: Low-profile head beneath sheathing; manufacturer's standard elsewhere.

2.7 MISCELLANEOUS MATERIALS

A. Galvanizing Repair Paint: ASTM A780/A780M.

B. Nonmetallic, Nonshrink Grout: Factory-packaged, nonmetallic, noncorrosive, nonstaining grout, complying with ASTM C1107/C1107M, and with a fluid consistency and 30-minute working time.

C. Shims: Load-bearing, high-density, multimonomer, nonleaching plastic; or cold-formed steel of same grade and metallic coating as framing members supported by shims.

D. Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch thick, selected from manufacturer's standard widths to match width of bottom track or rim track members as required.

PART 3 - EXECUTION

3.1 PREPARATION

A. Install load-bearing shims or grout between the underside of load-bearing wall bottom track and the top of foundation wall or slab at locations with a gap larger than 1/4 inch to ensure a uniform bearing surface on supporting concrete or masonry construction.

B. Install sealer gaskets at the underside of wall bottom track or rim track and at the top of foundation wall or slab at stud or joist locations.

3.2 INSTALLATION, GENERAL

A. Cold-formed steel framing may be shop or field fabricated for installation, or it may be field assembled.

B. Install cold-formed steel framing according to AISI S200, AISI S202, and manufacturer's written instructions unless more stringent requirements are indicated.

C. Install cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened.

D. Install framing members in one-piece lengths unless splice connections are indicated for track or tension members.

E. Install temporary bracing and supports to secure framing and support loads equal to those for which structure was designed. Maintain braces and supports in place, undisturbed, until entire integrated supporting structure has been completed and permanent connections to framing are secured.

F. Do not bridge building expansion joints with cold-formed steel framing. Independently frame both sides of joints.

G. Install insulation, specified in Section 072100 "Thermal Insulation," in framing-assembly members, such as headers, sills, boxed joists, and multiple studs at openings, that are inaccessible on completion of framing work.
H. Fasten hole-reinforcing plate over web penetrations that exceed size of manufacturer's approved or standard punched openings.

3.3 EXTERIOR NON-LOAD-BEARING WALL INSTALLATION

A. Install continuous tracks sized to match studs. Align tracks accurately and securely anchor to supporting structure.

B. Fasten both flanges of studs to top and bottom track unless otherwise indicated. Space studs as follows:
 1. Stud Spacing: As indicated on Drawings.

C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar requirements.

D. Isolate non-load-bearing steel framing from building structure to prevent transfer of vertical loads while providing lateral support.
 1. Install double deep-leg deflection tracks and anchor outer track to building structure.
 2. Connect vertical deflection clips to infill studs and anchor to building structure.
 3. Connect drift clips to cold-formed steel framing and anchor to building structure.

E. Install horizontal bridging in wall studs, spaced vertically in rows indicated but not more than 48 inches apart. Fasten at each stud intersection.
 1. Channel Bridging: Cold-rolled steel channel, welded or mechanically fastened to webs of punched studs.
 2. Strap Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and stud-track solid blocking of width and thickness to match studs. Fasten flat straps to stud flanges and secure solid blocking to stud webs or flanges.
 3. Bar Bridging: Proprietary bridging bars installed according to manufacturer's written instructions.

F. Top Bridging for Single Deflection Track: Install row of horizontal bridging within 12 inches of single deflection track. Install a combination of bridging and stud or stud-track solid blocking of width and thickness matching studs, secured to stud webs or flanges.
 1. Install solid blocking at 96-inch.

G. Install miscellaneous framing and connections, including stud kickers, web stiffeners, clip angles, continuous angles, anchors, and fasteners, to provide a complete and stable wall-framing system.

3.4 INTERIOR NON-LOAD-BEARING WALL INSTALLATION

A. Install continuous tracks sized to match studs. Align tracks accurately and securely anchor to supporting structure.

B. Fasten both flanges of studs to top and bottom track unless otherwise indicated. Space studs as follows:
 1. Stud Spacing: As indicated on Drawings.

C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar requirements.

D. Isolate non-load-bearing steel framing from building structure to prevent transfer of vertical loads while providing lateral support.
 1. Install single deep-leg deflection tracks and anchor to building structure.
 2. Install double deep-leg deflection tracks and anchor outer track to building structure.
3. Connect vertical deflection clips to studs and anchor to building structure.
4. Connect drift clips to cold-formed steel metal framing and anchor to building structure.

E. Install horizontal bridging in wall studs, spaced vertically in rows indicated but not more than 48 inches apart. Fasten at each stud intersection.

1. Channel Bridging: Cold-rolled steel channel, welded or mechanically fastened to webs of punched studs.
2. Strap Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and stud-track solid blocking of width and thickness to match studs. Fasten flat straps to stud flanges and secure solid blocking to stud webs or flanges.
3. Bar Bridging: Proprietary bridging bars installed according to manufacturer's written instructions.

F. Top Bridging for Single Deflection Track: Install row of horizontal bridging within 12 inches of single deflection track. Install a combination of bridging and stud or stud-track solid blocking of width and thickness matching studs, secured to stud webs or flanges.

1. Install solid blocking at 96-inch.

G. Install miscellaneous framing and connections, including stud kickers, web stiffeners, clip angles, continuous angles, anchors, and fasteners, to provide a complete and stable wall-framing system.

3.5 ERECTION TOLERANCES

A. Install cold-formed steel framing level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet and as follows:

1. Space individual framing members no more than plus or minus 1/8 inch from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.

3.6 FIELD QUALITY CONTROL

A. Testing: Owner will engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports.

B. Field and shop welds will be subject to testing and inspecting.

C. Testing agency will report test results promptly and in writing to Contractor and Architect.

D. Cold-formed steel framing will be considered defective if it does not pass tests and inspections.

E. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.7 REPAIRS AND PROTECTION

A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on fabricated and installed cold-formed steel framing with galvanized repair paint according to ASTM A780/A780M and manufacturer's written instructions.

END OF SECTION 054000
SECTION 061600
SHEATHING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Wall sheathing.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product.

1.3 INFORMATIONAL SUBMITTALS

A. Evaluation Reports: For the following, from ICC-ES:
 1. Glass-mat gypsum board sheathing

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Resistance Ratings: As tested according to ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Fire-Resistance Ratings: Indicated by design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency.

2.2 WALL SHEATHING

A. Glass-Mat Gypsum Sheathing: ASTM C1177/C1177M.
 1. Georgia-Pacific DensGlass, or approved equal per Section 012600
 2. Type and Thickness: Regular, 1/2 inch thick.

2.3 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 1. For wall sheathing, provide fasteners with organic-polymer or other corrosion-protective coating having a salt-spray resistance of more than 800 hours according to ASTM B117.
2.4 SHEATHING JOINT-AND-PENETRATION TREATMENT MATERIALS

A. Sealant for Glass-Mat Gypsum Sheathing: Silicone emulsion sealant complying with ASTM C834, compatible with sheathing tape and sheathing and recommended by tape and sheathing manufacturers for use with glass-fiber sheathing tape and for covering exposed fasteners.

1. Sheathing Tape: Self-adhering glass-fiber tape, minimum 2 inches wide, 10 by 10 or 10 by 20 threads/inch, of type recommended by sheathing and tape manufacturers for use with silicone emulsion sealant in sealing joints in glass-mat gypsum sheathing and with a history of successful in-service use.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.

B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.

C. Securely attach to substrate by fastening as indicated, complying with the following:

1. Table 2304.9.1, "Fastening Schedule," in the ICC's International Building Code.
2. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in the ICC's International Residential Code for One- and Two-Family Dwellings.
3. ICC-ES evaluation report for fastener.

D. Coordinate wall sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.

E. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.

3.2 GYPSUM SHEATHING INSTALLATION

A. Comply with GA-253 and with manufacturer's written instructions.

1. Fasten gypsum sheathing to cold-formed metal framing with screws.
2. Install panels with a 3/8-inch gap where non-load-bearing construction abuts structural elements.
3. Install panels with a 1/4-inch gap where they abut masonry or similar materials that might retain moisture, to prevent wicking.

B. Seal sheathing joints according to sheathing manufacturer's written instructions.

1. Apply elastomeric sealant to joints and fasteners and trowel flat. Apply sufficient amount of sealant to completely cover joints and fasteners after troweling. Seal other penetrations and openings.
2. Apply glass-fiber sheathing tape to glass-mat gypsum sheathing joints and apply and trowel sealant to embed entire face of tape in sealant. Apply sealant to exposed fasteners with a trowel so fasteners are completely covered. Seal other penetrations and openings.

END OF SECTION 061600
SECTION 062023
INTERIOR FINISH CARPENTRY

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Shelving and clothes rods.

1.2 DEFINITIONS

A. MDF: Medium-density fiberboard.
B. MDO: Plywood with a medium-density overlay on the face.
C. PVC: Polyvinyl chloride.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product.
B. Samples: For each exposed product and for each color and texture specified.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, comply with applicable rules of any rules-writing agency certified by the American Lumber Standard Committee’s (ALSC) Board of Review. Grade lumber by an agency certified by the ALSC’s Board of Review to inspect and grade lumber under the rules indicated.

 1. Factory mark each piece of lumber with grade stamp of grading agency.
 2. For exposed lumber, mark grade stamp on end or back of each piece, or omit grade stamp and provide certificates of grade compliance issued by grading agency.

B. Softwood Plywood: DOC PS 1.
C. Hardboard: ANSI A135.4.
D. MDF: ANSI A208.2, Grade 130.
E. Particleboard: ANSI A208.1, Grade M-2.
F. Melamine-Faced Particleboard: Particleboard complying with ANSI A208.1, Grade M-2, finished on both faces with thermally fused, melamine-impregnated decorative paper and complying with NEMA LD 3, Grade VGL, for Test Methods 3.3, 3.4, 3.6, 3.8, and 3.10.

2.2 INTERIOR TRIM

A. Softwood Lumber Trim for Transparent Finish (Stain or Clear Finish):
 1. Species and Grade: Eastern white pine; NeLMA or NLGA C Select.
 2. Species and Grade: Idaho white, lodgepole, ponderosa, radiata, or sugar pine; NLGA or WWPA C Select (Choice).
 3. Species and Grade: Eastern white, Idaho white, lodgepole, ponderosa, radiata, or sugar pine; NeLMA, NLGA, or WWPA C Select (Choice).
 4. Species and Grade: White woods; WWPA C Select.
 5. Species and Grade: Douglas fir-larch or Douglas fir south; NLGA, WCLIB, or WWPA Superior or C & Btr finish.
 6. Species and Grade: Southern pine; SPIB B & B.
 7. Species and Grade: Western red cedar; NLGA, WCLIB, or WWPA Clear Heart.
 8. Maximum Moisture Content: 19 percent.
 10. Face Surface: Surfaced (smooth).

B. Hardwood Lumber Trim for Transparent Finish (Stain or Clear Finish):
 1. Species and Grade: Red oak; NHLA Clear.
 2. Maximum Moisture Content: 13 percent.
 6. Face Surface: Surfaced (smooth).
 7. Matching: Selected for compatible grain and color.

C. Lumber Trim for Opaque Finish (Painted Finish):
 1. Species and Grade: Eastern white pine; NeLMA or NLGA D Select.
 2. Species and Grade: Idaho white, lodgepole, ponderosa, radiata, or sugar pine; NLGA or WWPA D Select (Quality).
 3. Species and Grade: Eastern white, Idaho white, lodgepole, ponderosa, radiata, or sugar pine; NeLMA, NLGA, or WWPA D Select (Quality).
 4. Species and Grade: White woods; WWPA D Select.
 5. Species and Grade: Douglas fir-larch or Douglas fir south; NLGA, WCLIB, or WWPA [Superior or C & Btr] [Prime or D] finish.
 6. Species and Grade: Spruce-pine-fir; NeLMA, NLGA, WCLIB, or WWPA 1 Common.
 7. Species and Grade: Alder, aspen, basswood, cottonwood, gum, magnolia, soft maple, sycamore, tupelo, or yellow poplar; NHLA A Finish.
 8. Maximum Moisture Content: 19 percent.
 11. Face Surface: Surfaced (smooth).
 12. Optional Material: Primed MDF of same actual dimensions as lumber indicated may be used in lieu of lumber.

D. Softwood Moldings for Transparent Finish (Stain or Clear Finish): MMPA WM 4, N-grade wood moldings. Made to patterns included in MMPA's "WM/Series Softwood Moulding Patterns."
 1. Species: Southern pine.
 2. Maximum Moisture Content: 15 percent with at least 85 percent of shipment at 12 percent or less.
 4. Matching: Selected for compatible grain and color.
E. Hardwood Moldings for Transparent Finish (Stain or Clear Finish): MMPA WM 4, N-grade wood moldings made to patterns included in MMPA's "HWM/Series Hardwood Moulding Patterns."

1. **Species:** Red oak.
2. **Maximum Moisture Content:** 9 percent.
3. **Finger Jointing:** Not allowed.
4. **Matching:** Selected for compatible grain and color.
5. **Optional Material:** Kiln-dried softwood or MDF, with exposed surfaces veneered with species indicated, may be used in lieu of solid wood.
6. **Base Pattern:** HWM 633, 7/16-by-3-1/4-inch ogee base.
7. **Shoe-Mold Pattern:** HWM 129, 7/16-by-11/16-inch quarter-round shoe mold.
8. **Casing Pattern:** HWM 328, 1/2-by-2-1/4-inch clamshell casing.
9. **Mull-Casing Pattern:** HWM 989, 3/16-by-2-inch square-edge casing.
10. **Stop Pattern:** [HWM 856, 3/8-by-1-3/8-inch ranch stop.
11. **Chair-Rail Pattern:** HWM 297, 11/16-by-3-inch chair rail.

F. Moldings for Opaque Finish (Painted Finish): Made to patterns included in MMPA's "WM/Series Softwood Moulding Patterns."

1. **Softwood Moldings:** MMPA WM 4, P grade.
 a. **Species:** Eastern white, Idaho white, lodgepole, ponderosa, radiata, or sugar pine.
 b. **Maximum Moisture Content:** 15 percent with at least 85 percent of shipment at 12 percent or less.
2. **Hardwood Moldings:** MMPA WM 4, P-grade.
 a. **Species:** Aspen, basswood, cottonwood, gum, magnolia, soft maple, tupelo, or yellow poplar.
 b. **Maximum Moisture Content:** 9 percent.
3. **Finger Jointing:** Allowed.
4. **Optional Material:** Primed MDF.
5. **Base Pattern:** WM 623, 9/16-by-3-1/4-inch ogee base.
6. **Shoe-Mold Pattern:** WM 129, 7/16-by-11/16-inch quarter-round shoe mold.
7. **Casing Pattern:** WM 327, 11/16-by-2-1/4-inch clamshell casing.
8. **Mull-Casing Pattern:** WM 957, 3/8-by-1-3/4-inch beaded-edge casing.
9. **Stop Pattern:** WM 856, 3/8-by-1-3/8-inch ranch stop.
10. **Chair-Rail Pattern:** WM 297, 11/16-by-3-inch chair rail.

2.3 SHELVING

A. Exposed Shelving: Made from one of the following materials, 3/4 inch thick:

1. Particleboard with solid-wood front edge.
2. MDF with solid-wood front edge.
3. MDO softwood plywood with solid-wood edge.
4. Melamine-faced particleboard with applied-PVC front edge.
5. Wood boards as specified above for lumber trim for opaque finish.
6. Softwood Boards: Kiln-dried eastern white, Idaho white, lodgepole, ponderosa, radiata, or sugar pine; NeLMA, NLGA, or WWPA C Select (Choice).
7. Softwood Boards: Kiln-dried Douglas fir-larch, Douglas fir south, or hem-fir; SPIB Superior or C & Btr finish; NLGA, WCLIB, or WWPA; or southern pine; [B & B] [C] finish.

B. Shelf Cleats: 3/4-by-3-1/2-inch boards, as specified above for shelving.

C. Shelf Brackets with Rod Support: BHMA A156.16, B04051; prime-painted formed steel.

D. Shelf Brackets without Rod Support: BHMA A156.16, B04041; prime-painted formed steel.
E. Standards for Adjustable Shelf Brackets: BHMA A156.9, B04102; powder-coat-finished steel.
F. Adjustable Shelf Brackets: BHMA A156.9, B04112; powder-coat-finished steel.
G. Standards for Adjustable Shelf Supports: BHMA A156.9, B04071; powder-coat-finished steel.
H. Adjustable Shelf Supports: BHMA A156.9, B04081 or B04091; powder-coat-finished steel.

2.4 MISCELLANEOUS MATERIALS
A. Fasteners for Interior Finish Carpentry: Nails, screws, and other anchoring devices of type, size, material, and finish required for application indicated to provide secure attachment, concealed where possible.
B. Glue: Aliphatic-resin, polyurethane, or resorcinol wood glue recommended by manufacturer for general carpentry use.
C. Multipurpose Construction Adhesive: Formulation, complying with ASTM D3498, that is recommended for indicated use by adhesive manufacturer.

PART 3 - EXECUTION

3.1 PREPARATION
A. Clean substrates of projections and substances detrimental to application.
B. Before installing interior finish carpentry, condition materials to average prevailing humidity in installation areas for a minimum of 24 hours unless longer conditioning is recommended by manufacturer.

3.2 INSTALLATION, GENERAL
A. Install interior finish carpentry level, plumb, true, and aligned with adjacent materials.
 1. Use concealed shims where necessary for alignment.
 2. Scribe and cut interior finish carpentry to fit adjoining work. Refinish and seal cuts as recommended by manufacturer.
 3. Where face fastening is unavoidable, countersink fasteners, fill surface flush, and sand unless otherwise indicated.
 4. Install to tolerance of 1/8 inch in 96 inches for level and plumb. Install adjoining interior finish carpentry with 1/32-inch maximum offset for flush installation and 1/16-inch maximum offset for reveal installation.
 5. Coordinate interior finish carpentry with materials and systems in or adjacent to it. Provide cutouts for mechanical and electrical items that penetrate interior finish carpentry.

3.3 STANDING AND RUNNING TRIM INSTALLATION
A. Install trim with minimum number of joints as is practical, using full-length pieces from maximum lengths of lumber available.
 1. Do not use pieces less than 24 inches long, except where necessary.
 2. Stagger joints in adjacent and related standing and running trim.
 3. Cope at returns, miter at outside corners, and cope at inside corners to produce tight-fitting joints with full-surface contact throughout length of joint.
 4. Use scarf joints for end-to-end joints.
 5. Plane backs of casings to provide uniform thickness across joints where necessary for alignment.
6. Match color and grain pattern of trim for transparent finish (stain or clear finish) across joints.
7. Install trim after gypsum-board joint finishing operations are completed.
8. Install without splitting; drill pilot holes before fastening where necessary to prevent splitting.
9. Fasten to prevent movement or warping.
10. Countersink fastener heads on exposed carpentry work and fill holes.

3.4 SHELVING INSTALLATION

A. Cut shelf cleats at ends of shelves about 1/2 inch less than width of shelves and sand exposed ends smooth.
 1. Install shelf cleats by fastening to framing or backing with finish nails or trim screws, set below face and filled.
 2. Space fasteners not more than 16 inches o.c. Use two fasteners at each framing member or fastener location for cleats 4 inches nominal in width and wider.
 3. Apply a bead of multipurpose construction adhesive to back of shelf cleats before installing.
 4. Remove adhesive that is squeezed out after fastening shelf cleats in place.
B. Install shelf brackets according to manufacturer's written instructions, spaced not more than 32 inches o.c. Fasten to framing members, blocking, or metal backing, or use toggle bolts or hollow wall anchors.
C. Install standards for adjustable shelf supports according to manufacturer's written instructions. Fasten to framing members, blocking, or metal backing, or use toggle bolts or hollow wall anchors. Space fasteners not more than 12 inches o.c.
D. Install standards for adjustable shelf brackets according to manufacturer's written instructions, spaced not more than 36 inches o.c. and within 6 inches of ends of shelves. Fasten to framing members, blocking, or metal backing, or use toggle bolts or hollow wall anchors.
E. Cut shelves to neatly fit openings with only enough gap to allow shelves to be removed and reinstalled.
 1. Install shelves, fully seated on cleats, brackets, and supports.
 2. Fasten shelves to cleats with finish nails or trim screws, set flush.
 3. Fasten shelves to brackets to comply with bracket manufacturer's written instructions.
F. Install rod flanges for rods as indicated.
 1. Fasten to shelf cleats, framing members, blocking, or metal backing, or use toggle bolts or hollow wall anchors.
 2. Install rods in rod flanges.

END OF SECTION 062023
SECTION 064116
PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Plastic-laminate-clad architectural cabinets.
 2. Wood furring, blocking, shims, and hanging strips for installing plastic-laminate-clad architectural cabinets that are not concealed within other construction.

1.2 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include data for fire-retardant treatment from chemical-treatment manufacturer and certification by treating plant that treated materials comply with requirements.

B. Shop Drawings:
 1. Include plans, elevations, sections, and attachment details.
 2. Apply AWI Quality Certification Program label to Shop Drawings.

C. Samples: For each exposed product and for each color and texture specified.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For manufacturer.

B. Research reports.

C. Field quality control reports.

1.5 CLOSEOUT SUBMITTALS
A. Quality Standard Compliance Certificates: AWI Quality Certification Program certificates.

1.6 QUALITY ASSURANCE
A. Manufacturer’s Qualifications: Employs skilled workers who custom fabricate products similar to those required for this Project and whose products have a record of successful in-service performance.
B. Installer Qualifications: Manufacturer of products.

PART 2 - PRODUCTS

2.1 ARCHITECTURAL CABINET MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. AAE Manufacturing Company, Inc.
2. RPM Manufacturing Inc.

2.2 PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS

A. Quality Standard: Unless otherwise indicated, comply with the Architectural Woodwork Standards for grades of cabinets indicated for construction, finishes, installation, and other requirements.

1. Provide labels from AWI certification program indicating that woodwork complies with requirements of grades specified.

B. Architectural Woodwork Standards Grade: Premium.

C. Type of Construction: as indicated on drawings.

D. Door and Drawer-Front Style: as indicated on drawings overlay.

1. Reveal Dimension: As indicated.

E. High-Pressure Decorative Laminate: NEMA LD 3, grades as indicated or if not indicated, as required by quality standard.

1. Formica

F. Laminate Cladding for Exposed Surfaces:

1. Horizontal Surfaces: Grade HGS.
2. Postformed Surfaces: Grade HGP.
3. Vertical Surfaces: Grade VGS.
4. Edges: Grade HGS
5. Pattern Direction: Match existing.

G. Concealed Backs of Panels with Exposed Plastic-Laminate Surfaces: High-pressure decorative laminate, NEMA LD 3, Grade BKL.

H. Drawer Construction: Fabricate with exposed fronts fastened to subfront with mounting screws from interior of body.

1. Join subfronts, backs, and sides with glued rabbeted joints supplemented by mechanical fasteners.

I. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
1. As indicated by laminate manufacturer’s designations.
2. To match existing

2.3 WOOD MATERIALS

A. Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of architectural cabinet and quality grade specified unless otherwise indicated.

1. Wood Moisture Content: 8 to 13 percent.

B. Composite Wood and Agrifiber Products: Provide materials that comply with requirements of referenced quality standard for each type of architectural cabinet and quality grade specified unless otherwise indicated.

1. Medium-Density Fiberboard (MDF): ANSI A208.2, Grade 130.
4. Thermoset Decorative Panels: Particleboard or MDF finished with thermally fused, melamine-impregnated decorative paper and complying with requirements of NEMA LD 3, Grade VGL, for Test Methods 3.3, 3.4, 3.6, 3.8, and 3.10.

2.4 FIRE-RETARDANT-TREATED MATERIALS

A. Fire-Retardant-Treated Materials, General: Where fire-retardant-treated materials are indicated, use materials that are acceptable to authorities having jurisdiction as determined by testing performed on identical products by a qualified testing agency.

1. Use treated materials that comply with requirements of referenced quality standard. Do not use materials that are warped, discolored, or otherwise defective.
2. Identify fire-retardant-treated materials with appropriate classification marking of qualified testing agency in the form of removable paper label or imprint on surfaces that will be concealed from view after installation.

2.5 CABINET HARDWARE AND ACCESSORIES

A. General: Provide cabinet hardware and accessory materials associated with architectural cabinets except for items specified in Section 087100 "Door Hardware."

B. Butt Hinges: 2-3/4-inch, five-knuckle steel hinges made from 0.095-inch-thick metal, and as follows:

1. Semiconcealed Hinges for Flush Doors: BHMA A156.9, B01361.
2. Semiconcealed Hinges for Overlay Doors: BHMA A156.9, B01521.

C. Frameless Concealed Hinges (European Type): BHMA A156.9, B01602, 135 degrees of opening, self-closing.

D. Back-Mounted Pulls: BHMA A156.9, B02011.

F. Catches: Roller catches, BHMA A156.9, B03071.

G. Adjustable Shelf Standards and Supports: BHMA A156.9, B04071; with shelf rests, B04081.

H. Shelf Rests: BHMA A156.9, B04013; metal.

I. Drawer Slides: BHMA A156.9.
1. Grade 1 and Grade 2: Side mounted and extending under bottom edge of drawer.
 a. Type: Full extension.
 b. Material: Zinc-plated steel with polymer rollers.
2. Grade 1HD-100 and Grade 1HD-200: Side mounted; full-extension type; zinc-plated-steel ball-bearing slides.
3. For drawers not more than 3 inches high and not more than 24 inches wide, provide Grade 2.
4. For drawers more than 3 inches high, but not more than 6 inches high and not more than 24 inches wide, provide Grade 1.
5. For drawers more than 6 inches high or more than 24 inches wide, provide Grade 1HD-100.
6. For computer keyboard shelves, provide Grade 1.
7. For trash bins not more than 20 inches high and 16 inches wide, provide Grade 1HD-100.

J. Door Locks: BHMA A156.11, E07121.
K. Drawer Locks: BHMA A156.11, E07041.
L. Door and Drawer Silencers: BHMA A156.16, L03011.
M. Grommets for Cable Passage: 1-1/4-inch OD, molded-plastic grommets and matching plastic caps with slot for wire passage.
N. Exposed Hardware Finishes: For exposed hardware, provide finish that complies with BHMA A156.18 for BHMA finish number indicated.
 1. Satin Chromium Plated: BHMA 626 for brass or bronze base; BHMA 652 for steel base.
O. For concealed hardware, provide manufacturer's standard finish that complies with product class requirements in BHMA A156.9.

2.6 MISCELLANEOUS MATERIALS
A. Furring, Blocking, Shims, and Hanging Strips: Softwood or hardwood lumber, kiln-dried to less than 15 percent moisture content.
B. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrous-metal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.
C. Adhesive for Bonding Plastic Laminate: Contact cement.
 1. Adhesive for Bonding Edges: Hot-melt adhesive or adhesive specified above for faces.

2.7 FABRICATION
A. Complete fabrication, including assembly and hardware application, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.
B. Shop-cut openings to maximum extent possible to receive hardware, appliances, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Before installation, condition cabinets to humidity conditions in installation areas for not less than 72 hours.

B. Architectural Woodwork Standards Grade: Install cabinets to comply with quality standard grade of item to be installed.

C. Anchor cabinets to anchors or blocking built in or directly attached to substrates. Secure with wafer-head cabinet installation screws.

D. Install cabinets level, plumb, and true in line to a tolerance of 1/8 inch in 96 inches using concealed shims.
 1. Scribe and cut cabinets to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
 2. Install cabinets without distortion so doors and drawers fit openings and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation. Complete installation of hardware and accessory items as indicated.
 3. Fasten wall cabinets through back, near top and bottom, and at ends not more than 16 inches o.c. with No. 10 wafer-head screws sized for not less than 1-1/2-inch penetration into wood framing, blocking, or hanging strips.

3.2 FIELD QUALITY CONTROL

A. Inspections: Provide inspection of installed Work through AWI's Quality Certification Program certifying that woodwork, including installation, complies with requirements of the Architectural Woodwork Standards for the specified grade.

END OF SECTION 064116
SECTION 072100
THERMAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
B. Alternates Section

1.2 SUMMARY
A. Section Includes:
 1. Glass-fiber blanket insulation.
 2. Open-cell Spray polyurethane foam insulation

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Research/Evaluation Reports: For foam-plastic insulation, from ICC-ES in combination with intumescent coating.

1.4 QUALITY ASSURANCE
A. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.
B. Protect foam-plastic board insulation as follows:
 1. Do not expose to sunlight except to necessary extent for period of installation and concealment.
 2. Protect against ignition at all times. Do not deliver foam-plastic board materials to Project site before installation time.
 3. Quickly complete installation and concealment of foam-plastic board insulation in each area of construction.

PART 2 - PRODUCTS

2.1 OPEN-CELL SPRAY POLYURETHANE FOAM INSULATION
A. Open-Cell Polyurethane Foam Insulation: Spray-applied polyurethane foam using water as a blowing agent, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively per ASTM E84.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Icynene Inc.
 2. Minimum density of 0.4 lb/cu. ft., thermal resistivity of 3.4 deg F x h x sq. ft./Btu x in. at 75 deg F
B. Where insulation is exposed at interior: Provide an intumescent coating that has been tested with insulation to comply with ICC requirements for ignition or thermal barrier. Product equal to DC315 applied by certified applicator according to manufacturer and test requirements.

2.2 GLASS-FIBER BLANKET INSULATION
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CertainTeed Corporation.
 2. Guardian Building Products, Inc.
 5. Owens Corning.
B. Kraft paper faced, Glass-Fiber Blanket Insulation (Type B - typical): ASTM C 665, Type I; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively, per ASTM E 84; passing ASTM E 136 for combustion characteristics.
PART 3 - EXECUTION

3.1 PREPARATION
A. Clean substrates of substances that are harmful to insulation or that interfere with insulation attachment.

3.2 INSTALLATION, GENERAL
A. Comply with insulation manufacturer's written instructions applicable to products and applications indicated.
B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed to rain, or snow at any time.
C. Extend insulation to envelop entire area to be insulated. Cut and fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.
D. Provide sizes to fit applications indicated and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units to produce thickness indicated unless multiple layers are otherwise shown or required to make up total thickness.

3.3 INSTALLATION OF INSULATION IN CEILINGS FOR SOUND ATTENUATION
A. At all spaces where framed construction separates rooms, install 3.5” Glass-Fiber or Mineral-Wool Blanket Insulation for 4’ along the entire perimeter of each room over ceiling area.

3.4 INSTALLATION OF SPRAY APPLIED ROOF INSULATION
A. Spray-Applied Insulation: Apply spray-applied insulation according to manufacturer's written instructions. Do not apply insulation until installation of pipes, ducts, conduits, wiring, and electrical outlets in walls is completed and windows, electrical boxes, and other items not indicated to receive insulation are masked. After insulation is applied, make flush with face adjacent members by using method recommended by insulation manufacturer.
1. Roof insulation approximately 6”- 7” thick.
2. Wall insulation: Fill stud depth up to 5.5”.
B. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials:
1. Spray Polyurethane Insulation: Apply according to manufacturer's written instructions.

3.5 INSTALLATION OF INSULATION IN WALLS FOR SOUND ATTENUATION
A. Glass-Fiber or Mineral-Wool Blanket Insulation: Install in walls between spaces separated by stud framing partitions according to the following requirements:
1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.
2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.
3. For framed wall cavities where cavity heights exceed 96 inches, support unfaced blankets mechanically and support faced blankets by taping flanges of insulation to flanges of metal studs.

3.6 PROTECTION
A. Protect installed insulation and vapor retarders from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION 072100
PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Manufacturer’s requirements for the proper design, use, and installation of an Exterior Insulation and Finish System.

1.2 RELATED SECTIONS

A. Section 07 62 00 - Sheet Metal Flashing and Trim

1.3 REFERENCES

A. ASTM C1135 Test Method for Determining Tensile Adhesion Properties of Structural Sealants
B. ASTM D2247 Practice for Testing Water Resistance of Coatings in 100 Percent Relative Humidity
G. ASTM E331 Test Method for Water Penetration by Uniform Static Air Pressure Difference.

1.4 ASSEMBLY DESCRIPTION

A. Functional Criteria:
 1. General:
 a. Insulation Board: At system termination, completely encapsulate insulation board edges by mesh reinforced base coat, substrate or drainage track (limited to terminations at foundation). The use of and maximum thickness of insulation board shall be in accordance with applicable building codes and EIFS manufacturer’s requirements.
 b. Flashing: Flashing shall be continuous and watertight. Flashing shall be designed and installed to prevent water infiltration behind the cladding. Refer to Division 07 Flashing Section for specified flashing materials.
 c. The configuration of the water resistive barrier, drainage plane and flashing and Decoplast materials, must allow for the egress of incidental moisture.
 2. Performance Requirements:
 a. System to meet the performance and testing requirements of the International Code Council Acceptance Criteria AC 212
 b. Shall meet the testing requirements of the Product Performance Sheet.
 3. Impact Resistance Classification:
a. High Impact Resistance, 90-150 in-lbs (10.2–17.0 J) Impact Range

4. Expansion Joints: Continuous expansion joints shall be installed at the following locations in accordance with manufacturer’s recommendations:
 a. Where shown on drawings.
 b. Where EIFS abuts other materials.
 c. Where significant structural movement occurs, such as at
 1) Changes in roof line.
 2) Changes in building shape and/or structural system.
 d. Where substrate changes
 e. Substrate movement and expansion and contraction of EIFS and adjacent materials shall be taken into account in design of expansion joints, with proper consideration given to sealant properties, installation conditions, temperature range, coefficients of expansion of materials, joint width to depth ratios, and other material factors. Minimum width of expansion joints shall be as follows:
 1) 1/2 in (12.7 mm) where EIFS abuts other materials.
 2) Larger width where indicated on drawings.

5. Manufacturer’s Detail:
 a. EIFS latest published information shall be followed for standard detail treatments.
 b. Non-standard detail treatments shall be as recommended by manufacturer, approved by Project Designer and be part of the Contract Documents.

6. Building Code Conformance: EIFS shall be acceptable for use on this project under building code having jurisdiction.

1.5 SUBMITTALS

A. General: Submit Samples, Evaluation Reports, warranties and Certificates in accordance with Division 01 General Requirements Submittal Section. Provide installation details, color samples, finish samples, and all pertinent test data for submitted system.

B. Mockups: Provide one 5’x5’ mockup in field for Owner/Architect review and approval prior to installation.

1.6 QUALITY ASSURANCE

A. Qualifications:
 1. All EIFS assembly materials must be manufactured or sold by a single-source manufacturer and must be purchased direct from the manufacturer or its authorized distributor.
 2. Applicator:
 a. Must possess a current manufacturer’s certificate of education.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Delivery: Deliver materials in original packaging with manufacturer’s identification.

B. Storage: Store materials in a cool, dry location, out of sunlight, protected from weather and other harmful environment, and at a temperature above 40°F (4°C) and below 110°F (43°C) in accordance with manufacturer’s instructions.

1.8 PROJECT / SITE CONDITIONS

A. Inclement Weather: Do not apply materials during inclement weather unless appropriate protection is employed.

B. Sunlight Exposure: Avoid, when possible, installation of the materials in direct sunlight. Application of Acrylic Finishes in direct sunlight in hot weather may adversely affect aesthetics.
C. Materials shall not be applied if ambient temperature exceeds 120°F (49°C) or falls below 40°F (4°C) within 24 hours of application. Protect materials from uneven and excessive evaporation during hot, dry weather.

D. Prior to installation, the substrate shall be inspected for surface contamination, or other defects that may adversely affect the performance of the materials and shall be free of residual moisture.

1.9 COORDINATION AND SCHEDULING:
A. Coordination: Coordinate water-resistive membrane & air barrier coating materials installation with other construction operations.

1.10 WARRANTY
A. Warranty: Upon request, at completion of installation, provide manufacturer’s Standard Limited Warranty.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturer, Basis of Design: DECOPLAST DDARS Notched: An Exterior Insulation and Finish System (EIFS) consisting of Adhesive, Expanded Polystyrene Insulation (EPS) Board, Base Coat with embedded Reinforcing Fabric Mesh, Primer (Optional), and Finish Coat. This system is installed over a roll or trowel applied on waterresistive barrier consisting of Decoplast Liquid Applied Weather Barrier/ Speedcoat Moisture Barrier and Adhesive (trowel applied) and Decoplast Flashing Membrane applied over sheathing, as specified

B. Or approved equal as per Section 012500.

2.2 MATERIALS
A. Secondary Water-Resistive Barrier
1. Decoplast Liquid Weather Resistive Barrier water resistive barrier coating or Speedcoat Moisture Barrier and Adhesive (trowel applied)
2. Decoplast Sheathing Tape: Non-woven synthetic fiber tape to reinforce Liquid Weather Barrier water-resistive barrier at sheathing board joints, into rough openings and other terminations into dissimilar materials available in 4 in, 6 in and 9 in.
3. Decoplast Flashing Membrane: Self-sealing, Polyester faced, rubberized asphalt membrane, 30 mils (0.76 mm) thick.

B. Adhesives
1. Decoplast Liquid Base Coat & Adhesive: 100% acrylic polymer based, requiring the addition of Portland cement; used as an adhesive to laminate EPS Insulation Board to the Weather Resistive Barrier.
2. Decoplast Dry Base Coat & Adhesive: Copolymer based, factory blend of cement and proprietary ingredients; requiring the addition of water only, used as an adhesive to laminate EPS Insulation Board to the Weather Resistive Barrier.
3. Decoplast Speedcoat Moisture Barrier and Adhesive: Trowel applied Moisture Barrier and Adhesive trowel applied

C. Insulation Board: In compliance with manufacturer’s requirements for Standard System EIFS.
1. Produced and labeled under a third party quality program as required by applicable building code; and produced by a manufacturer approved by system manufacturer.
2. Shall conform to ASTM C578 and ASTM E2430, Type I and the system manufacturer specification for Molded Expanded Polystyrene Insulation board.
3. Maximum size shall be 2 ft x 4 ft.
4. Thickness: 1 in., ¾ in, minimum after rasping.

D. Base Coats:
1. Decoplast Liquid Base Coat: 100% acrylic polymer base, requiring the addition of Portland cement.
2. Decoplast Premium Dry Base Coat: Copolymer based, factory blend of cement and proprietary ingredients requiring addition of water.

E. Reinforcing Mesh:
1. Short Detail Mesh: Reinforcing mesh used for back wrapping and details.
2. High Impact 14 Mesh: Weight 15 oz. per sq. yd. (509 g/sq m) Reinforcing mesh used with a Standard System; to achieve ASTM E2486 high impact strength.
3. Corner Mesh: Reinforcing mesh used as corner reinforcement; required when using Ultra-High Impact 20 Mesh.

F. Primer:
1. Decoplast Primer: 100% acrylic based coating to prepare surfaces for acrylic or elastomeric finishes.

G. Finish:
1. Decoplast - Integral color (to be selected by Architect from manufacturer's full range to match existing) smooth light texture.

H. Decoplast Drain: Pre-punched strip of non-woven fabric to allow for drainage at the head of system penetrations.

I. Water: Clean, cool, potable water

J. Portland Cement: ASTM C150, Type I or Type I-II.

2.3 RELATED MATERIALS AND ACCESSORIES

A. Substrate Materials:
1. Insulated Composite Sheathing: Minimum 1-1/2 in (13 mm) comprised of Oriented-strand-board Exposure 1 sheathing 7/16 inch (11.1 mm) thick, with factory-laminated water-resistive barrier exterior facer, and with rigid foam plastic insulating board laminated to interior face.
2. Other approved by manufacturer writing prior to the project.

B. Flashing: Refer to Division 07 Flashing Section for flashing materials.

C. Sealant System:
1. Sealant for expansion joints between panelized EIFS sections shall be ultra-low modulus designed for minimum 100% elongation and minimum 50% compression and as selected by Project Designer.
2. Sealants shall conform to ASTM C 920, Grade NS.
3. Expansion joints between sections of EIFS shall have a minimum width of 3/4 in (19 mm).
4. Perimeter seal joints shall be a minimum width of 1/2 in (12.7 mm).
5. Sealant backer rod shall be closed-cell polyethylene foam.
6. Apply sealant to tracks or base coat of EIFS.
7. Refer to EIFS manufacturer’s current bulletin for listing of sealants which have been tested and have been found to be compatible with EIFS materials.
8. Color shall be as selected by Project Designer.
9. Joint design, surface preparation, and sealant primer shall be based on sealant manufacturer's recommendations and project conditions.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Compliance: Comply with manufacturer’s instructions for installation.

B. Substrate Examination: Examine prior to installation of EIFS assembly materials as follows:
 1. Substrate shall be of a type approved by manufacturer. Plywood and OSB substrates shall be gapped 1/8 in (3.2 mm) at all edges.
 2. Substrate shall be examined for soundness, and other harmful conditions.
 3. Substrate shall be free of dust, dirt, laitance, efflorescence, and other harmful contaminants.
 4. Substrate construction in accordance with substrate material manufacturer’s specifications and applicable building codes.
 5. Maximum deflection of the substrate shall be limited to L/240.

C. Sealants and Backer Rod: To be installed, where required, in accordance with the sealant manufacturer’s specifications and published literature, and using the sealant manufacturer’s recommended primers.

D. Advise Contractor of discrepancies preventing proper installation of the EIFS materials. Do not proceed with the work until unsatisfactory conditions are corrected.

3.2 PREPARATION

A. Protection: Protect surrounding material surfaces and areas during installation of system.

B. Clean surfaces thoroughly prior to installation.

C. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.

3.3 MIXING

A. Mix materials in accordance with manufacturer’s instructions.

3.4 APPLICATION

A. General: Installation shall conform to this specification and manufacturer’s written instructions.

B. Drainage Accessories and Water Resistive Barrier
 1. Plywood substrates cut edges (non-factory edges) must be sealed with a waterresistive coating.
 2. Install drainage tracks (limited to terminations at foundations), back-wrap mesh, or edge-wrap mesh at system terminations. Treat all glass mat gypsum sheathing, and plywood joints with Decoplast Liquid Weather Resistive Barrier water-resistive barrier or Decoplast Speedcoat Moisture Barrier and Adhesive (trowel applied) and embed Decoplast Sheathing Tape.
 3. Flash all rough openings with Liquid Weather Resistive barrier or Speedcoat and embedded Decoplast Sheathing Tape or Decoplast Flashing Membrane.
 4. Apply Liquid Weather Resistive barrier to the surface of the appropriate substrate (in accordance with product data sheet).
 5. Treat the heads of all window, door and similar openings with Decoplast Drain and back-wrap mesh to allow for drainage at these locations.

C. Insulation Board
 1. Apply Decoplast adhesive to backs of insulation boards with a Decoplast drainage notched trowel, with ribbons of adhesive oriented in a vertical direction (parallel to the 2 ft (61 mm)) dimension of
the EPS board). Apply a 1 in (25.4 mm) wide horizontal ribbon of adhesive on the back at the lower edge of insulation boards installed over Decoplast Drain.

2. Install insulation board without gaps in a running bond pattern and interlocked at corners.
3. Rasp irregularities off insulation board.

D. Apply base coat and fully embed mesh in base coat; include diagonal mesh patches at corners of openings and reinforcing mesh patches at joints of track sections. Apply multiple layers of base coat and mesh where required for specified impact resistance classification.

E. Apply primer to base coat after drying. Primer maybe omitted if it is not required by the manufacturer's product data sheets for the specified finish coat or otherwise specified for the project.

F. Finish Coat: Apply finish coat to match specified finish type, texture, and color. Do not apply finish coat to surfaces to receive sealant. Keep finish out of sealant joint gaps. Apply two coats and sand base coats. Remove surface dust, and apply a uniform finish coat of Decoplast Finish by trowel.

3.5 CLEAN-UP

A. Removal: Remove and legally dispose of EIFS materials from job site.

B. Clean surfaces and work area of foreign materials resulting from material installation.

3.6 PROTECTION

A. Provide protection of installed materials from water infiltration into or behind them.

B. Provide protection of installed materials from dust, dirt, precipitation, and freezing during installation, and continuous high humidity until fully cured and dry.

C. Clean exposed surfaces using materials and methods recommended by the manufacturer of the material or product being cleaned. Remove and replace work that cannot be cleaned to the satisfaction of the Project Designer/Owner.

END OF SECTION 072519
SECTION 078413
PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Penetrations in fire-resistance-rated walls.
 2. Penetrations in horizontal assemblies.
 3. Penetrations in smoke barriers.

1.2 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Product Schedule: For each penetration firestopping system. Include location, illustration of firestopping system, and design designation of qualified testing and inspecting agency.
 1. Engineering Judgments: Where Project conditions require modification to a qualified testing and inspecting agency's illustration for a particular penetration firestopping system, submit illustration, with modifications marked, approved by penetration firestopping system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly. Obtain approval of authorities having jurisdiction prior to submittal.

1.4 INFORMATIONAL SUBMITTALS
A. Product test reports.

1.5 CLOSEOUT SUBMITTALS
A. Installer Certificates: From Installer indicating that penetration firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.

1.6 QUALITY ASSURANCE
A. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991, "Approval of Firestop Contractors," or been evaluated by UL and found to comply with its "Qualified Firestop Contractor Program Requirements."
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics:

1. Perform penetration firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.
2. Test per testing standards referenced in "Penetration Firestopping Systems" Article. Provide rated systems complying with the following requirements:
 a. Penetration firestopping systems shall bear classification marking of a qualified testing agency.
 1) UL in its "Fire Resistance Directory."
 2) Intertek Group in its "Directory of Listed Building Products."
 3) FM Global in its "Building Materials Approval Guide."

2.2 PENETRATION FIRESTOPPING SYSTEMS

A. Penetration Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.
 1. STI Firestop
 2. Approved equal per Section 012500

B. Penetrations in Fire-Resistance-Rated Walls: Penetration firestopping systems with ratings determined per ASTM E814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 1. F-Rating: Not less than the fire-resistance rating of constructions penetrated.

C. Penetrations in Horizontal Assemblies: Penetration firestopping systems with ratings determined per ASTM E814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 1. F-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated.
 2. T-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.
 3. W-Rating: Provide penetration firestopping systems showing no evidence of water leakage when tested according to UL 1479.

D. Penetrations in Smoke Barriers: Penetration firestopping systems with ratings determined per UL 1479, based on testing at a positive pressure differential of 0.30-inch wg.
 1. L-Rating: Not exceeding 5.0 cfm/sq. ft. of penetration opening at and no more than 50-cfm cumulative total for any 100 sq. ft. at both ambient and elevated temperatures.

E. Exposed Penetration Firestopping Systems: Flame-spread and smoke-developed indexes of less than 25 and 450, respectively, per ASTM E84.

F. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping system manufacturer and approved by qualified testing and inspecting agency for conditions indicated.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.

B. General: Install penetration firestopping systems to comply with manufacturer's written installation instructions and published drawings for products and applications.

C. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings.

1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not forming permanent components of firestopping.

D. Install fill materials by proven techniques to produce the following results:

1. Fill voids and cavities formed by openings, forming materials, accessories and penetrating items to achieve required fire-resistance ratings.
2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.2 IDENTIFICATION

A. Wall Identification: Permanently label walls containing penetration firestopping systems with the words "FIRE AND/OR SMOKE BARRIER - PROTECT ALL OPENINGS," using lettering not less than 3 inches high and with minimum 0.375-inch strokes.

1. Locate in accessible concealed floor, floor-ceiling, or attic space at 15 feet from end of wall and at intervals not exceeding 30 feet.

B. Penetration Identification: Identify each penetration firestopping system with legible metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches of penetration firestopping system edge so labels are visible to anyone seeking to remove penetrating items or firestopping systems. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:

1. The words "Warning - Penetration Firestopping - Do Not Disturb. Notify Building Management of Any Damage."

3.3 FIELD QUALITY CONTROL

A. Owner will engage a qualified testing agency to perform tests and inspections according to ASTM E2174.

B. Where deficiencies are found or penetration firestopping system is damaged or removed because of testing, repair or replace penetration firestopping system to comply with requirements.

C. Proceed with enclosing penetration firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.

END OF SECTION 078413
SECTION 079200

JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Silicone joint sealants.
2. Urethane joint sealants.
3. Latex joint sealants.
5. Preformed joint sealants.
6. Acoustical joint sealants.

1.3 PRECONSTRUCTION TESTING
A. Preconstruction Compatibility and Adhesion Testing: Submit to joint-sealant manufacturers, for testing indicated below, samples of materials that will contact or affect joint sealants.
1. Use ASTM C 1087 to determine whether priming and other specific joint preparation techniques are required to obtain rapid, optimum adhesion of joint sealants to joint substrates.
2. Submit not fewer than four pieces of each kind of material, including joint substrates, shims, joint-sealant backings, secondary seals, and miscellaneous materials.
3. Schedule sufficient time for testing and analyzing results to prevent delaying the Work.
4. For materials failing tests, obtain joint-sealant manufacturer's written instructions for corrective measures including use of specially formulated primers.
5. Testing will not be required if joint-sealant manufacturers submit joint preparation data that are based on previous testing, not older than 24 months, of sealant products for adhesion to, and compatibility with, joint substrates and other materials matching those submitted.

1.4 SUBMITTALS
A. Product Data: For each joint-sealant product indicated.
B. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.
C. Joint-Sealant Schedule: Include the following information:
1. Joint-sealant application, joint location, and designation.
2. Joint-sealant manufacturer and product name.
D. Qualification Data: For qualified Installer.
E. Product Certificates: For each kind of joint sealant and accessory, from manufacturer.
F. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, indicating that sealants comply with requirements.
G. Field-Adhesion Test Reports: For each sealant application tested.

1.5 QUALITY ASSURANCE
A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
B. Source Limitations: Obtain each kind of joint sealant from single source from single manufacturer.
C. Mockups: Install sealant in mockups of assemblies specified in other Sections that are indicated to receive joint sealants specified in this Section. Use materials and installation methods specified in this Section.

1.6 PROJECT CONDITIONS
A. Do not proceed with installation of joint sealants under the following conditions:
1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F.
2. When joint substrates are wet.
3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.7 WARRANTY

A. Special Installer's Warranty: Manufacturer's standard form in which Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 1. Warranty Period: Two years from date of Substantial Completion.

B. Special Manufacturer's Warranty: Manufacturer's standard form in which joint-sealant manufacturer agrees to furnish joint sealants to repair or replace those that do not comply with performance and other requirements specified in this Section within specified warranty period.
 1. Warranty Period: 20 years from date of Substantial Completion for silicone sealants.

C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:
 1. Movement of the structure caused by structural settlement or errors attributable to design or construction resulting in stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression.
 2. Disintegration of joint substrates from natural causes exceeding design specifications.
 3. Mechanical damage caused by individuals, tools, or other outside agents.
 4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

B. Liquid-Applied Joint Sealants: Comply with ASTM C 920 and other requirements indicated for each liquid-applied joint sealant specified, including those referencing ASTM C 920 classifications for type, grade, class, and uses related to exposure and joint substrates.
 1. Suitability for Immersion in Liquids. Where sealants are indicated for Use I for joints that will be continuously immersed in liquids, provide products that have undergone testing according to ASTM C 1247. Liquid used for testing sealants is deionized water, unless otherwise indicated.

C. Stain-Test-Response Characteristics: Where sealants are specified to be nonstaining to porous substrates, provide products that have undergone testing according to ASTM C 1248 and have not stained porous joint substrates indicated for Project.

D. Suitability for Contact with Food: Where sealants are indicated for joints that will come in repeated contact with food, provide products that comply with 21 CFR 177.2600.

E. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 SILICONE JOINT SEALANTS

A. Single-Component, Nonsag, Neutral-Curing Silicone Joint Sealant (S:) ASTM C 920, Type S, Grade NS, Class 50, for Use NT.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. BASF Building Systems; Omniseal 50.
 b. Dow Corning Corporation; 795.
 c. GE Advanced Materials - Silicones; SilGlaze II SCS2800.
 d. Pecora Corporation; 864.

B. Mildew-Resistant, Single-Component, Acid-Curing Silicone Joint Sealant(S-S:) ASTM C 920, Type S, Grade NS, Class 25, for Use NT.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. BASF Building Systems; Omniplus.
 b. Dow Corning Corporation; 786 Mildew Resistant.
 c. GE Advanced Materials - Silicones; Sanitary SCS1700.
 d. Tremco Incorporated; Tremsil 200 Sanitary.
2.3 URETHANE JOINT SEALANTS
 A. Multicomponent, Nonsag, Urethane Joint Sealant (U-NS): ASTM C 920, Type M, Grade NS, Class 50, for Use NT.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Pecora Corporation; Dynatrol II.
 b. Polymeric Systems, Inc.; PSI-270.
 c. Tremco Incorporated;
 B. Multicomponent, Self-Levelling, Traffic-Grade, Urethane Joint Sealant (U-TB): ASTM C 920, Type M, Grade SL, Class 50, for Use T.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Tremco Incorporated; Dymeric 240 FC.
 c. Pecora; Dynatread.

2.4 LATEX JOINT SEALANTS
 A. Latex Joint Sealant (L): Acrylic latex or siliconized acrylic latex, ASTM C 834, Type OP, Grade NF.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. BASF Building Systems; Sonolac.
 c. May National Associates, Inc.;
 d. Pecora Corporation; AC-20+.
 e. Tremco Incorporated; Tremflex 834.

2.5 ACOUSTICAL JOINT SEALANTS (AC)
 A. Acoustical Joint Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Pecora Corporation; AC-20 FTR.
 b. USG Corporation; SHEETROCK Acoustical Sealant.

2.6 MISCELLANEOUS MATERIALS
 A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
 B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.
 C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
 2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 a. Concrete.
3. JOINT SEALANTS

3.1 Joint Sealant Materials

b. Masonry.
c. Unglazed surfaces of ceramic tile.
d. Exterior insulation and finish systems.

3. Remove laitance and form-release agents from concrete.
4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.

Nonporous joint substrates include the following:

a. Metal.
b. Glass.
c. Porcelain enamel.
d. Glazed surfaces of ceramic tile.

B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.

B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
1. Do not leave gaps between ends of sealant backings.
2. Do not stretch, twist, puncture, or tear sealant backings.
3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.

D. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
1. Place sealants so they directly contact and fully wet joint substrates.
2. Completely fill recesses in each joint configuration.
3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

E. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
1. Remove excess sealant from surfaces adjacent to joints.
2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
3. Provide concave joint profile per Figure 8A in ASTM C 1193, unless otherwise indicated.
4. Provide flush joint profile where indicated per Figure 8B in ASTM C 1193.
5. Provide recessed joint configuration of recess depth and at locations indicated per Figure 8C in ASTM C 1193.
 a. Use masking tape to protect surfaces adjacent to recessed tooled joints.

F. Acoustical Sealant Installation: At sound-rated assemblies and elsewhere as indicated, seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer's written recommendations.

3.4 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.
3.5 PROTECTION
A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

3.6 JOINT-SEALANT SCHEDULE
A. Sealant Schedule:
1. Interior Joints:
 a. Wall and ceiling joints subject to movement: Designation U-MC.
 b. Wall and ceiling joints not subject to movement: Designation AL.
 c. Interior side of exterior openings: U-MC.
 d. Floor joints: Designation U-TB.
 e. Wall and ceiling joints between frames and their rough opening: Designation AL.
 f. Wall and ceiling joints between frames and adjoining surfaces: Designation AL.
 g. Interior Sanitary Joints; Joints Between Plumbing Fixtures and Adjoining Floor, Wall, and Ceiling Surfaces; Joints Between Shower Door Enclosure Components and Adjacent Finish Surfaces; Joints in Dietary and Food Preparation Areas, Kitchens, Food Storage Areas, and Areas Subject to Frequent Wet Cleaning, including joints between walls and floors, Joints Between Back Splashes and Wall Substrates: Designation S-S.
2. Exterior locations:
 a. Wall joints:
 1) Bordered on both sides by porous building material (concrete, stone, masonry, exterior insulation and finish systems): Designation S-GP
 2) Bordered on both sides by non-porous building material (coated and uncoated metals, anodized aluminum, porcelain tile, and glass): Designation S-GP
 3) Bordered on one side by porous building material (concrete, stone, masonry) and other side by non-porous building material (coated and uncoated metals, anodized aluminum, porcelain tile, and glass): Designation S-GP
 b. Perimeter of penetrations through walls: Designation S-GP
 c. Control joints (filling of V-grooves) and perimeter of penetrations in Portland cement plaster walls: Designation S-GP.
 d. Expansion joints in ceilings, soffits, and overhead surfaces: Designation S-GP
 e. Control joints and perimeter of penetrations in ceilings, soffits, and overhead surfaces: Designation S-GP
 f. Wall and ceiling joints between frames and their rough opening: Designation S-GP.
 g. Wall and ceiling joints between frames and adjoining surfaces: Designation S-GP.
 h. Joints and perimeter of penetrations in horizontal pedestrian and vehicle traffic surfaces: Designation U-TB.
 i. Joints in Division 07 Section 07 “Sheet Metal Flashing and Trim:” Designation S-GP.

END OF SECTION 079200
SECTION 081113

HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.087100 DOOR HARDWARE

1.2 SUMMARY
A. Section Includes:
1. Standard hollow metal doors and frames.

1.3 DEFINITIONS
A. Minimum Thickness: Minimum thickness of base metal without coatings.
B. Standard Hollow Metal Work to comply with the following Steel Door Institute Performance Standards:
1. Hollow metal work fabricated according to ANSI/SDI A250.8 (R2008).
3. ANSI/SDI A250.6 (R2009) - Recommended Practice for Hardware Reinforcing on Standard Steel Doors and Frames.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated. Include construction details, material descriptions, core descriptions, fire-resistance rating, and finishes.
B. Shop Drawings: Include the following:
1. Elevations of each door design.
2. Details of doors, including vertical and horizontal edge details and metal thicknesses.
3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
4. Locations of reinforcement and preparations for hardware.
5. Details of each different wall opening condition.
6. Details of anchorages, joints, field splices, and connections.
7. Details of accessories.
8. Details of moldings, removable stops, and glazing.
9. Details of conduit and preparations for power, signal, and control systems.
C. Other Action Submittals:
1. Schedule: Provide a schedule of hollow metal work prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings.
2. Supplier to submit shop drawing schedules with in two weeks of written notification from Contractor in the event to expedite the process of frames to jobsite.
3. Certificate: current certificate stating the manufacture is a member of SDI.
D. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for each type of hollow metal door and frame assembly (including door hardware) for compliance with design wind pressures noted in structural drawings and below (for exterior doors only).

1.5 QUALITY ASSURANCE
A. Source Limitations: Obtain hollow metal doors and frames from single source manufacturer.
B. Pre-installation Conference: Conduct conference at Project site to review anchor methods, electrical conduit connections and custom installation of unusual openings such as pocket frames, single rabbet
double egress frames and recessed doors flush with walls.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Deliver hollow metal work palletized, wrapped, or crated to provide protection during transit and Project-site storage. Do not use non-vented plastic.
 1. Provide additional protection to prevent damage to finish of factory-finished units.
B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.
C. Store hollow metal work under cover at Project site. Place in stacks of five units maximum in a vertical position with heads up, spaced by blocking, on minimum 4-inch high wood blocking. Do not store in a manner that traps excess humidity.
 1. Provide minimum 1/4-inch space between each stacked door to permit air circulation.
 2. Any scratches or disfigurements caused in shipping or handling shall be promptly cleaned and touched up with a rust-inhibitive primer to new conditions

1.7 PROJECT CONDITIONS
A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.

1.8 COORDINATION
A. Coordinate installation of anchorages for hollow metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Basis-of-Design Product: NOTE: exterior hardware and door/frame must be tested together:
 1. Steelcraft; an Ingersoll-Rand company.
 2. Substitutions refer to section 012500
B. Wind Loads (Exterior Only):
 1. Positive and Negative pressure (wind acting toward exterior surface) +31 psf
 2. Negative pressure (wind acting away from exterior surface) -41 psf
 3. Refer to TDI Product Evaluation for acceptable hardware and door/frame combinations and installations.

2.2 MATERIALS
A. Cold-Rolled Steel Sheet: ASTM A 1008, Commercial Steel (CS), Type B; suitable for exposed applications.
B. Hot-Rolled Steel Sheet: ASTM A 1011, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
C. Metallic-Coated Steel Sheet: ASTM A 653, Commercial Steel (CS), Type B; with minimum G60 or A60 metallic coating.
D. Frame Anchors: ASTM A 591/A 591M, Commercial Steel (CS), 40Z coating designation; mill phosphatized.
 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008 or ASTM A 1011, hot-dip galvanized according to ASTM A 153, Class B.
E. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153.
F. Powder-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow metal frames of type indicated.
G. Glazing: Comply with requirements in Division 08 Section "Glazing."

2.3 STANDARD HOLLOW METAL DOORS
A. General: Provide doors of design indicated, not less than thickness indicated; fabricated with smooth surfaces, without visible joints or seams on exposed faces unless otherwise indicated. Comply with ANSI/SDI A250.8.
 1. Design: Flush panel.
 2. Core Construction: Manufacturer's standard polyurethane, polyisocyanurate, mineral-board, or vertical steel-stiffener core.
 a. Fire Door Core: As required to provide fire-protection and temperature-rise ratings
indicated.
b. Steel-stiffened door at interior and exterior shipping and receiving locations.
c. Thermal-Rated (Insulated) Doors: Where indicated, provide doors fabricated with thermal-
resistance value (R-value) of not less than 11.0 when tested to ASTM C518 calculated and
3.0 when tested to ASTM C1363 operable.
1) Locations: All exterior doors, and as indicated on Door Schedule.
3. Vertical Edges for Single-Acting Doors:
1) At meeting edges of pairs of doors bevel edge at active leaf, square edge at inactive leaf.
2) Universal hinge preps for reverse swinging of doors are not acceptable.
5. Top and Bottom Edges: Closed with flush or inverted 0.042-inch thick, end closures or channels
of same material as face sheets.
6. Tolerances: Comply with SDI 117, "Manufacturing Tolerances for Standard Steel Doors and
Frames."
B. Exterior Doors: Face sheets fabricated from metallic-coated steel sheet. Provide doors complying with
requirements indicated below by referencing ANSI/SDI A250.8 for level and model and ANSI/SDI A250.4
for physical performance level:
1. Level 3 and Physical Performance Level A (Extra Heavy Duty), Model 2 (Full Flush).
C. Interior Doors: Face sheets fabricated from cold-rolled steel sheet unless metallic-coated sheet is
indicated. Provide doors complying with requirements indicated below by referencing ANSI/SDI A250.8
for level and model and ANSI/SDI A250.4 for physical performance level:
1. Level 3 and Physical Performance Level B (Heavy Duty), Model 2 (Full Flush).
D. Hardware Reinforcement: Fabricate according to ANSI/SDI A250.6 with reinforcing plates from same
material as door face sheets.
E. Fabricate concealed stiffeners and hardware reinforcement from either cold- or hot-rolled steel sheet.
2.4 STANDARD HOLLOW METAL FRAMES
A. General: Comply with ANSI/SDI A250.8 and with details indicated for type and profile.
1. Fabricate frames with mitered or coped corners.
2. Fabricate frames as face welded joints and back weld joints continuously, unless otherwise
indicated.
3. Frames for Level 3 Steel Doors: (14 gage) thick steel sheet.
C. Interior Frames: Fabricated from cold-rolled steel sheet unless metallic-coated sheet is indicated.
1. Fabricate frames with mitered or coped corners.
2. Fabricate frames as full profile and face welded unless otherwise indicated.
3. Frames for Level 3 Steel Doors: (16 gage) thick steel sheet.
4. Frames 48-inches and wider in opening width are required to min. 14 gage thick steel sheet.
5. Frames for Wood Doors: (16 gage) thick steel sheet.
D. Hardware Reinforcement: Fabricate according to ANSI/SDI A250.6 with reinforcing plates from same
material as frames.
E. Knock down frames are not acceptable.
2.5 FRAME ANCHORS
A. Jamb Anchors:
1. Stud Anchors: Welded frames for installation in stud partitions shall be provided with welded in
steel anchors of suitable design, not less than 18 gage thickness, secured inside each jamb as
follows:
a. Frames up to 60” height: 2 anchors.
b. Frames greater than 60” up to 90” 4 anchors.
c. Frames greater than 90” up to 96” 5 anchors.
d. Frames greater than 96” 5 anchors plus one for each 24” or fraction thereof
over 96” spaced at 24” maximum between anchors.
2. Postinstalled Expansion Type for In-Place Concrete or Masonry: Minimum 3/8-inch- diameter bolts
with expansion shields or inserts. Provide pipe spacer from frame to wall, with throat reinforcement
plate, welded to frame at each anchor location. 3” min, embedment.
3. Hot dip galvanize all anchors in exterior walls.
B. Floor Anchors: Formed from same material as frames, not less than 0.067 inch thick, and as follows:
1. Monolithic Concrete Slabs: Floor anchors shall be provided with minimum two holes for fasteners
and shall be fastened inside jambs with at least four (4) spot welds per anchor
2.6 HOLLOW METAL PANELS
 A. Provide hollow metal panels of same materials, construction, and finish as specified for adjoining hollow metal work.

2.7 STOPS AND MOLDINGS
 A. Moldings for Glazed Lites in Doors: Minimum 0.032 inch thick, fabricated from same material as door face sheet in which they are installed.
 B. Fixed Frame Moldings: Formed integral with hollow metal frames, a minimum of 5/8 inch high unless otherwise indicated.
 C. Loose Stops for Glazed Lites in Frames: Minimum 0.032 inch thick, fabricated from same material as frames in which they are installed. Field cuts are not acceptable.

2.8 ACCESSORIES
 A. Mullions and Transom Bars: Join to adjacent members by welding or rigid mechanical anchors.
 B. Grout Guards: Formed from same material as frames, not less than 0.016 inch thick.

2.9 FABRICATION
 A. Fabricate hollow metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for thickness of metal. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.
 B. Tolerances: Fabricate hollow metal work to tolerances indicated in SDI 117.
 C. Hollow Metal Doors:
 1. Exterior Doors: Provide weep-hole openings in bottom of exterior doors to permit moisture to escape. Seal joints in top edges of doors against water penetration.
 2. Glazed Lites: Factory cut openings in doors.
 3. Astragals: Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated. Extend minimum 3/4 inch beyond edge of door on which astragal is mounted.
 4. Continuous Hinge Reinforcement: Provide continuous 12 gage strap tack welded to door edge for continuous hinges specified in hardware sets in Div. 8 Door hardware, unless door has continuous steel channel for hinge reinforcement.
 5. Seamless Edge (Model 2): Provide seamless edge on hollow metal doors by intermittently tack welding seam, grinding smooth and finishing edge free from defects and blemishes.
 D. Hollow Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.
 1. Welded Frames: Weld flush face joints continuously; grind, fill, dress, and make smooth, flush, and invisible.
 2. Sidelight and Transom Bar Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding.
 3. Equal Rabbet Frames: Provide frames with equal rabbet dimensions unless glazing and removable stops require wider dimension on glass side of frame.
 4. Hinge Reinforcement: Provide high frequency hinge reinforcements at door openings 42-inch and wider with mortise/butt type hinges at top hinge location to deter against hinge reinforcement sag; required at all openings with automatic openers.
 5. Continuous Hinge Reinforcement: Provide continuous 12 gage strap tack welded to frame stop for continuous hinges specified in hardware sets in Div. 8 Door hardware.
 6. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
 7. Provide A60 Galvannealed coating at frames in restrooms with showers/Jacuzzi, clean areas such as surgery rooms and surgical suites, clean rooms, and soil rooms.
 8. Door Silencers: Except on weather-stripped or gasketed doors, drill stops to receive door silencers as follows. Keep holes clear during construction. Silencers to be supplied by frame manufacturer regardless if specified in Div. 8 Door Hardware.
 a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.
 E. Fabricate concealed stiffeners, edge channels, and hardware reinforcement from either cold- or hot-rolled steel sheet.
 F. Hardware Preparation: Factory prepare hollow metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to the Door Hardware Schedule.
and templates furnished as specified in Division 08 Section "Door Hardware."

1. Locate hardware as indicated, or if not indicated, according to ANSI/SDI A250.8.
2. Reinforce doors and frames to receive nontemplated, mortised and surface-mounted door hardware.
3. Comply with applicable requirements in ANSI/SDI A250.6 and ANSI/DHI A115 Series specifications for preparation of hollow metal work for hardware.
4. Coordinate locations of conduit and wiring boxes for electrical connections with Division 26 Sections.

G. Stops and Moldings: Provide stops and moldings around glazed lites where indicated. Form corners of stops and moldings with butted or mitered hairline joints.
 1. Single Glazed Lites: Provide fixed stops and moldings welded on secure side of hollow metal work.
 2. Multiple Glazed Lites: Provide fixed and removable stops and moldings so that each glazed lite is capable of being removed independently.
 3. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames.
 4. Provide loose stops and moldings on inside of hollow metal work.
 5. Coordinate rabbet width between fixed and removable stops with type of glazing and type of installation indicated.
 6. Gap for butted or mitered joints in glass stop should not exceed .0625-inch.

2.10 STEEL FINISHES

A. Prime Finish: Apply manufacturer's standard primer immediately after cleaning and pretreating.
 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with ANSI/SDI A250.10 acceptance criteria; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in for embedded and built-in anchors to verify actual locations before frame installation.
C. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove welded-in shipping spreaders installed at factory after installation of frame in wall. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.
B. Prior to installation, adjust and securely brace welded hollow metal frames for squareness, alignment, twist, and plumbness to the following tolerances:
 1. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 2. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 3. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 4. Plumbness: Plus or minus 1/16 inch, measured at jambs on a perpendicular line from head to floor.
C. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.3 INSTALLATION

A. General: Install hollow metal work plumb, rigid, properly aligned, and securely fastened in place; comply with manufacturer's written instructions.
B. Hollow Metal Frames: Install hollow metal frames of size and profile indicated. Comply with ANSI/SDI A250.11.
 1. Set frames accurately in position, plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 a. At fire-protection-rated openings, install frames according to NFPA 80.
b. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
c. Install frames with removable glazing stops located on secure side of opening.
d. Remove temporary braces necessary for installation only after frames have been properly set and secured.
e. Check plumbness, squareness, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.

2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.
a. Floor anchors may be set with powder-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.

4. Field Supplied Ceiling Struts: Extend struts vertically from top of frame at each jamb to overhead structural supports or substrates above frame unless frame is anchored to masonry or to other structural support at each jamb. Bend top of struts to provide flush contact for securing to supporting construction. Provide adjustable wedged or bolted anchorage to frame jamb members.

5. In-Place Gypsum Board Partitions: Secure frames in place with post-installed expansion anchors through floor anchors at each jamb. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.

6. Installation Tolerances: Adjust hollow metal door frames for squareness, alignment, twist, and plumb to the following tolerances:
a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.

C. Hollow Metal Doors: Fit hollow metal doors accurately in frames, within clearances specified below. Shim as necessary.

1. Non-Fire-Rated Standard Steel Doors:
a. Jambs and Head: 1/8 inch plus or minus 1/16 inch.
b. Between Edges of Pairs of Doors: 1/8 inch plus or minus 1/16 inch.
c. Between Bottom of Door and Top of Threshold: Maximum 3/8 inch.

2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.

3. Smoke-Control Doors: Install doors according to NFPA 105.

D. Glazing: Comply with installation requirements in Division 08 Section "Glazing" and with hollow metal manufacturer's written instructions.

1. Secure stops with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches (230 mm) o.c. and not more than 2 inches o.c. from each corner.
2. Secure exterior removable stops with security head stainless steel screws.

3.4 ADJUSTING AND CLEANING

A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow metal work that is warped, bowed, or otherwise unacceptable.

B. Adjust frames and doors per SDI 122 Installation for trouble shooting openings.

C. Remove grout and other bonding material from hollow metal work immediately after installation.

D. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

E. Metallic-Coated Surfaces: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

END OF SECTION 081113
SECTION 081213
HOLLOW METAL FRAMES

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Interior standard steel frames.
 2. Interior custom hollow-metal frames.

1.2 DEFINITIONS
A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: Include elevations, frame profiles, metal thicknesses, and wall opening conditions.
C. Schedule: Prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings.

1.4 INFORMATIONAL SUBMITTALS
A. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for each type of hollow metal door and frame assembly (including door hardware) for compliance with design wind pressures noted in structural drawings and below (for exterior doors only).

PART 2 - PRODUCTS

2.1 MANUFACTURERS
1. Steelcraft; an Ingersoll-Rand company.
2. Substitutions refer to section 012500

2.2 PERFORMANCE REQUIREMENTS
A. Fire-Rated Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings indicated on Drawings, based on testing at positive pressure according to NFPA 252 or UL 10C.
 1. Smoke- and Draft-Control Assemblies: Listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing according to UL 1784 and installed in compliance with NFPA 105.
B. Fire-Rated, Borrowed-Lite Assemblies: Complying with NFPA 80 and listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated, based on testing according to NFPA 257 or UL 9.

C. Wind Loads (Exterior Only):
1. Positive and Negative pressure (wind acting toward exterior surface) +31 psf
2. Negative pressure (wind acting away from exterior surface) -41 psf
3. Refer to TDI Product Evaluation for acceptable hardware and door/frame combinations and installations.

2.3 STANDARD STEEL FRAMES

A. Construct hollow-metal frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

B. Interior Frames: SDI A250.8. At locations indicated in the Door and Frame Schedule.
 1. Materials: Uncoated steel sheet, minimum thickness of 0.042 inch.
 2. Sidelite Frames: Fabricated from same thickness material as adjacent door frame.

2.4 CUSTOM HOLLOW-METAL FRAMES

A. Interior Frames: NAAMM-HMMA 861. At locations indicated in the Door and Frame Schedule.
 1. Materials: Uncoated steel sheet, minimum thickness of 0.053 inch.
 2. Sidelite Frames: Fabricated from same thickness material as adjacent door frame.

2.5 BORROWED LITES

A. Fabricate of uncoated steel sheet, minimum thickness of 0.053 inch.

B. Construction: Knocked down.

2.6 FRAME ANCHORS

A. Jamb Anchors:
 1. Type: Anchors of minimum size and type required by applicable door and frame standard, and suitable for performance level indicated.
 2. Quantity: Minimum of three anchors per jamb, with one additional anchor for frames with no floor anchor. Provide one additional anchor for each 24 inches of frame height above 7 feet.

B. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor.

C. Floor Anchors for Concrete Slabs with Underlayment: Adjustable-type anchors with extension clips, allowing not less than 2-inch height adjustment. Terminate bottom of frames at top of underlayment.

D. Material: ASTM A879/A879M, Commercial Steel (CS), 04Z coating designation; mill phosphatized.
2.7 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A1008/A1008M, Commercial Steel (CS), Type B; suitable for exposed applications.

B. Hot-Rolled Steel Sheet: ASTM A1011/A1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.

C. Metallic-Coated Steel Sheet: ASTM A653/A653M, Commercial Steel (CS), Type B.

D. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A153/A153M.

E. Power-Actuated Fasteners in Concrete: Fabricated from corrosion-resistant materials.

F. Glazing: Comply with requirements in Section 088000 "Glazing."

2.8 FABRICATION

A. Hollow-Metal Frames: Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as frames.

1. Sidelite Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by welding.

2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.

3. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.

 a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.

 b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.

B. Hardware Preparation: Factory prepare hollow-metal frames to receive templated mortised hardware, and electrical wiring; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.

1. Reinforce frames to receive nontemplated, mortised, and surface-mounted door hardware.

2. Comply with BHMA A156.115 for preparing hollow-metal frames for hardware.

C. Glazed Lites: Provide stops and moldings around glazed lites where indicated. Form corners of stops and moldings with butted or mitered hairline joints.

1. Multiple Glazed Lites: Provide fixed and removable stops and moldings so that each glazed lite is capable of being removed independently.

2. Provide fixed frame moldings on outside of exterior and on secure side of interior frames. Provide loose stops and moldings on inside of hollow-metal frames.

3. Coordinate rabbet width between fixed and removable stops with glazing and installation types indicated.

4. Provide stops for installation with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches o.c. and not more than 2 inches o.c. from each corner.

2.9 STEEL FINISHES

A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General: Install hollow-metal frames plumb, rigid, properly aligned, and securely fastened in place. Comply with approved Shop Drawings and with manufacturer's written instructions. Comply with SDI A250.11.

B. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces without damage to completed Work.

1. Where frames are fabricated in sections, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces. Touch-up finishes.
2. Install frames with removable stops located on secure side of opening.

C. Fire-Rated Openings: Install frames according to NFPA 80.

D. Floor Anchors: Secure with postinstalled expansion anchors.

1. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.

E. Solidly pack mineral-fiber insulation inside frames.

F. In-Place Concrete or Masonry Construction: Secure frames in place with postinstalled expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.

G. Installation Tolerances: Adjust hollow-metal frames to the following tolerances:

1. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
2. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
3. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
4. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.

H. Glazing: Comply with installation requirements in Section 088000 "Glazing" and with hollow-metal manufacturer's written instructions.

3.2 CLEANING AND TOUCHUP

A. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

B. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

C. Factory-Finish Touchup: Clean abraded areas and repair with same material used for factory finish according to manufacturer's written instructions.

D. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION 081213
SECTION 081216 - INTERIOR ALUMINUM DOORS AND FRAMES

PART 1 - GENERAL

1.1 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pre-finished aluminum door frames for interior use.
2. Pre-finished aluminum window frames for interior use.
3. Pre-finished aluminum framing systems for interior use.
4. Pre-finished aluminum doors for interior use.

1.3 SUBMITTALS

A. Submit under the provisions of Section 01300.

B. Product Data: For each type of product indicated. Include construction details, material descriptions, hardware reinforcements, profiles, anchors, fire-resistance rating, and finishes.

C. Templates: Door hardware supplier is to furnish templates, template reference number and/or physical hardware to the interior aluminum door and frame supplier in order to prepare the doors and frames to receive the finish hardware items.

D. Shop Drawings: Include the following:

1. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
2. Locations of reinforcement and preparations for hardware.
3. Details of each different wall opening condition. Include requirements for steel framing at partitions for fit and securing of frames, partition widths and tolerances, direction of framing members, clips and attachments.
4. Details of anchorages, joints, field splices, and connections.
5. Details of accessories.
6. Details of moldings, removable stops, and glazing.
7. Elevations of each door design.
8. Details of doors, including vertical and horizontal edge details and metal thicknesses.
9. Details of preparations for power, signal, and control systems.

E. Samples for Verification: Provide at the request of architect, prepared Samples as indicated below:

1. Framing Member: 12 inches long.
2. Corner Fabrication: 12-by-12-inch-long, full-size window corner, including full-size sections of extrusions with factory-applied color finish.
3. Aluminum chips in full range manufacturer’s standard finishes for architect’s color selection.

F. Interior Aluminum Door and Frame Schedule: Use same designations indicated on Drawings. Coordinate with Door Hardware schedule and glazing.
G. Informational Submittals

1. LEED Documentation: Submit manufacturer’s environmental documentation and applicable sustainability program credits for MR-4 and that are specified herein. Submit manufacturer’s health product declaration (HPD) for products of this section.

2. Certificates of Compliance: Submit any product test report or information necessary to indicate compliance with this specification section.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain interior aluminum frames and doors through one source from a single qualified manufacturer.

B. Manufacturer Qualifications: A firm experienced in the manufacturing of interior aluminum framing systems and doors with a minimum five (5) years successful in-service performance providing product similar to those indicated for this project, including pre-engineering and prefabricating all components of aluminum framing systems and doors.

C. Installer Qualifications: An experienced installer with a minimum five years (5) experience who has completed aluminum framing systems and door installations similar in material, design, and extent to those indicated for this project and whose work has resulted in construction with a record of successful in-service performance.

D. Aesthetic Effects: Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect’s approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.

E. Fire-Rated Door Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 (neutral pressure at 40" above sill) or UL 10C.

1. Provide labels permanently fastened on each frame or door within size limits established by NFPA and the testing authority.

F. Fire-Rated, Borrowed-Light Frame Assemblies: Assemblies complying with NFPA 80 that are listed and labeled, by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated, based on testing according to NFPA 257. Label each individual glazed lite.

G. Smoke-Control Door Assemblies: Comply with NFPA 105.

H. Pre-Installation Conference: Conduct conference in compliance with requirements in Division 01 Section "Project Meetings" with attendance by representatives of Supplier, Installer, and Contractor to review proper methods and procedures for installing interior aluminum frames and doors and to verify installation of electrical knockout boxes and conduit at frames with electrified or access control hardware.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver interior aluminum frames and doors individually protective wrapped within cartons and marked for the corresponding scheduled opening. Do not bulk pack frames.

B. Inspect frames upon delivery for damage.

1. Repair minor damage to pre-finished products as recommended by manufacturer.

2. Replace frames that cannot be satisfactorily repaired.

C. Store interior aluminum frames and doors at Project site under cover and as near as possible to final installation location. Do not use covering material that will cause discoloration of aluminum finish.
1.6 PROJECT CONDITIONS

A. Field Measurements: Verify actual dimensions of interior aluminum frame openings by field measurements before fabrication and indicate measurements on Shop Drawings submittals.

B. Do not install aluminum frames and doors until area of work has been completely enclosed and interior is protected from the elements.

C. Maintain temperature and humidity in areas of installation within reasonable limits, as close as possible to final occupancy standards. If necessary, provide artificial heating, cooling and ventilation to maintain required environmental conditions.

1.7 WARRANTY

A. Provide manufacturer's written warranty against defects in materials and workmanship upon final completion and acceptance of Work in this section.

1. Warrant framing and door finishes against defects and excessive fading and non-uniformity in color for a period of 5 years.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Frameworks Manufacturing.
2. Approved equal per Section 012500

B. Substitutions: Material from alternate interior aluminum framing system and door fabricators will not be accepted on jobsite without prior written and sample approval in accordance with requirements specified in Division 01 and at the discretion of Architect and their designated openings consultant.

2.2 MATERIALS

A. Extruded Aluminum: ASTM B 221 alloy 6063-T5 or alloy and temper required to suit structural and finish requirements.

B. Recycled Content of Aluminum Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 50 percent.

C. INTERIOR ALUMINUM FRAMES

1. Provide interior aluminum framing components complying with dimensions, profiles, and relationships to adjoining work of components as indicated on Drawings. Provide frames that are adjustable for partition types and throat openings, or that are fitted to each partition type, meeting the throat opening and required clearances per frame manufacturer's recommendations. Reinforce for specified hinges, strikes, and closers.

2. Type II Framing System: Provide frames with the following characteristics:

 a. Rectilinear design.
 b. 1-1/2 inch face profile.
 c. Snap on trim:
 1) 1-1/2 inch.
d. .062 inch rabbet wall thickness.
e. Standard throat sizes (drywall partition thickness): 3.75".
f. Adjustable throat frames expandable from 2-7/8" up to 8-3/8".

3. Glass Trim: Extruded aluminum, not less than 0.062 inch thick, designed for glass thickness indicated with removable snap-in casing trim, glazing stops, and door stops without exposed fasteners.

D. INTERIOR ALUMINUM DOORS

1. General: Provide 1-3/4 inch doors of type and design indicated, not less than 0.062 inch thick material.
2. Aluminum Stile & Rail Type Swinging Doors: Door stiles and rails to have tubular design with the following characteristics:
 a. Stiles:
 1) Medium Stile (3-3/4").
 b. Rails:
 1) 3-3/4' Top Rail 6"Bottom Rail.

3. Snap-in stops with factory applied glazing gaskets for 1/4", 3/8", or 1/2" thick glass.

E. Aluminum Stile & Rail Sliding Type Doors: Subject to the same tubular design standards as Stile & Rail Type Swinging Doors with the following characteristics.

1. Sliding door track to be installed in properly blocked ceiling or wall above frame, or to header clip (by manufacturer) attached to the frame header. Sliding track to be provided with snap on covers.
2. Sliding Door Hardware:
 a. Tricycle Rollers: 2 each per panel. Maximum 1 each roller per 75 lbs.
 b. Provide bumper stops in track assemblies.
 c. Provide concealed door guide at floor (track assemblies are not allowed).
 d. Refer to Section 087100 Door Hardware for additional items.

2.3 ACCESSORIES

A. Fasteners: Aluminum, nonmagnetic, stainless-steel or other noncorrosive metal fasteners compatible with frames, stops, panels, reinforcement plates, hardware, anchors, and other items being fastened.

B. Door Silencers: Manufacturer's standard continuous mohair, wool pile, or vinyl seals.

C. Glazing Gaskets: Manufacturer's standard extruded or molded plastic, to accommodate glazing thickness indicated.

D. Glazing: Comply with requirements in Division 08 Section, "Glazing."

E. Hardware: As specified in Division 08 Section, "Door Hardware."

2.4 FABRICATION

A. FRAME CONSTRUCTION

1. Factory pre-engineer and pre-cut interior aluminum frame components to the greatest extent practical. Linear glazing components fabricated in the field are not allowed. Allow for 2 inches excess vertical length for scribing to suit floor conditions. Face trim to be pre-cut to match jamb.
lengths. Machine jambs and prepare for hardware, with concealed plates, drilled and tapped as required, fastened in frame with concealed screws.

2. Provide concealed corner reinforcements and alignment clips for precise joints at butt or mitered connections.

3. Hardware Preparation: Factory interior aluminum frames to receive template mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to the Door Hardware Schedule and templates as specified in Division 08 Section, "Door Hardware."
 a. Reinforce frames to receive surface mounted door hardware. Machine jambs and prepare for hardware, with concealed reinforcement plates, drilled and tapped as required and fastened within frame with concealed screws.
 b. Locate hardware as indicated.
 c. Coordinate locations of conduit, wiring boxes, and power transfers for electrical connections with Division 26 Sections.

4. Fabricate frames for glazing with removable stops to allow glazing replacement without dismantling frame.

5. Fabricate all components to allow secure installation without exposed fasteners.

B. DOOR CONSTRUCTION

1. Factory pre-engineer aluminum doors and components to the greatest extent practical.

2. Hardware Preparation: Factory interior aluminum doors to receive template mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to the Door Hardware Schedule and templates as specified in Division 08 Section, "Door Hardware."
 a. Reinforce doors to receive surface mounted door hardware. Machine and prepare for hardware, with concealed reinforcement plates, drilled and tapped as required and fastened within door with concealed screws.
 b. Locate hardware as indicated.
 c. Coordinate locations of conduit and power transfers for electrical connections with Division 26 Sections.

3. Clearances for Non-Fire-Rated Door Frames: Not more than 1/8 inch at jambs and heads, not more than 1/4 inch between pairs of doors. Not more than 3/4 inch at bottom.

4. Fabricate kits for glazing with removable stops to allow glazing replacement without dismantling.

2.5 ALUMINUM FINISHES

A. General: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products' for recommendations for apply and designated finishes. Exposed surfaces to be free of scratches and other serious blemishes.

B. Factory finish extruded frame components so that any part exposed to view upon completion of installation will be uniform in finish and color.

C. Clear anodic coating: Comply with AAMA 607.1.
 1. Class 2, AAM12C22A31 clear anodized coating, 0.4-.07 mill thickness minimum.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Verify wall thickness does not exceed standard tolerances allowed by specified frame throat sizes.

C. General Contractor to verify the accuracy of dimensions given to frame and door manufacturer for pre-cut openings.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General: Install and set interior aluminum frames plumb, rigid, properly aligned, and securely fastened in place; comply with Drawings and manufacturer's written instructions.

1. At fire-protection-rated openings, install frames according to NFPA 80.

B. Install frame components in the longest possible lengths with no component less than 48 inches.

1. Fasten to suspended ceiling grid at 48 inches on center maximum, using #6 sheet metal screws or other fasteners approved by frame manufacturer.

2. Use concealed installation clips to produce tightly fitted and aligned splices and connections.

3. Secure clips to extruded main-frame components and not to snap-in or trim members.

4. Do not use screws or other fasteners exposed to view when installation is complete.

3.3 ADJUSTING AND CLEANING

A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition.

B. Clean exposed frame surfaces promptly after installation, using cleaning methods recommended by frame manufacturer and according to AMMA 609 & 610.

C. Touch up marred areas so that touch up is not visible from a distance of 48 inches. Remove and replace frames that cannot be satisfactorily repaired.

3.4 PROTECTION

A. Provide protection as required to assure that frames will be without damage or deterioration upon substantial completion of the project.

END OF SECTION 081216
SECTION 081416

FLUSH WOOD DOORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Solid-core doors with wood-veneer faces.
 2. Field finishing flush wood doors.
 3. Factory fitting flush wood doors to frames and factory machining for hardware.

B. Related Requirements:
 1. Section 088000 "Glazing" for glass view panels in flush wood doors.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of door.

B. Shop Drawings: Indicate location, size, and hand of each door; elevation of each kind of door; construction details not covered in Product Data; and the following:
 1. Dimensions and locations of mortises and holes for hardware.
 2. Dimensions and locations of cutouts.
 3. Requirements for veneer matching.
 4. Doors to be factory finished and finish requirements.
 5. Fire-protection ratings for fire-rated doors.

C. Samples: For factory-finished doors.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. VT Industries Architectural Wood Doors
 1. Bonded Particleboard Core 5502H (to match existing)

B. Reliabilt, or approved equal

2.2 FLUSH WOOD DOORS, GENERAL

A. Fire-Rated Wood Doors: Doors complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252.
 1. Cores: Provide core specified or mineral core as needed to provide fire-protection rating indicated.
2. Edge Construction: Provide edge construction with intumescent seals concealed by outer stile. Comply with specified requirements for exposed edges.
3. Pairs: Provide fire-retardant stiles that are listed and labeled for applications indicated without formed-steel edges and astragals. Provide stiles with concealed intumescent seals. Comply with specified requirements for exposed edges.

B. Mineral-Core Doors:
1. Core: Noncombustible mineral product complying with requirements of referenced quality standard and testing and inspecting agency for fire-protection rating indicated.
2. Blocking: Provide composite blocking with improved screw-holding capability approved for use in doors of fire-protection ratings indicated as needed to eliminate through-bolting hardware.
3. Edge Construction: At hinge stiles, provide laminated-edge construction with improved screw-holding capability and split resistance. Comply with specified requirements for exposed edges.

C. Hollow-Core Doors:

2.3 VENEER-FACED DOORS FOR TRANSPARENT FINISH

A. Interior Solid-Core Doors:
1. Grade: Custom (Grade B faces).
2. Species: Oak
3. Cut: Plain sliced.
4. Match between Veneer Leaves: Book Match
5. Exposed Vertical Edges: Same species as face or a compatible species.
6. Core: Either glued wood stave or structural composite lumber.
7. Construction: Five plies. Stiles and rails are bonded to core, then entire unit abrasive plained before veneering.
8. WDMA I.S. 1-A Performance Grade: Standard Duty.

2.4 FABRICATION

A. Factory fit doors to suit frame-opening sizes indicated. Comply with clearance requirements of referenced quality standard for fitting unless otherwise indicated.
1. Comply with NFPA 80 requirements for fire-rated doors.

B. Factory machine doors for hardware that is not surface applied.

C. Openings: Factory cut and trim openings through doors.
1. Light Openings: Trim openings with moldings of material and profile indicated.
2. Glazing: Factory install glazing in doors indicated to be factory finished. Comply with applicable requirements in Section 088000 "Glazing."

2.5 FACTORY FINISHING

A. General: Comply with referenced quality standard for factory finishing. Complete fabrication, including fitting doors for openings and machining for hardware that is not surface applied, before finishing.
1. Finish faces, all four edges, edges of cutouts, and mortises. Stains and fillers may be omitted on bottom edges, edges of cutouts, and mortises.
B. Factory finish doors that are indicated to receive transparent finish.

C. Transparent Finish:
 1. Grade: Custom.
 2. Staining: Sherwin Williams stain to match existing.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Hardware: For installation, see Section 087100 "Door Hardware."

B. Installation Instructions: Install doors to comply with manufacturer's written instructions and referenced quality standard, and as indicated.
 1. Install fire-rated doors according to NFPA 80.
 2. Install smoke- and draft-control doors according to NFPA 105.

C. Job-Fitted Doors: Align and fit doors in frames with uniform clearances and bevels as indicated below; do not trim stiles and rails in excess of limits set by manufacturer or permitted for fire-rated doors. Machine doors for hardware. Seal edges of doors, edges of cutouts, and mortises after fitting and machining.
 1. Clearances: Provide 1/8 inch at heads, jambs, and between pairs of doors. Provide 1/8 inch from bottom of door to top of decorative floor finish or covering unless otherwise indicated. Where threshold is shown or scheduled, provide 1/4 inch from bottom of door to top of threshold unless otherwise indicated.
 a. Comply with NFPA 80 for fire-rated doors.

D. Factory-Fitted Doors: Align in frames for uniform clearance at each edge.

E. Factory-Finished Doors: Restore finish before installation if fitting or machining is required at Project site.

END OF SECTION 081416
SECTION 084113
ALUMINUM-FRAMED STOREFRONTS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
1. Exterior and interior manual-swing entrance doors and door-frame units.

1.2 PERFORMANCE REQUIREMENTS
A. General Performance: Aluminum-framed systems shall withstand the effects of the following performance requirements without exceeding performance criteria or failure due to defective manufacture, fabrication, installation, or other defects in construction:
1. Movements of supporting structure indicated on Drawings including, but not limited to, story drift and deflection from uniformly distributed and concentrated live loads.
2. Dimensional tolerances of building frame and other adjacent construction.
3. Failure includes the following:
 a. Deflection exceeding specified limits.
 b. Thermal stresses transferring to building structure.
 c. Framing members transferring stresses, including those caused by thermal and structural movements to glazing.
 d. Noise or vibration created by wind and by thermal and structural movements.
 e. Loosening or weakening of fasteners, attachments, and other components.
 f. Sealant failure.
 g. Failure of operating units.
B. Delegated Design: Design aluminum-framed systems, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
C. Structural Loads:
1. Positive pressure (wind acting toward exterior surface) +29 psf
2. Negative pressure (wind acting away from exterior surface) -38 psf
3. Refer to TDI Product Evaluation DR-558
D. Deflection of Framing Members:
1. Deflection Normal to Wall Plane: Limited to edge of glass in a direction perpendicular to glass plane shall not exceed L/175 of the glass edge length for each individual glazing lite or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
2. Deflection Parallel to Glazing Plane: Limited to L/360 of clear span or 1/8 inch, whichever is smaller.
E. Structural-Test Performance: Provide aluminum-framed systems tested according to ASTM E 330 as follows:
1. When tested at positive and negative wind-load design pressures, systems do not evidence deflection exceeding specified limits.
2. When tested at 150 percent of positive and negative wind-load design pressures, systems, including anchorage, do not evidence material failures, structural distress, and permanent deformation of main framing members exceeding 0.2 percent of span.
3. Test Durations: As required by design wind velocity, but not fewer than 10 seconds.
F. Impact Debris Resistance Performance: Provide aluminum-framed system tested according to ASTM E 1886 and meeting ASTM E 1996 performance specifications for large missile impact from windborne debris.
G. Air Infiltration: Provide aluminum-framed systems with maximum air leakage through fixed glazing and framing areas of 0.06 cfm/sq. ft. of fixed wall area when tested according to ASTM E 283 at a minimum static-air-pressure difference of 1.57 lbf/sq. ft.
H. Water Penetration under Static Pressure: Provide aluminum-framed systems that do not evidence water penetration through fixed glazing and framing areas when tested according to ASTM E 331 at a minimum static-air-pressure difference of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.
I. Water Penetration under Dynamic Pressure: Provide aluminum-framed systems that do not evidence water leakage through fixed glazing and framing areas when tested according to AAMA 501.1 under
dynamic pressure equal to 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft..

1. Maximum Water Leakage: No uncontrolled water penetrating aluminum-framed systems or water appearing on systems’ normally exposed interior surfaces from sources other than condensation. Water leakage does not include water controlled by flashing and gutters that is drained to exterior and water that cannot damage adjacent materials or finishes.

J. Thermal Movements: Provide aluminum-framed systems that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.
2. Test Performance: No buckling; stress on glass; sealant failure; excess stress on framing, anchors, and fasteners; or reduction of performance when tested according to AAMA 501.5.
 a. High Exterior Ambient-Air Temperature: That which produces an exterior metal-surface temperature of 180 deg F.
 b. Low Exterior Ambient-Air Temperature: 0 deg F.
3. Interior Ambient-Air Temperature: 0 deg F.

K. Condensation Resistance: Provide aluminum-framed systems with fixed glazing and framing areas having condensation-resistance factor (CRF) of not less than 53 when tested according to AAMA 1503.

L. Thermal Conductance: Provide aluminum-framed systems with fixed glazing and framing areas having an average U-factor of not more than 0.57 Btu/sq. ft. x h x deg F when tested according to AAMA 1503.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for aluminum-framed systems.

B. Shop Drawings: For aluminum-framed systems. Include plans, elevations, sections, details, and attachments to other work.

1. Include details of provisions for system expansion and contraction and for drainage of moisture in the system to the exterior.

C. Samples for Initial Selection: For units with factory-applied color finishes.

D. Delegated-Design Submittal: For aluminum-framed systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of aluminum-framed systems.
2. Include design calculations.

E. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for aluminum-framed systems, indicating compliance with performance requirements.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Engineering Responsibility: Prepare data for aluminum-framed systems, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in systems similar to those indicated for this Project.

C. Product Options: Information on Drawings and in Specifications establishes requirements for systems' aesthetic effects and performance characteristics. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction. Performance characteristics are indicated by criteria subject to verification by one or more methods including preconstruction testing, field testing, and in-service performance.

1. Do not revise intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If revisions are proposed, submit comprehensive explanatory data to Architect for review.

D. Source Limitations for Aluminum-Framed Systems: Obtain from single source from single manufacturer.

E. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for fabrication and installation.

1. Field testing shall be performed on mockups according to requirements in "Field Quality Control" Article.

1.5 PROJECT CONDITIONS

A. Field Measurements: Verify actual locations of structural supports for aluminum-framed systems by field measurements before fabrication and indicate measurements on Shop Drawings.
1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of aluminum-framed systems that do not comply with requirements or that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including, but not limited to, excessive deflection.
 b. Noise or vibration caused by thermal movements.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 d. Water leakage through fixed glazing and framing areas.

 2. Warranty Period: Two years from date of Substantial Completion.

B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

 2. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements:
 1. Oldcastle StormMax FG-5100
 2. Approved equal

B. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 2. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221.
 4. Structural Profiles: ASTM B 308/B 308M.

2.2 FRAMING SYSTEMS

A. Framing Members: Manufacturer's standard extruded-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 1. Finish: Dark Bronze
 2. Construction: Screw spline.

B. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with non-staining, nonferrous shims for aligning system components.

C. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, non-staining, non-bleeding fasteners and accessories compatible with adjacent materials.
 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 2. Reinforce members as required to receive fastener threads.
 3. Use exposed fasteners with countersunk Phillips screw heads, finished to match framing system.

D. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts, complying with ASTM A 123 or ASTM A 153.

E. Concealed Flashing: Manufacturer's standard corrosion-resistant, non-staining, non-bleeding flashing compatible with adjacent materials.

F. Framing System Gaskets and Sealants: Manufacturer's standard, recommended by manufacturer for joint type.

2.3 GLAZING SYSTEMS

A. Glazing: As specified in Division 08 Section "Glazing."

B. Glazing Gaskets: Manufacturer's standard compression types; replaceable, molded or extruded, of profile and hardness required to maintain watertight seal.

C. Spacers and Setting Blocks: Manufacturer's standard elastomeric type.

2.4 ACCESSORY MATERIALS
A. Joint Sealants: For installation at perimeter of aluminum-framed systems, as specified in Division 07 Section "Joint Sealants."
 1. Provide sealants for use inside of the weatherproofing system that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
B. Bituminous Paint: Cold-applied, asphalt-mastic paint complying with SSPC-Paint 12 requirements except containing no asbestos; formulated for 30-mil thickness per coat.

2.5 FABRICATION
A. Form or extrude aluminum shapes before finishing.
B. Framing Members, General: Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends coped or mitered.
 3. Means to drain water passing joints, condensation within framing members, and moisture migrating within the system to exterior.
 4. Physical and thermal isolation of glazing from framing members.
 5. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 6. Provisions for field replacement of glazing from interior for vision glass and exterior for spandrel glazing or metal panels.
 7. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.
C. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.
D. Storefront Framing: Fabricate components for assembly using screw-spline system.
E. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.6 ALUMINUM FINISHES
A. Bark Bronze.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. General:
 1. Comply with manufacturer's written instructions.
 2. Do not install damaged components.
 3. Fit joints to produce hairline joints free of burrs and distortion.
 4. Rigidly secure non-movement joints.
 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration.
 6. Seal joints watertight unless otherwise indicated.
B. Metal Protection:
 1. Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or applying sealant or tape, or by installing nonconductive spacers as recommended by manufacturer for this purpose.
 2. Where aluminum will contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
C. Install components to drain water passing joints, condensation occurring within framing members, and moisture migrating within the system to exterior.
D. Set continuous sill members and flashing in full sealant bed as specified in Division 07 Section "Joint Sealants" to produce weathertight installation.
E. Install components plumb and true in alignment with established lines and grades, and without warp or rack.
F. Install glazing as specified in Division 08 Section "Glazing."
G. Install perimeter joint sealants as specified in Division 07 Section "Joint Sealants" to produce weathertight...
3.3 ERECTION TOLERANCES
A. Install aluminum-framed systems to comply with the following maximum erection tolerances:
 1. Location and Plane: Limit variation from true location and plane to 1/8 inch in 12 feet; 1/4 inch over total length.
 2. Alignment:
 a. Where surfaces abut in line, limit offset from true alignment to 1/16 inch.
 b. Where surfaces meet at corners, limit offset from true alignment to 1/32 inch.
B. Diagonal Measurements: Limit difference between diagonal measurements to 1/8 inch.

3.4 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified independent testing and inspecting agency to perform field tests and inspections.
B. Testing Services: Testing and inspecting of representative areas to determine compliance of installed systems with specified requirements shall take place as follows and in successive phases as indicated on Drawings. Do not proceed with installation of the next area until test results for previously completed areas show compliance with requirements.
 1. Water Spray Test: Before installation of interior finishes has begun, a minimum area of 75 feet by 1 story of aluminum-framed systems designated by Architect shall be tested according to AAMA 501.2 and shall not evidence water penetration.
C. Repair or remove work if test results and inspections indicate that it does not comply with specified requirements.
D. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
E. Aluminum-framed assemblies will be considered defective if they do not pass tests and inspections.
F. Prepare test and inspection reports.

3.5 ADJUSTING
A. Adjust operating entrance door hardware to function smoothly as recommended by manufacturer.

END OF SECTION 084113
SECTION 084123

FIRE RATED GLASS AND FRAMING SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Fire rated door and framing systems for installation as full vision fire rated doors in interior openings.

B. Related Sections include the following:

C. Related Sections:
 1. Section 05 12 00 “Structural Steel Framing:” Steel attachment members
 2. Section 07 84 00 “Firestopping:” Firestops between work of this section and other fire resistive assemblies.
 3. Section 08 11 13 “Hollow Metal Doors and Frames.” Hollow Metal doors prepped for the work of this section.
 4. Section 08 71 00 “Door Hardware:” Door hardware other than that provided by the work of this section
 5. Section 08 71 13 “Automatic Door Operators” opener for door to comply with ADA and Local Authority opening force requirements.

1.2 REFERENCES

A. American Architectural Manufacturers Association (AAMA)

2. AAMA 501.2-2003: Quality Assurance and Diagnostic Water Leakage Field Check of Installed Storefronts, Curtain Walls, and Sloped Glazing Systems
3. AAMA 501.5-2005: Test Method for Thermal Cycling of Exterior Walls
B. American Society for Testing and Materials (ASTM):

1. Material related

2. Exterior related
 a. ASTM E 283-04: Test Method for Determining the Rate of Air Leakage through Exterior Windows, Curtain Walls, and Doors under Specified Pressure Differences across the Specimen
 b. ASTM E 330-02: Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference Procedure A
 c. ASTM E 331-04: Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference
 d. ASTM E 783-02: Test Method for Field Measurement of Air Leakage through Installed Exterior Windows and Doors
 e. ASTM E 1105-00: Test Method for Field Determination of Water Penetration of Installed Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform or Cyclic Static Air Pressure Difference

3. Sound related:
 b. ASTM E 413-04: Standard Classification for Rating Sound Insulation

C. American Welding Society (AWS)

1. AWS D1.3 - Structural Welding Code - Sheet Steel; 2007

D. Builders Hardware Manufacturers Association, Inc.

E. Canadian Standards
1. CAN-S101 Fire Endurance Tests of Building Construction and Materials
2. CAN4-S104 Fire Tests of Door Assemblies
3. CAN4-S106 Standard Method for Fire Tests of Window and Glass Block Assemblies

F. National Fire Protection Association (NFPA):
4. **NFPA 257**: Standard on Fire Test for Window and Glass Block Assemblies.

G. **Underwriters Laboratories, Inc. (UL):**
 1. UL 9: Fire Tests of Window Assemblies.
 2. UL 10B: Fire Tests of Door Assemblies.
 3. UL 10C: Positive Pressure Fire Tests of Door Assemblies.

H. **American National Standards Institute (ANSI):**

I. **Consumer Product Safety Commission (CPSC):**

J. **American Society of Civil Engineers (ASCE)**
 1. ASCE 7 – Minimum Design Loads for Buildings and Other Structures; 2005

K. **New York City approval**
 1. MEA# 242-00-M

1.3 **DEFINITIONS**

A. **Manufacturer:** A firm that produces primary glass, fabricated glass or framing as defined in referenced glazing publications.

1.4 **SUBMITTALS**

A. Submit in accordance with Section `<Insert Section #>`.

B. **Product Data:**

C. **Shop Drawings:**
 1. Include plans, elevations and details of product showing component dimensions; framed opening requirements, dimensions, tolerances, and attachment to structure

D. **Structural Calculations (optional):**
 1. Provide structural calculations sealed by a licensed professional engineer in the State in which the project is located; prepared in compliance with referenced documents and these specifications.

E. **Hardware schedule:** list of manufacture supplied hardware and verification of cylinder size complying with Section 08 71 00

F. **Samples (optional):** For following products:
 1. **Glass sample-as provided by manufacturer**
 2. **Sample of frame**
3. Verification of sample of selected finish

G. Glazing Schedule: Use same designations indicated on drawings for glazed openings in preparing a schedule listing glass types and thicknesses for each size opening and location.

H. Warranties: Submit manufacturer's warranty.

I. Certificates of compliance from glass and glazing materials manufacturers attesting that glass and glazing materials furnished for project comply with requirements.

1. Separate certification will not be required for glazing materials bearing manufacturer's permanent label designating type and thickness of glass, provided labels represent a quality control program involving a recognized certification agency or independent testing laboratory acceptable to authority having jurisdiction.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to
1. International Accreditation Service for a Type A Third-Party Inspection Body (Field Services ICC-ES Third-Party Inspections Standard Operating Procedures, 00-BL-S0400 and S0401)
2. International Accreditation Service for Testing Body-Building Materials and Systems
 a. Fire Testing
 1) ASTM Standards E 119
 2) CPSC Standards 16 CFR 1201
 3) NFPA Standards 251, 252, 257
 4) UL Standards 9, 10B, 10C, 1784, UL Subject 63
 5) BS 476; Part 22: 1987
 6) EN 1634-1
 7) CAN Standards S 101, S 104, S 106

B. Installer Qualifications: An experienced installer who has completed glazing similar in material, design, and extent to that indicated for this Project; whose work has resulted in glass installations with a record of successful in-service performance; and who employs glass installers for this Project who are certified under the National Glass Association Glazier Certification Program as Level 2 (Senior Glaziers) or Level 3 (Master Glaziers).

C. Installer Qualifications: An experienced installer who has completed glazing similar in material, design, and extent to that indicated for Project and whose work has resulted in construction with a record of successful in-service performance.

D. Source Limitations for Glazing Accessories: Obtain framing system, glazing and glazing accessories from one source for each product and installation method indicated.

E. Fire-Rated Door Assemblies: Assemblies complying with NFPA 80 that are classified and labeled by UL, for fire ratings indicated, based on testing according to NFPA 252. Assemblies must be factory-welded or come complete with factory-installed mechanical joints and must not require job site fabrication.
F. Fire-Rated Window Assemblies: Assemblies complying with NFPA 80 that are classified and labeled by UL, for fire ratings indicated, based on testing according to NFPA 257. Assemblies must be factory-welded or come complete with factory-installed mechanical joints and must not require job site fabrication.

G. Listings and Labels - Fire Rated Assemblies: Under current follow-up service by Underwriters Laboratories® maintaining a current listing or certification. Label assemblies accordance with limits of manufacturer’s listing.

H. Regulatory Requirements: Comply with provisions of the following:
1. Where indicated to comply with accessibility requirements, comply with [Americans with Disabilities Act (ADA), "Accessibility Guidelines for Buildings and Facilities (ADAAG),"] [ANSI A117.1,] [FED-STD-795, "Uniform Federal Accessibility Standards,"] as follows:
 a. Handles, Pulls, Latches, Locks, and other Operating Devices: Shape that is easy to grasp with one hand and does not require tight grasping, tight pinching, or twisting of the wrist.
 b. Door Closers: Comply with the following maximum opening-force requirements indicated:
 1) Accessible doors no more than 5 lbf push or pull force
 2) Fire Doors: Minimum opening force allowable by authorities having jurisdiction

2. Compliance with this standard requires auto openers to be added to the opening due to the weight of the doors. Coordinate the addition of auto-openers with the Division 8 section “Door Hardware” or other section containing these devices. Verify that the Authority Having Jurisdiction is using NFPA 101 and/or IBC and which edition dates of both as a requirement for the facility. NFPA 101: Comply with the following for means of egress doors:
 a. Latches, Locks, and Exit Devices: Not more than 15 lbf to release the latch. Locks shall not require the use of a key, tool, or special knowledge for operation.
 b. Door Closers: Not more than 30 lbf to set door in motion and not more than 15 lbf to open door to minimum required width.

3. IBC 2012 Chapter 10 Means of Egress: Comply with the following for means of egress doors:
 a. Latches, Locks, and Exit Devices: Not more than 15 lbf to release the latch. Locks shall not require the use of a key, tool, or special knowledge for operation.
 b. Door Closers: Not more than 30 lbf (133 N) to set door in motion and not more than 15 lbf to open door to minimum required width.

1.6 DELIVERY, STORAGE AND HANDLING

A. Deliver, store and handle under provisions specified by manufacturer.

PROJECT CONDITIONS

B. Obtain field measurements prior to fabrication of frame units. If field measurements will not be available in a timely manner coordinate planned measurements with the work of other sections.
1. Note whether field or planned dimensions were used in the creation of the shop drawings.

C. Coordinate the work of this section with others effected including but not limited to: other interior and/or exterior envelope components and door hardware beyond that provided by this section

WARRANTY

D. Provide the Fireframes® Designer Series standard five-year manufacturer warranty.

PART 2 - PRODUCTS

2.1 MANUFACTURERS - FIRE RATED [DOOR ASSEMBLY] [WINDOW]

A. Glass Material: [FireLite®] [FireLite Plus®] [FireLite® NT] [FireLite® IGU] [Fireglass®20] [Pilkington Pyrostop®] fire-rated glazing as fabricated and distributed by Technical Glass Products, 8107 Bracken Place SE, Snoqualmie, WA 98065 phone (800.426.0279) fax (425.396.8300) e-mail sales@fireglass.com; web site http://www.fireglass.com.

B. Frame System: “Fireframes® Designer Series by TGP” fire-rated [steel] [brushed stainless steel (up to 45 minute rating)] frame system as manufactured and supplied by Technical Glass Products, 8107 Bracken Place SE, Snoqualmie, WA 98065 phone (800.426.0279) fax (425.396.8300) e-mail sales@fireglass.com; web site http://www.fireglass.com.

C. Substitutions: Substitutions for Glazing Material and Frame System not permitted.

2.2 PERFORMANCE REQUIREMENTS

A. Fire Rating Requirements
 1. Duration -- Doors: Capable of providing a fire rating for [20] [45] [60] [90] minutes.
 a. When glazed with Pilkington Pyrostop (60-90 minutes) glazing products, doors meet the maximum transmitted temperature rise of not more than 450 degrees Fahrenheit (250 degrees Celsius) at the end of 30 minutes of the standard fire test exposure.
 2. Duration-- Window Assembly: Capable of providing a fire rating for [20] [45] [60] [90] minutes.
 3. Duration--Opening Applications in fire partitions or area separation walls and corridors where opening protection is specified: Capable of providing [20] [45] [60] [90] minute rating.

B. Delegated design: For the performance requirements listed below requiring structural design provide data, calculations and drawings signed and sealed by an engineer licensed in the state [province] where the project is located.

C. Design Requirements:
 1. Dimensions – Door and Framing:
 a. Door framing face dimension: 1 15/16-inch.
b. Depth of door framing: 1 15/16-inch.
c. Door style face dimension: 3 1/8-inch.
d. Door cross rail (if applicable) face: 3 9/16-inch.
e. Depth of stile, header, sill and cross rail: 1 15/16-inch

2. Dimensions – Window Assembly:
 a. Perimeter framing face dimension: 2 3/4-inch at head, sill and jamb.
 b. Horizontal and/or vertical mullions: 3 9/16-inch on the face.
 c. Depth of perimeter and mullion: 1 15/16-inch.

3. Construction: Narrow-profile, roll-formed steel architectural grade specialty fire doors. Conventional break-shape type hollow metal steel fire-rated doors will not be considered an acceptable substitute for the Fireframes Designer Series doors specified in this section as they do not conform to the project design intent and/or aesthetic and quality standards.
 a. Knock down frames are not permitted.

D. Structural Performance
 1. Design and size the system to withstand structural forces placed upon it without damage or permanent set when tested in accordance with ASTM E330 using load 1.5 times the design wind loads and of 10 seconds in duration.
 2. Positive wind load: [______ lbf/sq ft.] as indicated on the drawings
 3. Negative wind load: [______ lbf/sq ft.] as indicated on the drawings
 4. Member deflection: Limit deflection of the edge of the glass normal to the plane of the glass to [flexure limit of glass] [1/175 of the glass edge length or ¾ inch, whichever is less] of any framing member
 5. Accommodate movement between storefront and adjoining systems

E. Air infiltration: Provide systems that allow a maximum air leakage through fixed glazed openings of 0.06 cfm/sq. ft. of area when tested per ASTM E 283 at a static air differential of [1.57] [6.24] lbf/sq ft

F. Water Penetration
 1. Under Static pressure, provide systems that do not show uncontrolled water leakage when tested according to ASTM E 331 under static pressure equal to 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.
 2. Under Dynamic pressure, provide systems that do not show uncontrolled water leakage when tested according to AAMA 501.1 under static pressure equal to 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.

2.3 MATERIALS - GLASS

A. Fire Rated Glazing: ASTM C 1036 and ASTM C 1048; composed of [ceramic] [ceramic with surface applied fire-rated film] [laminated ceramic] [insulated ceramic] [specially tempered] [wired glass] [laminated glass with intumescent interlayers] glazing material.

B. Thickness of Glazing Material:
1. [3/16” FireLite®] [3/16” FireLite® NT] [5/16” FireLite® Plus®] [FireLite® Insulated Glass Unit (IGU) as specified] FireLite products available in Premium and Standard Grade surface finishes
2. [1/4” Fireglass®20]
3. [3/4” – 1-9/16”Pilkington Pyrostop®]
4. [1/4” polished wired glass].

C. Approximate Visible Transmission: Varies with thickness (approximate range 88 percent).

D. Logo: Each piece of fire-rated glazing shall be labeled with a permanent logo including name of product, manufacturer, testing laboratory (UL® only), fire rating period, safety glazing standards, and date of manufacture.

E. Performance: Glass must be rated to stop fire from either direction and must meet all testing requirements including the required hose-stream test (where fire-rating exceeds 20 minutes).

2.4 MATERIALS – STEEL FRAMES AND DOORS

A. Steel Framing System including [20] [45] [60] [90]-minute rated doors, [20] [45] [60] [90]-minute rated windows.
 1. Frame: [Steel] [brushed stainless steel (up to 45 minute rating)] profiled formed tubing.
 2. Fasteners: As recommended by manufacturer
 4. Glazing Compounds:
 a. FireLite®, FireLite® Plus®, FireLite® NT, FireLite® IGU, Fireglass®20, or Pilkington Pyrostop®: Approved [closed cell PVC tape], [Fibrefrax], or [pure silicone sealant]. Glaze FireLite® panels that exceed 1,393 sq. inches for 90-minute ratings with “Kerafix 2000” glazing tape supplied by manufacturer.
 1) When glazed with Pilkington Pyrostop (60-90 minutes) glazing products, doors meet the maximum transmitted temperature rise of not more than 450 degrees Fahrenheit (250 degrees Celsius) at the end of 30 minutes of the standard fire test exposure.
 b. WireLite® (Wired Glass)/WireLite® NT (filmed wired glass): FireGlaze 3000 [S45] [S90] glazing tape as distributed by Pemko Manufacturing.

2.5 FABRICATION

A. Furnish frame assemblies pre-welded.
 1. When necessary, splice frames too large for shop fabrication or shipping or to fit in available building openings.
 2. Fit with suitable fasteners.
 3. Knock-down frames are not permitted

B. Furnish interior frame assemblies “K-D” (or welded upon request).
 1. When necessary, splice frames too large for shop fabrication or shipping or to fit in available building openings.
2. Fit with suitable fasteners.
3. Knock-down door perimeter frames are not permitted

C. Field glaze door and frame assemblies.
D. Factory prepare steel door assemblies and install all hardware.
E. Fabrication Dimensions: Fabricate to fire-rated field dimensions.
F. Obtain approved shop drawings prior to fabrication.

2.6 FINISHES, GENERAL

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
B. Finish frames after assembly.
C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable. Noticeable variations in the same piece are not acceptable.

2.7 POWDERCOAT FINISHES

A. Finish after fabrication.
B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable. Noticeable variations in the same piece are not acceptable.
C. Interior and Exterior Steel Finishes (Note: this finish is suitable for exterior exposed portions of the wall systems, including extruded aluminum covers).
 1. Powder-Coat Finish: Polyester Super Durable powder coating which meets AAMA 2604 for chalking and fading. Apply manufacturer's standard powder coating finish system applied to factory-assembled frames before shipping, complying with manufacturer's recommended instructions for surface preparation including pretreatment, application, and minimum dry film thickness.
 2. Color and Gloss: [As indicated by manufacturer's designations] [Match Architect's sample] [As selected by Architect from manufacturer's full range].
 3. Acceptable Manufacturers:
 a. Tiger Drylac
 b. Additional manufacturers as approved by TGP

2.8 DOOR HARDWARE

A. Furnish hardware with [20] [45] [60] [90] minute fire door by the manufacturer.
B. Select hardware from door manufacturer's standard recommended and approved hardware groups as specified in Division 8 Section – Door Hardware.
C. Provide power assisted hardware for use at any door that cannot meet the opening force(s) required by code noted in Part I above.
1. High energy, power-operated doors must meet the requirements of ANSI/BHMA A156.10 and power-assisted low energy doors must comply with ANSI/BHMA 156.19

D. Operating hardware for Fireframes® Designer Series Single Inswing Doors with Mortise Locking. Each to have the following.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hanging Devices</td>
<td>Technical Glass Products</td>
<td>PTM</td>
</tr>
<tr>
<td>1</td>
<td>Lever Trim</td>
<td>Technical Glass Products</td>
<td>630</td>
</tr>
<tr>
<td>1</td>
<td>Mortise Lock</td>
<td>Technical Glass Products</td>
<td>630</td>
</tr>
<tr>
<td>1</td>
<td>Cylinder</td>
<td>Technical Glass Products</td>
<td>626</td>
</tr>
<tr>
<td>1</td>
<td>Closing Devices</td>
<td>Dorma</td>
<td>689</td>
</tr>
<tr>
<td>1</td>
<td>Auto door Bottom</td>
<td>Pemko</td>
<td>MA</td>
</tr>
<tr>
<td>1</td>
<td>Weather Seal</td>
<td>Technical Glass Products</td>
<td></td>
</tr>
</tbody>
</table>

Balance of hardware by others

E. Operating hardware for Fireframes® Designer Series Single Outswing Doors with Mortise Locking. Each to have the following.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hanging Devices</td>
<td>Technical Glass Products</td>
<td>PTM</td>
</tr>
<tr>
<td>1</td>
<td>Lever Trim</td>
<td>Technical Glass Products</td>
<td>630</td>
</tr>
<tr>
<td>1</td>
<td>Mortise Lock</td>
<td>Technical Glass Products</td>
<td>630</td>
</tr>
<tr>
<td>1</td>
<td>Cylinder</td>
<td>Technical Glass Products</td>
<td>626</td>
</tr>
<tr>
<td>1</td>
<td>Closing Devices</td>
<td>Dorma</td>
<td>689</td>
</tr>
<tr>
<td>1</td>
<td>Auto door Bottom</td>
<td>Pemko</td>
<td>MA</td>
</tr>
<tr>
<td>1</td>
<td>Weather Seal</td>
<td>Technical Glass Products</td>
<td></td>
</tr>
</tbody>
</table>

Balance of hardware by others

F. Operating hardware for Fireframes® Designer Series Single Outswing Doors with Exit Device. Each to have the following.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hanging Devices</td>
<td>Technical Glass Products</td>
<td>PTM</td>
</tr>
</tbody>
</table>
Project No.: 1804

The Reese
2nd Floor ProBAR Finish Out

FIRE RATED GLASS AND FRAMING SYSTEMS
Megamorphosis Inc.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Exit Device</td>
<td>35A-F Rim</td>
<td>Von Duprin</td>
<td>626</td>
</tr>
<tr>
<td>1 Lever Trim</td>
<td>360 L Lever Handle</td>
<td>Von Duprin</td>
<td>626</td>
</tr>
<tr>
<td>1 Cylinder</td>
<td>ANSI Mortise Schlage C Keyway</td>
<td>Technical Glass</td>
<td>626</td>
</tr>
<tr>
<td>1 Closing Devices</td>
<td>TS 93 Surface Applied Closer</td>
<td>Dorma</td>
<td>689</td>
</tr>
<tr>
<td>1 Auto door Bottom</td>
<td>420APKL Smoke Seal</td>
<td>Pemko</td>
<td>MA</td>
</tr>
<tr>
<td>1 Weather Seal</td>
<td>Perimeter Gasket</td>
<td>Technical Glass</td>
<td></td>
</tr>
</tbody>
</table>

Balance of hardware by others

G. Operating hardware for Designer Series **Active-Fixed Inswing Pair of Doors with Mortise Locking**. Each pair to have the following.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Hanging Devices</td>
<td>Weld on Pivots</td>
<td>Technical Glass</td>
<td>PTM</td>
</tr>
<tr>
<td>1 Lever Trim</td>
<td>Narrow Escutcheon Lever Trim Set DSR2NN#-P6-yyy-630</td>
<td>Technical Glass</td>
<td>630</td>
</tr>
<tr>
<td>1 Mortise Lock</td>
<td>Mortise lock with panic function</td>
<td>Technical Glass</td>
<td>630</td>
</tr>
<tr>
<td>1 Cylinder</td>
<td>European Profile Schlage C Keyway</td>
<td>Technical Glass</td>
<td>626</td>
</tr>
<tr>
<td>2 Cylinder Cover Plates</td>
<td>Profile cylinder cover plate</td>
<td>Technical Glass</td>
<td>626</td>
</tr>
<tr>
<td>2 Closing Devices</td>
<td>TS 93 Surface Applied Closer</td>
<td>Dorma</td>
<td>689</td>
</tr>
<tr>
<td>1 Coordinator</td>
<td>GSR</td>
<td>Dorma</td>
<td>689</td>
</tr>
<tr>
<td>1 Flush Bolt Set</td>
<td>Automatic or Semi-Automatic Flush bolt with dust proof recessed strike</td>
<td>Trimco</td>
<td>626</td>
</tr>
<tr>
<td>2 Auto door Bottoms</td>
<td>420APKL Smoke Seal</td>
<td>Pemko</td>
<td>MA</td>
</tr>
<tr>
<td>1 Weather Seal</td>
<td>Perimeter Gasket</td>
<td>Technical Glass</td>
<td></td>
</tr>
</tbody>
</table>

Balance of hardware by others

H. Operating hardware for Fireframes® Designer Series **Active-Fixed Outswing Pair of Doors with Mortise Locking**. Each pair to have the following.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Hanging Devices</td>
<td>Weld on Pivots</td>
<td>Technical Glass</td>
<td>PTM</td>
</tr>
<tr>
<td>1 Lever Trim</td>
<td>LX Series Control Trim Lever Set DSR1GN#-*#-yyy-630</td>
<td>Technical Glass</td>
<td>630</td>
</tr>
<tr>
<td>1 Mortise Lock</td>
<td>Mortise lock with panic function</td>
<td>Technical Glass</td>
<td>630</td>
</tr>
<tr>
<td>1 Cylinder</td>
<td>ANSI Mortise Schlage C Keyway</td>
<td>Technical Glass</td>
<td>626</td>
</tr>
</tbody>
</table>
Cylinder Cover Plates: Profile cylinder cover plate
Closing Devices: TS 93 Surface Applied Closer
Coordinator: GSR
Flush Bolt Set: Automatic or Semi-Automatic Flush bolt with dust proof recessed strike
Auto door Bottoms: 420APKL Smoke Seal
Weather Seal: Perimeter Gasket

Balance of hardware by others

I. Operating hardware for Fireframes® Designer Series **Active-Fixed Pair of Doors Outswing with Exit Device**. Each pair to have the following.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Hanging Devices</td>
<td>Weld on Pivots</td>
<td>Technical Glass Products</td>
<td>PTM</td>
</tr>
<tr>
<td>1 Exit Device</td>
<td>3547A-F Concealed Vertical Rod</td>
<td>Von Duprin</td>
<td>626</td>
</tr>
<tr>
<td>1 Lever Trim</td>
<td>360 L Lever Handle</td>
<td>Von Duprin</td>
<td>626</td>
</tr>
<tr>
<td>1 Cylinder</td>
<td>ANSI Mortise Schlage C Keyway</td>
<td>Technical Glass Products</td>
<td>626</td>
</tr>
<tr>
<td>2 Closing Devices</td>
<td>TS 93 Surface Applied Closer</td>
<td>Dorma</td>
<td>689</td>
</tr>
<tr>
<td>1 Coordinator</td>
<td>GSR</td>
<td>Dorma</td>
<td>689</td>
</tr>
<tr>
<td>1 Flush Bolt Set</td>
<td>Automatic or Semi-Automatic Flush bolt with dust proof recessed strike</td>
<td>Trimco</td>
<td>626</td>
</tr>
<tr>
<td>2 Auto door Bottoms</td>
<td>420APKL Smoke Seal</td>
<td>Pemko</td>
<td>MA</td>
</tr>
<tr>
<td>1 Weather Seal</td>
<td>Perimeter Gasket</td>
<td>Technical Glass Products</td>
<td></td>
</tr>
</tbody>
</table>

Balance of hardware by others

J. Operating hardware for Fireframes® Designer Series **Active-Active Pair of Doors Outswing with Exit Device**. Each pair to have the following.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Hanging Devices</td>
<td>Weld on Pivots</td>
<td>Technical Glass Products</td>
<td>PTM</td>
</tr>
<tr>
<td>2 Exit Device</td>
<td>3547A-F Concealed Vertical Rod</td>
<td>Von Duprin</td>
<td>626</td>
</tr>
<tr>
<td>2 Lever Trim</td>
<td>360 L Rectangular Lever Handle</td>
<td>Von Duprin</td>
<td>626</td>
</tr>
<tr>
<td>1 Cylinder</td>
<td>ANSI Mortise Schlage C Keyway</td>
<td>Technical Glass Products</td>
<td>626</td>
</tr>
<tr>
<td>2 Closing Devices</td>
<td>TS 93 Surface Applied Closer</td>
<td>Dorma</td>
<td>689</td>
</tr>
<tr>
<td>2 Auto door Bottoms</td>
<td>420APKL Smoke Seal</td>
<td>Pemko</td>
<td>MA</td>
</tr>
<tr>
<td>1 Auxiliary Fire Latch</td>
<td>Used with exit device</td>
<td>Technical Glass Products</td>
<td>630</td>
</tr>
</tbody>
</table>
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates and members to which the work of this section attaches or adjoins prior to frame installation.

B. Provide openings plumb, square and within allowable tolerances.
 1. Provide 3/8 inch shim space at all walls

C. Notify Architect of any conditions which jeopardize the integrity of the proposed fire wall / door system.

D. Do not proceed until such conditions are corrected.

3.2 INSTALLATION
A. See Fireframes Designer Series Installation Manual

3.3 REPAIR AND TOUCH UP
A. Limited to minor repair of small scratches. Use only manufacturer’s recommended products.
 1. Such repairs shall match original finish for quality or material and view.

B. Remove and replace glass that is broken, chipped, cracked, abraded, or damaged.

3.4 ADJUSTING
A. Adjust door function and hardware for smooth operation. Coordinate with other hardware suppliers for function and use of any other attached hardware.
3.5 PROTECTION AND CLEANING

A. Protect glass from damage immediately after installation by attaching crossed streamers to framing held away from glass. Do not apply markers to glass surface. Remove nonpermanent labels, and clean surfaces.

1. Do not clean with astringent cleaners. Use a clean “grit free” cloth and a small amount of mild soap and water or mild detergent.

2. Do not use any of the following:
 a. Steam jets
 b. Abrasives
 c. Strong acidic or alkaline detergents, or surface-reactive agents
 d. Detergents not recommended in writing by the manufacturer
 e. Do not use any detergent above 77 degrees F
 f. Organic solvents including but not limited to those containing ester, ketones, alcohols, aromatic compounds, glycol ether, or halogenated hydrocarbons.
 g. Metal or hard parts of cleaning equipment must not touch the glass surface

B. Protect glass from contact with contaminating substances resulting from construction operations, including weld splatter. If, despite such protection, contaminating substances do come into contact with glass, remove them immediately as recommended by glass manufacturer.

C. Wash glass on both exposed surfaces in each area of Project not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended by glass manufacturer.

PART 4 - GENERAL

4.1 SUMMARY

A. Section Includes:
 1. Exterior and interior manual-swing entrance doors and door-frame units.

4.2 PERFORMANCE REQUIREMENTS

A. General Performance: Aluminum-framed systems shall withstand the effects of the following performance requirements without exceeding performance criteria or failure due to defective manufacture, fabrication, installation, or other defects in construction:

1. Movements of supporting structure indicated on Drawings including, but not limited to, story drift and deflection from uniformly distributed and concentrated live loads.

2. Dimensional tolerances of building frame and other adjacent construction.

3. Failure includes the following:
 a. Deflection exceeding specified limits.
 b. Thermal stresses transferring to building structure.
 c. Framing members transferring stresses, including those caused by thermal and structural movements to glazing.
 d. Noise or vibration created by wind and by thermal and structural movements.
 e. Loosening or weakening of fasteners, attachments, and other components.
 f. Sealant failure.
 g. Failure of operating units.

B. Delegated Design: Design aluminum-framed systems, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

C. Structural Loads:
 1. Positive pressure (wind acting toward exterior surface) +29 psf
 2. Negative pressure (wind acting away from exterior surface) -38 psf
3. Refer to TDI Product Evaluation DR-558

D. Deflection of Framing Members:
1. Deflection Normal to Wall Plane: Limited to edge of glass in a direction perpendicular to glass plane shall not exceed L/175 of the glass edge length for each individual glazing lite or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
2. Deflection Parallel to Glazing Plane: Limited to L/360 of clear span or 1/8 inch, whichever is smaller.

E. Structural-Test Performance: Provide aluminum-framed systems tested according to ASTM E 330 as follows:
1. When tested at positive and negative wind-load design pressures, systems do not evidence deflection exceeding specified limits.
2. When tested at 150 percent of positive and negative wind-load design pressures, systems, including anchorage, do not evidence material failures, structural distress, and permanent deformation of main framing members exceeding 0.2 percent of span.
3. Test Durations: As required by design wind velocity, but not fewer than 10 seconds.

F. Impact Debris Resistance Performance: Provide aluminum-framed system tested according to ASTM E 1886 and meeting ASTM E 1996 performance specifications for large missile impact from windborne debris.

G. Air Infiltration: Provide aluminum-framed systems with maximum air leakage through fixed glazing and framing areas of 0.06 cfm/sq. ft. of fixed wall area when tested according to ASTM E 283 at a minimum static-air-pressure difference of 1.57 lb/sq. ft.

H. Water Penetration under Static Pressure: Provide aluminum-framed systems that do not evidence water penetration through fixed glazing and framing areas when tested according to ASTM E 331 at a minimum static-air-pressure difference of 20 percent of positive wind-load design pressure, but not less than 6.24 lb/sq. ft.

I. Water Penetration under Dynamic Pressure: Provide aluminum-framed systems that do not evidence water leakage through fixed glazing and framing areas when tested according to AAMA 501.1 under dynamic pressure equal to 20 percent of positive wind-load design pressure, but not less than 6.24 lb/sq. ft.

J. Thermal Movements: Provide aluminum-framed systems that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.
2. Test Performance: No buckling; stress on glass; sealant failure; excess stress on framing, anchors, and fasteners; or reduction of performance when tested according to AAMA 501.5.
 a. High Exterior Ambient-Air Temperature: That which produces an exterior metal-surface temperature of 180 deg F.
 b. Low Exterior Ambient-Air Temperature: 0 deg F.
3. Interior Ambient-Air Temperature: 75 deg F.

K. Condensation Resistance: Provide aluminum-framed systems with fixed glazing and framing areas having condensation-resistance factor (CRF) of not less than 53 when tested according to AAMA 1503.

L. Thermal Conductance: Provide aluminum-framed systems with fixed glazing and framing areas having an average U-factor of not more than 0.57 Btu/sq. ft. x h x deg F when tested according to AAMA 1503.

4.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for aluminum-framed systems.

B. Shop Drawings: For aluminum-framed systems. Include plans, elevations, sections, details, and attachments to other work.
1. Include details of provisions for system expansion and contraction and for drainage of moisture in the system to the exterior.

C. Samples for Initial Selection: For units with factory-applied color finishes.

D. Delegated-Design Submittal: For aluminum-framed systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. Detail fabrication and assembly of aluminum-framed systems.
2. Include design calculations.

E. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for aluminum-framed systems, indicating compliance with performance requirements.

4.4 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Engineering Responsibility: Prepare data for aluminum-framed systems, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in systems similar to those indicated for this Project.

C. Product Options: Information on Drawings and in Specifications establishes requirements for systems’ aesthetic effects and performance characteristics. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction. Performance characteristics are indicated by criteria subject to verification by one or more methods including preconstruction testing, field testing, and in-service performance.

1. Do not revise intended aesthetic effects, as judged solely by Architect, except with Architect’s approval. If revisions are proposed, submit comprehensive explanatory data to Architect for review.

D. Source Limitations for Aluminum-Framed Systems: Obtain from single source from single manufacturer.

E. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for fabrication and installation.

1. Field testing shall be performed on mockups according to requirements in “Field Quality Control” Article.

4.5 PROJECT CONDITIONS

A. Field Measurements: Verify actual locations of structural supports for aluminum-framed systems by field measurements before fabrication and indicate measurements on Shop Drawings.

4.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of aluminum-framed systems that do not comply with requirements or that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including, but not limited to, excessive deflection.
 b. Noise or vibration caused by thermal movements.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 d. Water leakage through fixed glazing and framing areas.

2. Warranty Period: Two years from date of Substantial Completion.

B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.

1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Warranty Period: 10 years from date of Substantial Completion.

PART 5 - PRODUCTS

5.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements:
 1. Oldcastle StormMax FG-5100
 2. Approved equal

B. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 2. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221.
 4. Structural Profiles: ASTM B 308/B 308M.
5.2 FRAMING SYSTEMS
A. Framing Members: Manufacturer's standard extruded-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 1. Finish: Dark Bronze
 2. Construction: Screw spline.
B. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with non-staining, nonferrous shims for aligning system components.
C. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, non-staining, non-bleeding fasteners and accessories compatible with adjacent materials.
 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 2. Reinforce members as required to receive fastener threads.
 3. Use exposed fasteners with countersunk Phillips screw heads, finished to match framing system.
D. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts, complying with ASTM A 123 or ASTM A 153.
E. Concealed Flashing: Manufacturer's standard corrosion-resistant, non-staining, non-bleeding flashing compatible with adjacent materials.
F. Framing System Gaskets and Sealants: Manufacturer's standard, recommended by manufacturer for joint type.

5.3 GLAZING SYSTEMS
A. Glazing: As specified in Division 08 Section "Glazing."
B. Glazing Gaskets: Manufacturer's standard compression types; replaceable, molded or extruded, of profile and hardness required to maintain watertight seal.
C. Spacers and Setting Blocks: Manufacturer's standard elastomeric type.

5.4 ACCESSORY MATERIALS
A. Joint Sealants: For installation at perimeter of aluminum-framed systems, as specified in Division 07 Section "Joint Sealants."
 1. Provide sealants for use inside of the weatherproofing system that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
B. Bituminous Paint: Cold-applied, asphalt-mastic paint complying with SSPC-Paint 12 requirements except containing no asbestos; formulated for 30-mil thickness per coat.

5.5 FABRICATION
A. Form or extrude aluminum shapes before finishing.
B. Framing Members, General: Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends coped or mitered.
 3. Means to drain water passing joints, condensation within framing members, and moisture migrating within the system to exterior.
 4. Physical and thermal isolation of glazing from framing members.
 5. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 6. Provisions for field replacement of glazing from interior for vision glass and exterior for spandrel glazing or metal panels.
 7. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.
C. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.
D. Storefront Framing: Fabricate components for assembly using screw-spline system.
E. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

5.6 ALUMINUM FINISHES
A. Bark Bronze.

PART 6 - EXECUTION
6.1 EXAMINATION
A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

6.2 INSTALLATION
A. General:
1. Comply with manufacturer's written instructions.
2. Do not install damaged components.
3. Fit joints to produce hairline joints free of burrs and distortion.
4. Rigidly secure non-movement joints.
5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration.
6. Seal joints watertight unless otherwise indicated.
B. Metal Protection:
1. Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or applying sealant or tape, or by installing nonconductive spacers as recommended by manufacturer for this purpose.
2. Where aluminum will contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
C. Install components to drain water passing joints, condensation occurring within framing members, and moisture migrating within the system to exterior.
D. Set continuous sill members and flashing in full sealant bed as specified in Division 07 Section "Joint Sealants" to produce weathertight installation.
E. Install components plumb and true in alignment with established lines and grades, and without warp or rack.
F. Install glazing as specified in Division 08 Section "Glazing."
G. Install perimeter joint sealants as specified in Division 07 Section "Joint Sealants" to produce weathertight installation.

6.3 ERECTION TOLERANCES
A. Install aluminum-framed systems to comply with the following maximum erection tolerances:
1. Location and Plane: Limit variation from true location and plane to 1/8 inch in 12 feet; 1/4 inch over total length.
2. Alignment:
 a. Where surfaces abut in line, limit offset from true alignment to 1/16 inch.
 b. Where surfaces meet at corners, limit offset from true alignment to 1/32 inch.
B. Diagonal Measurements: Limit difference between diagonal measurements to 1/8 inch.

6.4 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified independent testing and inspecting agency to perform field tests and inspections.
B. Testing Services: Testing and inspecting of representative areas to determine compliance of installed systems with specified requirements shall take place as follows and in successive phases as indicated on Drawings. Do not proceed with installation of the next area until test results for previously completed areas show compliance with requirements.
1. Water Spray Test: Before installation of interior finishes has begun, a minimum area of 75 feet by 1 story of aluminum-framed systems designated by Architect shall be tested according to AAMA 501.2 and shall not evidence water penetration.
C. Repair or remove work if test results and inspections indicate that it does not comply with specified requirements.
D. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
E. Aluminum-framed assemblies will be considered defective if they do not pass tests and inspections.
F. Prepare test and inspection reports.

6.5 ADJUSTING
A. Adjust operating entrance door hardware to function smoothly as recommended by manufacturer.

END OF SECTION 084123
PART 1 - GENERAL

1.01 DESCRIPTION OF WORK

A. Work under this section comprises of furnishing hardware specified herein and noted on drawings for a complete and operational system, including any electrified hardware components, systems, controls and hardware for aluminum entrance doors. Any door shown on the drawing and not specifically referenced in the hardware sets shall be provided with identical hardware as specified on other similar openings and shall be included in the General Contractor’s base bid. All fire rated door shall be provided with fire rated hardware as required by local code Authority as part of the General Contractor’s base bid. The hardware supplier shall verify all cylinder types specified for locking devices supplied as part of the door system with the door manufacturer and/or door supplies.

B. The General Contractor shall notify the Architect in writing of any discrepancies (five (5) days prior to bid date) that could and/or would result in hardware being supplied that is none functional, hardware specified and/or hardware that has not been specified that will result in any code violations and any door that is not covered in this specification. Failure of the General Contractor to address any such issue could be considered acceptance of the hardware specified and any and/or all discrepancies could be corrected at the General Contractor’s expense.

C. Items include but are not limited to the following:
 1. Hinges - Pivots
 2. Flush Bolts
 3. Exit Devices
 4. Locksets and Cylinders
 5. Push Plates - Pulls
 6. Coordinators
 7. Closers
 8. Kick, Mop and Protection Plates
 9. Stops, Wall Bumpers, Overhead Controls
 10. Electrified Hold Open Devices
 11. Thresholds, Seals and Door Bottoms
 12. Silencers
 13. Miscellaneous Trim and Accessories

1.02 RELATED DOCUMENTS, drawings and general provisions of contract, including General and Supplementary Conditions, and Division 1 Specification sections, apply to this section.

1.03 RELATED WORK specified elsewhere that should be examined for its effect upon this section:

A. Section 06 20 00 - Finish Carpentry
B. Section 08 11 13 – Steel Doors and Frames
C. Section 08 14 16 – Flush Wood Doors
D. Sections 08 31 13 – Access Doors
E. Section 08 39 00 – Watertight Doors
F. Section 08 41 13 – Aluminum Entrances, Storefront and Window Framing
G. Sections 08 80 00 – Glass and Glazing
H. Sections 09 91 00 - Painting
I. Division 26 – Electrical

1.04 REFERENCES SPECIFIED in this section subject to compliance as directed:

A. NFPA-80 - Standard for Fire Doors and Windows
C. ADA - The Americans with Disabilities Act - Title III - Public Accommodations
E. ANSI-A 156.5 - American National Standards institute -Auxiliary Locks and Associated Products
F. UFAS - Uniform Federal Accessibility Standards
G. UL - Underwriter’s Laboratories
H. WHI - Warnock Hersey International, Testing Services
I. State and Local Codes including Authority Having Jurisdiction
J. UL10C – Positive Pressure
L. NFPA-70 – International Electrical Code

1.05 SUBMITTALS

A. HARDWARE SCHEDULES submit copies of schedule in accordance with Division 1, General Requirements. Schedule to be in vertical format, listing each door opening, including: handing of opening, all hardware scheduled for opening or otherwise required to allow for proper function of door opening as intended, and finish of hardware. At doors with door closers or door controls include degree of door opening. Supply the schedules all Finish Hardware within two (2) weeks from date purchase order is received by the hardware supplier.

B. Submit manufacturer’s cut/catalog sheets on all hardware items and any required special mounting instructions with the hardware schedule.

C. Certification of Compliance:
 1. Submit any information necessary to indicate compliance to these specifications as required.
 2. Submit a statement from the manufacturer that electronic hardware and systems being supplied comply with the operational descriptions exactly as specified.

D. Submit any samples necessary as required by the Architect.

E. Templates for finish hardware items to be sent to related door and frame suppliers within three (3) working days of receipt of approved hardware schedule.

F. Doors and Frames used in positive pressure opening assemblies shall meet UL10C in areas where this specification includes Seals for smoke door.

1.06 QUALITY ASSURANCE

A. Hardware supplier to be a qualified, Factory Authorized, direct distributor of the products to be furnished. In addition, the supplier to have in their regular employment an AHC or AHC /CDC and/or a person of equivalent experience (minimum fifteen (15) years in the industry) who will be made available at reasonable times to consult with the Architect/Contractor and/or the Owners Representative regarding any matters affecting the finish hardware on this project.

B. All hardware used in labeled fire or smoke rated openings to be listed for those types of openings and bear the identifying label or mark indicating UL. (Underwriter’s Laboratories) approved for fire. Exit devices in non-labeled openings to be listed for panic.

1.07 DELIVERY, HANDLING AND PACKAGING

A. Furnish all hardware with each unit clearly marked and numbered in accordance with the hardware schedule. Include door and item number for each.

B. Pack each item of hardware completes with all necessary parts and fasteners.

C. Properly wrap and cushion each item to prevent scratches and dents during delivery and storage.
1.08 SEQUENCING AND SCHEDULING

Any part of the finish hardware required by the frame or door manufacturers or other suppliers that is needed to produce doors or frames is to be sent to those suppliers in a timely manner, so as not to interrupt job progress.

1.09 WARRANTY

All finish hardware shall be supplied with a one- (1) year warranty against defects in materials and workmanship, commencing with substantial completion of the project except as follows:

1. All Closers shall have a twenty-five (25) year written warranty.
2. All Grade 1 “ND” Locksets shall have a ten (10) year written warranty.
3. All Exit Devices shall have a three (3) year written warranty.
4. All Continuous Hinges shall have a ten-(10) year written warranty.

PART 2 – PRODUCTS

2.01 FASTENERS

A. Furnish with finish hardware all necessary screws, bolts and other fasteners of suitable size and type to anchor the hardware in position for a long life under hard use.

B. Furnish fastenings where necessary with expansion shields, toggle bolts and other anchors designated by the Architect according to the material to which the hardware is to be applied and the recommendations of the hardware manufacturer. All closers and exit devices on labeled wood doors shall be through-bolted if required by the door manufacturer. All thresholds shall be fastened with wood screws and plastic anchors. Where specified in the hardware sets, security type fasteners of the type called for are to be supplied.

C. Design of all fastenings shall harmonize with the hardware as to material and finish.

D. All hardware shall be installed with the Manufacturers standard screws as provided. The use of any other type of fasteners shall not be permitted. The general contractor shall provide wood blocking in all stud walls specified and/or scheduled to receive wall stops, No Exception.

2.02 ENVIRONMENTAL CONCERN FOR PACKAGING

The hardware shall ship to the job site is to be packaged in biodegradable packs such as paper or cardboard boxes and wrapping.

2.03 HINGES

A. All hinges to be of one manufacturer as hereafter listed for continuity and consideration of warranty. Provide one of the following manufacturers Ives, Hager, McKinney or Stanley.

B. Unless otherwise specified provide five-knuckle, heavy-duty, button tip, full mortise template type hinges with non-rising loose pins. Provide non-removable pins for out swinging doors at secured areas or as called for in this specification (Refer to 3.02 Hardware Sets).

C. Provide all out-swinging doors with non-removable pins or security studs as called for in 3.02 Hardware Sets. Furnish three (3) hinges up to 90 inches high and one (1) additional hinge for every 30 inches or fraction thereof.

D. Furnish three (3) hinges up to 90 inches high and one (1) additional hinge for every 30 inches or fraction thereof.
E. Provide size 4½” x 4½” for all 1¾” thick doors up to and including 36 inches wide. Doors over 1¾” through 2¼” thick, use 5” x 5” hinges. Doors over 36 inches use 5” x 4½” unless otherwise noted in 3.02 Hardware Sets.

F. Were required to clear the trim and/or to permit the doors to swing 180 degrees furnish hinges of sufficient throw.

G. Provide heavy weight hinges on all doors over 36 inches in width.

H. At labeled door’s steel or stainless steel, bearing-type hinges shall be provided. For all doors equipped with closers provide bearing-type hinges.

2.04 LOCK AND LOCK TRIM

A. All locksets, latch sets, and trim to be of one manufacturer as hereafter listed for continuity of design and consideration of warranty. Locksets specified are Schlage “ND” series with the Sparta levers. Locks shall match the existing keying system and lever design.

B. Provide metal wrought box strike boxes and curved lip strikes with proper lip length to protect trim of the frame, but not to project more than 1/8 inch beyond frame trim or the inactive leaf of a pair of doors.

C. Mechanical Locks shall meet ANSI Operational Grade 1, Series 4000 as specified.
 1. Hand of lock is to be field reversible or non-handed.
 2. All lever trim is to be through-bolted through the door.

2.05 CYLINDERS AND KEYING

A. Provide all exterior and interior locks or Exit Devices requiring cylinders keyed to the Existing Mater Key System as instructed by the Owners Representative. Cylinders shall comply with performance requirements of ANSI A156.5. All keys shall be of nickel silver material only. The hardware supplier shall meet with the General Contractor, the Architect and the Owners Representative at the project jobsite to determine all permanent keying requirements.

B. Cylinders shall be factory keyed and factory maintained as directed by the owners Representative and the Architect. Provide two- (2) keys per cylinder and four- (4) master keys per master used.

C. Factory stamp all keys “Do not duplicate” and with key symbol as directed by the Owners Representative. Visual key control shall be provided on all permanent keys and cylinders.

D. Provide temporary keyed construction cylinders for the duration of the construction phase. Provide ten (10) construction keys and two (2) construction extracting keys.

2.06 EXIT DEVICES

A. All exit devices and trim, including electrified items, to be of one manufacturer as hereafter listed and in the hardware sets for continuity of design and consideration of warranty; electrified devices and trim to be the same series and design as mechanical devices and trim.

B. Exit Devices to be “UL” listed for life safety. All exit devices for labeled doors shall have “UL” label for “Fire Exit Hardware”. All devices mounted on labeled wood doors are to be through-bolted or per the manufacturer’s listing requirements. All devices shall conform to NFPA 80 and NFPA 101 requirements.

C. All exit devices to be of a heavy duty, chassis mounted design, with a one-piece removable cover, eliminating necessity of removing the device from the door for standard maintenance and keying requirements.
D. All trims to be through-bolted to the lock stile case. Lever design to be the same as specified with the lock sets.

E. Exit Devices shall be the modern push rail design. All exit devices shall be mounted with sex bolts and installed with the manufactures standard screws. Exit Hardware Devices found to be installed with self-drilling and self-tapping screws shall be removed and reinstalled at the installer expenses.

F. All devices shall carry a three- (3) year warranty against manufacturing defects and workmanship.

G. Furnish roller strikes for all rim and surface vertical rod exit devices. Internal springs shall be coil compression type. Furnish security dead latching for all active latch bolts.

H. All Exit Devices shall be field modifiable as incorporate an Electric Latch Retraction Feature without the purchase of new Panic Exit Hardware.

J. Exit Devices shall be the Von Duprin “99 & 33” series as specified to match the existing.

2.07 SURFACE MOUNTED DOOR CLOSERS

A. All closers for this project shall be the products of a single manufacturer for continuity of design and consideration of warranty. All door closers shall be mounted as to achieve the maximum degree of opening (trim permitting).

B. All closers to be heavy duty, surface-mounted, fully hydraulic, rack and pinion action with high strength aluminum cylinder to provide control throughout the entire door opening and closing cycle.

C. Size all closers in accordance with the manufacturer’s recommendations at the factory.

D. All closers to have adjustable spring power sizes 1 or 2 through 4 or 6 and non-critical regulating screw valves for closing speed, latching speed and back-check control as a standard feature unless specified otherwise.

E. Provide closer covers only if provided as a standard part of the door closer package.

F. The hardware supplier shall provide all required brackets, spacers or filler plates as required by the manufacture for a proper and functional installation as part of their base bid.

G. Supply appropriate arm assembly for each closer so that closer body and arm are mounted on non-public side of door opening and on the interior side of exterior openings, except where required otherwise in the hardware sets.

H. Provide drop plates and any additional mounting brackets required for the proper installation of the door closer shall be included in the hardware supplier’s base bid.

I. Finish: Baked on Powder Coated finish shall match other hardware.

J. Template all door closers as to swing 180 degree (even if the door can’t swing a full 180 degree), unless closer has a built-in stop arm. Surface Closers not installed to swing 180 degree will be removed and re-installed correctly. The will result in the purchase of New Doors.

K. Closers shall be LCN “4050 & 1450” series as specified or acceptable products manufactured by Sargent “351 & 1431” series.

2.08 DOOR STOPS AND HOLDERS

A. Door stops are to be furnished for every door leaf. Every door is to have a floor, wall, or an overhead stop.
B. Place doorstops in such a position that they permit maximum door swing, but do not present a hazard of obstruction. Furnish floor strikes for floor holders of proper height to engage holders of doors.

C. Where overhead stops and holders are specified, or otherwise required for proper door operation, they are to be heavy duty and of extruded brass, bronze or stainless steel with no plastic parts as specified. The General Contractor shall provide wood blocking in all stud walls specified and scheduled to receive wall stops.

D. Finish: Shall match other hardware where available.

E. Acceptable Products
 1. Floor and wall stops as listed in hardware sets. Equivalent products as manufactured by Ives, ABH and Trimco are acceptable.

2.09 PUSH PLATES, DOOR PULLS, AND KICKPLATES

 A. All push plates, door pull, kick plates and other miscellaneous hardware as listed in hardware sets. Equivalent products as manufactured by Ives, Hager and Trimco are acceptable.

 B. Kick plates to be 10 inches high and Mop plates to be 6 inches high, both by 1-1/2 inches or 1 inch less than door width (LDW) as specified. They are to be of 16-gauge thick base metal. For door with louvers or narrow bottom rails, kick plate height to be 1 inch less dimension shown from the bottom of the door to the bottom of the louver or glass.

 C. Where required armor plates, edge guards and other protective hardware shall be supplied in sizes as scheduled in the hardware sets.

 D. Finish: Same as other hardware where available.

2.10 FLUSH BOLTS AND COORDINATORS

 A. Provide Flush bolts with Dust Proof Strikes as indicated in the individual hardware sets by Ives, Hager and Trimco are acceptable. Finish shall match the adjacent hardware.

2.11 THRESHOLDS AND SEALS

 A. Provide materials and finishes as listed in hardware sets. Zero products have been specified to set a high level of quality, equivalent product by manufactured by National Guard Products and Pemko shall be acceptable. All thresholds must be in accordance with the requirements of the ADA and ANSI A117.1.

 B. Provide thresholds with Zero 224 MSLA-4 anchoring application. Supply all necessary anchoring devices as supplied by the product manufacturer for the installation of weather strip and sound seal.

 C. Seals shall comply with requirements of UL10C. All thresholds, door bottoms and weather strip inserts shall be a silicone based product as specified in 3.02 Hardware Sets. Other materials used shall be rejected, unless originally specified.

 D. Seals shall comply with the requirements of the Wood Door Manufacturer’s certification requirements.

 E. Install all Threshold in a full bed of sealant as to prevent water & insect penetration inside of the building.

2.12 FINISHES

 A. Finishes for all hardware are as required in this specification and the hardware sets.
2.13 DOOR SILENCERS

A. Provide door silencers at all openings without gasket. Provide two-(2) each at pair of doors and three-(3) or four-(4) each for each single door (coordinate with the frame manufacturer).

2.14 PROPRIETARY PRODUCTS

A. References to specific products are used to establish quality standards of utility and performance. Unless otherwise approved provide only the specified product.

B. All other materials, not specifically described, but required for a complete and proper finish hardware installation, are to be selected by the Contractor, subject to the approval of the Architect and the Owners Representative.

C. Architect and the Owners Representative reserve the right to approve all the substitutions proposed for this specification. All requests for substitution to be made prior to bid in accordance with Division 1, General Requirements, and are to be in writing, hand delivered to the Architect. Two (2) copies of the manufacturer's brochures and a physical sample of each item in the appropriate design and finish shall accompany requests for substitution.

PART 3 - EXECUTION

3.01 INSTALLATION AND SERVICE ITEMS OF FINISH HARDWARE

A. All finish hardware shall be installed by an experienced finish hardware installer with at least ten (10) years of experience after a pre-installation meeting between the contractor, hardware Manufacturers representative, the hardware supplier, the hollow metal supplier and the wood door supplier. The finish hardware installer shall be responsible for the proper installation and function of all doors and hardware.

B. The hardware supplier's office and/or warehouse shall be located within a one seventy-five (75) mile radius of the project site as to better service the general contractor and the Owners Representative during this project.

C. Check hardware against the reviewed hardware schedule upon delivery. Store the hardware in a dry and secure location to protect against loss and damage.

D. Install finish hardware in accordance with approved hardware schedule and manufacturers' printed instructions. Pre-fit hardware before finish is applied to door; remove and reinstall after finish is complete and dry. Install and adjust hardware so that parts operate smoothly, close tightly, and do not rattle.

E. Mortise and cutting to be done neatly, and evidence of cutting to be concealed in the finished work. Protect all Finish hardware from scratching or other damage.

F. Template all door closers as to swing 180 degree (even if the door can’t swing a full 180 degree), unless closer has a built-in stop arm. Surface Closers not installed to swing 180 degree will be removed and re-installed correctly. The will result in the purchase of New Doors.
3.02 HARDWARE SETS
HARDWARE GROUP NO. 01 – MAIN STAIR – FIRE RATED STEEL DOOR & FRAME
202
Provide each PR door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HINGES</td>
<td>PROVIDED BY FIRE DOOR CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>POWER TRANSFER</td>
<td>EPT10 CON</td>
<td>695</td>
<td>VON</td>
</tr>
<tr>
<td></td>
<td>EXIT DEVICE</td>
<td>PROVIDED BY FIRE DOOR CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CYLINDER</td>
<td>PROVIDED BY FIRE DOOR CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLOSER</td>
<td>PROVIDED BY FIRE DOOR CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GASKETING</td>
<td>PROVIDED BY FIRE DOOR CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>HARNESS (IN DOOR)</td>
<td>ALLEGION CONNECT TYPE SCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARD READER</td>
<td>PROVIDED BY THE SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWER SOURCE</td>
<td>PROVIDED BY THE SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BALANCE OF HARDWARE PROVIDED BY FIRE DOOR CONTRACTOR

HARDWARE GROUP NO. 02 - EXISTING
103E 104E 106E 227B 234
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXISTING DOOR</td>
<td>NO WORK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 02A - EXISTING
115
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EXIT HARDWARE</td>
<td>99-EO</td>
<td>695</td>
<td>VON</td>
</tr>
</tbody>
</table>

EXISTING DOOR PROVIDE DK. BRONZE 'BLANKS' FOR ALL REMOVED HARDWARE/DEVICES & VERIFY THAT THE BALANCE OF THE EXISTING HARDWARE IS FUNCTIONAL, REMOVE AND REPLACE IF DAMAGED OR INOPERABLE.
HARDWARE GROUP NO. 03 – MECHANICAL & JANITOR

Project No: 1804 The Reese
2nd Floor ProBAR Finish Out

Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE 5BB1 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCK ND80LD SPA</td>
<td>626</td>
<td>SCH</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER MATCH EXISTING KEYING SYSTEM</td>
<td>626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DOOR STOP WS407CCV PERIMETER SEAL BY FRAME MANUFACTURER</td>
<td>630</td>
<td>IVE</td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 04 - EXTERIOR MECH.

Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE 5BB1HW 4.5 X 4.5 NRP</td>
<td>643</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCK ND80LD SPA</td>
<td>643E</td>
<td>SCH</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER MATCH EXISTING KEYING SYSTEM</td>
<td>613</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER 1450 SCUSH FC 120 DEGREE SWING</td>
<td>695</td>
<td>LCN</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GASKETING 8303D - HEAD & JAMBS</td>
<td>D</td>
<td>ZER</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DOOR SWEEP 39D - DOOR WIDTH</td>
<td>D</td>
<td>ZER</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DOOR BOTTOM 355D-DOOR WIDTH</td>
<td>D</td>
<td>ZER</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD 655D - FRAME WIDTH</td>
<td>D</td>
<td>ZER</td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 05 - CONFERENCE RM

Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE 5BB1 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PASSAGE SET ND10S RHO SPA</td>
<td>626</td>
<td>SCH</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DOOR STOP FS441 PERIMETER SEAL BY FRAME MANUFACTURER</td>
<td>626</td>
<td>IVE</td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 06 - COAT CLOSET, STORAGE

Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE 5BB1 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCK ND70LD SPA</td>
<td>626</td>
<td>SCH</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER MATCH EXISTING KEYING SYSTEM</td>
<td>626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DOOR STOP WS407CCV PERIMETER SEAL BY FRAME MANUFACTURER</td>
<td>626</td>
<td>IVE</td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 07 - RESTROOMS

Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE 5BB1HW 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PULL PLATE 8105-0 10"</td>
<td>630</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PUSH PLATE 8200 8" X 16"</td>
<td>630</td>
<td>IVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER 1450 REG FC</td>
<td>689</td>
<td>LCN</td>
<td></td>
</tr>
</tbody>
</table>

Finish Hardware
Megamorphosis, Inc.
087100 - 9
Finish Hardware 087100 - 10
Megamorphosis, Inc.

HARDWARE GROUP NO. 08 - SLIM SLIDER BY FRAMEWORKS

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 EA</td>
<td>HOOK DEADLOCK</td>
<td>MS1850S-3-5</td>
<td>628</td>
<td>ADA</td>
</tr>
<tr>
<td>1 EA</td>
<td>CYLINDER</td>
<td>MATCH EXISTING KEYING SYSTEM</td>
<td>626</td>
<td>ADA</td>
</tr>
<tr>
<td>1 EA</td>
<td>ADA THUMB TURN CYLINDER</td>
<td>AS REQUIRED</td>
<td>626</td>
<td>ADA</td>
</tr>
<tr>
<td>1 EA</td>
<td>PULL</td>
<td>8103EZHD-8" - "O" MOUNTED</td>
<td>630</td>
<td>IVE</td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 09 - CARD READER STAIRWELL – RE-ENTRY

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 EA</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5 NRP</td>
<td>643</td>
<td>IVE</td>
</tr>
<tr>
<td>1 EA</td>
<td>POWER TRANSFER</td>
<td>EPT10 CON</td>
<td>695</td>
<td>VON</td>
</tr>
<tr>
<td>1 EA</td>
<td>ELEC FIRE EXIT HARDWARE</td>
<td>RX-99-L-F-E996-17-FS-CON</td>
<td>643E</td>
<td>VON</td>
</tr>
<tr>
<td>1 EA</td>
<td>RIM CYLINDER</td>
<td>MATCH EXISTING KEYING SYSTEM</td>
<td>613</td>
<td>SCH</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER</td>
<td>1450 RW/PA FC</td>
<td>695</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR STOP</td>
<td>FS441</td>
<td>613</td>
<td>IVE</td>
</tr>
<tr>
<td>1 EA</td>
<td>GASKETING</td>
<td>8144S-BK-PSA-HEAD & JAMBS</td>
<td>BK</td>
<td>ZER</td>
</tr>
<tr>
<td>1 EA</td>
<td>HARNESS (IN DOOR) CARD READER</td>
<td>ALLEGION CONNECT TYPE</td>
<td>SCH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOOR CONTACT</td>
<td>PROVIDED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWER SOURCE</td>
<td>PROVIDED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPERATIONAL DESCRIPTION: DOORS NORMALLY CLOSED AND LOCKED. INGRESS BY VALID CARD READ OR MANUAL KEY OVERRIDE. FREE EGRESS AT ALL TIME BY PUSH PAD. UPON POWER FAILURE OR FIRE ALARM, DOORS TO UNLOCK PROVIDING REENTRY (FAIL SAFE).

HARDWARE GROUP NO. 10 - STORAGE

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 EA</td>
<td>CAVITY SLIDERS POCKET TRACK</td>
<td>CS SOFSTOP TRACK SINGLE ACTION W/ 2 STOPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>SLIDING DOOR LOCK</td>
<td>2331</td>
<td>626</td>
<td>ADA</td>
</tr>
<tr>
<td>1 EA</td>
<td>MORTISE THUMB TURN</td>
<td>AS REQUIRED</td>
<td>626</td>
<td>ADA</td>
</tr>
<tr>
<td>1 EA</td>
<td>MORTISE CYLINDER</td>
<td>MATCH EXISTING KEYING SYSTEM</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td>1 SET</td>
<td>OFFSET PULL</td>
<td>8190EZHD 8" BTB MOUNTED</td>
<td>630-316</td>
<td>IVE</td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 11 - MULTIPURPOSE INT.
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5 NRP</td>
<td>643</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC HINGE</td>
<td>5BB1HW 4.5 X 4.5 TW8 CON</td>
<td>695</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>ELEC PANIC</td>
<td>RX-QEL-99-L-NL-17-CON</td>
<td>643E</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>RIM CYLINDER</td>
<td>MATCH EXISTING KEYING SYSTEM</td>
<td>6613</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>1450 RW/PA FC</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DOOR STOP</td>
<td>FS441/W407CCV AS REQUIRED</td>
<td>613</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>8144S-BK-PGA-PH & JAMBS</td>
<td>BK</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>HARNESS (IN DOOR)</td>
<td>ALLEGION CONNECT TYPE</td>
<td>SCH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOOR SWEEP</td>
<td>39A - DOOR WIDTH</td>
<td>DB</td>
<td>ZER</td>
</tr>
<tr>
<td></td>
<td>DOOR BOTTOM</td>
<td>355AA-DOOR WIDTH</td>
<td>DB</td>
<td>ZER</td>
</tr>
<tr>
<td></td>
<td>THRESHOLD</td>
<td>655A - FRAME WIDTH</td>
<td>A</td>
<td>ZER</td>
</tr>
</tbody>
</table>

OPERATIONAL DESCRIPTION: DOORS NORMALLY CLOSED AND LOCKED. INGRESS BY VALID CARD READ OR MANUAL KEY OVERRIDE. FREE EGRESS AT ALL TIME BY PUSH PAD. UPON POWER FAILURE, DOORS TO REMAIN LOCKED (FAIL SECURE).

HARDWARE GROUP NO. 12 - NORTH BALCONY

Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5 NRP</td>
<td>643</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCK</td>
<td>ND70LD SPA</td>
<td>695</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER</td>
<td>MATCH EXISTING KEYING SYSTEM</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>1450 SCUSH FC</td>
<td>690</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>RAIN DRIP</td>
<td>142A DW + 4"</td>
<td>DB</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>8303A - HEAD & JAMBS</td>
<td>DB</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>DOOR SWEEP</td>
<td>39A - DOOR WIDTH</td>
<td>DB</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>DOOR BOTTOM</td>
<td>355AA-DOOR WIDTH</td>
<td>DB</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD</td>
<td>655A - FRAME WIDTH</td>
<td>A</td>
<td>ZER</td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 13 - SERVER/ELECTRICAL, MECH PR.

Provide each PR door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5 NRP</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>FLUSH BOLT</td>
<td>FB458-12"</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCK</td>
<td>ND80LD SPA</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER</td>
<td>MATCH EXISTING KEYING SYSTEM</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SURFACE CLOSER</td>
<td>1450 SCUSH FC</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>CORDINATOR</td>
<td>3780</td>
<td>689</td>
<td>ABH</td>
</tr>
<tr>
<td>1</td>
<td>ASTRAGAL</td>
<td>43SP-DOOR HEIGHT (PULL SIDE MOUNTED ON ACTIVE LEAF)</td>
<td>SP</td>
<td>ZER</td>
</tr>
<tr>
<td></td>
<td>SEAL</td>
<td>PERIMETER SEAL BY FRAME MANUFACTURER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 14 - SINGLE-USE RR

Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
</table>

Finish Hardware
Megamorphosis, Inc.
Project No: 1804 The Reese

2nd Floor ProBAR Finish Out

Finish Hardware 087100 - 12

Megamorphosis, Inc.

HARDWARE GROUP NO. 15 - RESTROOM STALL
217B 217C 217D 241B 241C 241D

Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SPRING HINGE (TOP & BOTTOM)</td>
<td>3SP1 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>HINGE (CENTER)</td>
<td>3CB1 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>PASSAGE LOCK</td>
<td>ND105 SPA</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>INDICATOR DEADLOCK</td>
<td>B571 X (6) 61-510</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>DOOR STOP PERIMETER SEAL</td>
<td>WS407CCV</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANUFACTURER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 16 - RECEIVING
250A

Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE</td>
<td>5BB1 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCK</td>
<td>ND705 SPA</td>
<td>652E</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER</td>
<td>MATCH EXISTING KEYING SYSTEM</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DOOR STOP PERIMETER SEAL</td>
<td>WS407CCV</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANUFACTURER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE GROUP NO. 17 - HR SUITE, ARCHIVES, STORAGE
221 236 237

Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>HINGE</td>
<td>5BB1 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC HINGE</td>
<td>5BB1 4.5 X 4.5 TW8</td>
<td>689</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>EU LOCK</td>
<td>ND805DEU SPA RX (FAIL SECURE)</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER</td>
<td>MATCH EXISTING KEYING SYSTEM</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>1450 HD FC (PULL SIDE MOUNTED)</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INSTALL FOR 180 DEGREE INSTALLATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PROTECTION PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>DOOR STOP</td>
<td>WS407CCV</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>8144S-BK-PSA-HEAD & JAMBS</td>
<td>BK</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>HARNESS (IN DOOR) CARD READER</td>
<td>ALLEGION CONNECT TYPE</td>
<td></td>
<td>SCH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROVIDED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROVIDED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
POWER SOURCE PROVIDED BY SECURITY CONTRACTOR

OPERATIONAL DESCRIPTION: DOORS NORMALLY CLOSED AND LOCKED. INGRESS BY VALID CARD READ OR MANUAL KEY OVERRIDE. FREE EGRESS AT ALL TIME BY LEVER. UPON POWER FAILURE, DOORS TO REMAIN LOCKED (FAIL SECURE).

HARDWARE GROUP NO. 18 - IT/SERVER & DATA OPERATIONS WORK ROOM

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HINGE</td>
<td>5BB1 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC HINGE</td>
<td>5BB1 4.5 X 4.5 TW8</td>
<td>689</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>EU LOCK</td>
<td>ND80LDEU SPA RX (FAIL SECURE)</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER</td>
<td>MATCH EXISTING KEYING</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>1450 HD FC (PULL SIDE MOUNTED)</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>1450 HDPA FC (PUSH SIDE MOUNTED)</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PROTECTION PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>DOOR STOP</td>
<td>FS436/W/S407CCV</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>HARNESS (IN DOOR)</td>
<td>ALLEGION CONNECT TYPE SEAL</td>
<td></td>
<td>SCH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERIMETER SEAL BY FRAME MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CARD READER PROVIDED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOOR CONTACT PROVIDED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWER SOURCE PROVIDED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPERATIONAL DESCRIPTION: DOORS NORMALLY CLOSED AND LOCKED. INGRESS BY VALID CARD READ OR MANUAL KEY OVERRIDE. FREE EGRESS AT ALL TIME BY LEVER. UPON POWER FAILURE, DOORS TO REMAIN LOCKED (FAIL SECURE).

HARDWARE GROUP NO. 19 - EXTERIOR RECEIVING

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5 NRP</td>
<td>643</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC HINGE</td>
<td>5BB1HW 4.5 X 4.5 TW8</td>
<td>695</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>EU LOCK</td>
<td>ND80LDEU SPA RX (FAIL SECURE)</td>
<td>695</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER</td>
<td>MATCH EXISTING KEYING</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4050 SCUSH</td>
<td>640</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>PROTECTION PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>8303AA H & J</td>
<td>DB</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>RAIN DRIP</td>
<td>142A DW + 4"</td>
<td>DB</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>DOOR SWEEP</td>
<td>8197AA-DOOR WIDTH</td>
<td>DB</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD</td>
<td>65A-FRAME WIDTH</td>
<td>DB</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>HARNESS (TO POWER SUPPLY)</td>
<td>CON-6W (CONNECTION LEADS)</td>
<td></td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>HARNESS (IN DOOR)</td>
<td>ALLEGION CONNECT TYPE POWER SOURCE</td>
<td></td>
<td>SCH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROVIDED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CARD READER PROVIDED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOOR CONTACT PROVIDED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finish Hardware
Megamorphosis, Inc.
OPERATIONAL DESCRIPTION: DOORS NORMALLY CLOSED AND LOCKED. INGRESS BY VALID CARD READ OR MANUAL KEY OVERRIDE. UPON POWER FAILURE, DOORS TO REMAIN LOCKED (FAIL SECURE). OPENING REQUIRES 120 VOLT IN LINE POWER TO POWER SUPPLY.

HARDWARE GROUP NO. 20 - NORTHEAST WING, 209 245
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONT. HINGE</td>
<td>112XY EPT</td>
<td>628</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>POWER TRANSFER</td>
<td>EPT10 CON</td>
<td>689</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>ELEC PANIC</td>
<td>RX-QEL-33A-NL-OP-CON</td>
<td>626</td>
<td>VON</td>
</tr>
</tbody>
</table>

HARDWARE

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RIM CYLINDER</td>
<td>MATCH EXISTING KEYING SYSTEM</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>OFFSET PULL</td>
<td>8190EZHD 10" – O MOUNTED</td>
<td>630-316</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>1450 HD PA FC X 1450-18PA 1450-30</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>DOOR STOP</td>
<td>WS407CCV</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>HARNESS (IN DOOR) SEAL</td>
<td>ALLEGION CONNECT TYPE MANUFACTURER</td>
<td>SCH</td>
<td></td>
</tr>
</tbody>
</table>

CREDENTIAL READER PROVIDED BY SECURITY CONTRACTOR

DOOR CONTACT PROVIDED BY SECURITY CONTRACTOR

POWER SUPPLY PROVIDED BY SECURITY CONTRACTOR

OPERATIONAL DESCRIPTION: DOORS NORMALLY CLOSED AND LOCKED. INGRESS BY VALID CARD READ OR MANUAL KEY OVERRIDE. FREE EGRESS AT ALL TIME BY PUSH PADS. UPON POWER FAILURE, DOORS TO REMAIN LOCKED.

HARDWARE GROUP NO. 21 – CORRIDOR 235A 231 COURTYARD GATE
Provide each SGL door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>HINGE</td>
<td>5BB1HW 4.5 X 4.5 NRP</td>
<td>643</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC HINGE</td>
<td>5BB1HW 4.5 X 4.5 TW8</td>
<td>643</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>ELEC PANIC</td>
<td>RX-QEL-99-L-NL-17-CON LENGTH AS HARDWARE REQ.</td>
<td>643E VON</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RIM CYLINDER</td>
<td>MATCH EXISTING KEYING SYSTEM</td>
<td>613</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4050 SCUSH</td>
<td>695</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>RAIN DRIP</td>
<td>142D DW + 4"</td>
<td>D</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING</td>
<td>8303D H & J</td>
<td>D</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>DOOR SWEEP</td>
<td>8197D</td>
<td>D</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD</td>
<td>65D - FRAME WIDTH</td>
<td>D</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>HARNESS (IN DOOR) CARD READER</td>
<td>ALLEGION CONNECT TYPE PROVIDED BY SECURITY CONTRACTOR</td>
<td>SCH</td>
<td></td>
</tr>
</tbody>
</table>

OPERATIONAL DESCRIPTION: DOORS NORMALLY CLOSED AND LOCKED. INGRESS BY VALID CARD READ OR MANUAL KEY OVERRIDE. FREE EGRESS AT ALL TIME BY PUSH PADS. UPON POWER FAILURE, DOORS TO REMAIN LOCKED (FAIL SECURE).
HARDWARE GROUP NO. 22 - MAIN LOBBY - TDI
101E
Provide each PR door(s) with the following:

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>CATALOG NUMBER</th>
<th>FINISH</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>EA POWER TRANSFER</td>
<td>EPT10 CON</td>
<td>695</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>EA ELEC PANIC HARDWARE</td>
<td>RX-QEL-HH-KAW-9947-NL-OP-CON</td>
<td>643E</td>
<td>KAW</td>
</tr>
<tr>
<td>1</td>
<td>EA ELEC PANIC HARDWARE</td>
<td>RX-QEL-HH-KAW-9947-EO-CON</td>
<td>643E</td>
<td>KAW</td>
</tr>
<tr>
<td>1</td>
<td>EA RIM CYLINDER</td>
<td>MATCH EXISTING KEYING SYSTEM</td>
<td>613</td>
<td>SCH</td>
</tr>
<tr>
<td>2</td>
<td>EA OFFSET PULL</td>
<td>8190EZHD 10" A</td>
<td>613</td>
<td>IVE</td>
</tr>
<tr>
<td>2</td>
<td>EA SURFACE CLOSER</td>
<td>4050 SCUSH 4050-18PA 4050-30</td>
<td>695</td>
<td>LCN</td>
</tr>
<tr>
<td>2</td>
<td>EA HARNESS (IN DOOR)</td>
<td>ALLEGION CONNECT TYPE</td>
<td>SCH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONTINUOUS GEAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BY DOOR/FRAME MANUFACTURER &</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HINGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEAL</td>
<td>PERIMETER SEAL BY FRAME</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANUFACTURER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTRAGAL</td>
<td>MEETING STILE SEAL BY DOOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANUFACTURER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOOR SWEEP</td>
<td>APPROVED FOR USE WITH OPENING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THRESHOLD</td>
<td>APPROVED FOR USE WITH OPENING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CREDENTIAL READER</td>
<td>PROVIDED BY SECURITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONTRACTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOOR CONTACT</td>
<td>PROVIDED BY SECURITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONTRACTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPERATIONAL DESCRIPTION: DOORS NORMALLY CLOSED AND LOCKED. INGRESS BY VALID CARD READ OR MANUAL KEY OVERRIDE. FREE EGRESS AT ALL TIME BY PUSH PADS. UPON POWER FAILURE, DOORS TO REMAIN LOCKED (FAIL SECURE).

NOTE: VERIFY WINDSTORM "CERTIFICATION" OF SPECIFIED HARDWARE W/DOOR SYSTEM.

HARDWARE BUILT AS BASIS-OF-DESIGN AROUND KAWNEER 500IR DOOR SYSTEM.

<table>
<thead>
<tr>
<th>Door Numbers</th>
<th>Hardware Set#</th>
</tr>
</thead>
<tbody>
<tr>
<td>101E</td>
<td>22</td>
</tr>
<tr>
<td>103E</td>
<td>02</td>
</tr>
<tr>
<td>104E</td>
<td>02</td>
</tr>
<tr>
<td>106E</td>
<td>02</td>
</tr>
<tr>
<td>108E</td>
<td>09</td>
</tr>
<tr>
<td>109</td>
<td>11</td>
</tr>
<tr>
<td>110</td>
<td>14</td>
</tr>
<tr>
<td>112</td>
<td>14</td>
</tr>
<tr>
<td>113</td>
<td>03</td>
</tr>
<tr>
<td>114</td>
<td>13</td>
</tr>
<tr>
<td>115</td>
<td>02A</td>
</tr>
<tr>
<td>116</td>
<td>06</td>
</tr>
<tr>
<td>202</td>
<td>01</td>
</tr>
<tr>
<td>203</td>
<td>14</td>
</tr>
<tr>
<td>204</td>
<td>06</td>
</tr>
<tr>
<td>205A</td>
<td>05</td>
</tr>
<tr>
<td>205B</td>
<td>08</td>
</tr>
<tr>
<td>207</td>
<td>03</td>
</tr>
<tr>
<td>208</td>
<td>13</td>
</tr>
<tr>
<td>209</td>
<td>20</td>
</tr>
<tr>
<td>210</td>
<td>08</td>
</tr>
<tr>
<td>211</td>
<td>08</td>
</tr>
<tr>
<td>Door Numbers</td>
<td>Hardware Set#</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>212</td>
<td>08</td>
</tr>
<tr>
<td>213</td>
<td>08</td>
</tr>
<tr>
<td>214</td>
<td>08</td>
</tr>
<tr>
<td>215</td>
<td>18</td>
</tr>
<tr>
<td>217A</td>
<td>07</td>
</tr>
<tr>
<td>217B</td>
<td>15</td>
</tr>
<tr>
<td>217C</td>
<td>15</td>
</tr>
<tr>
<td>217D</td>
<td>15</td>
</tr>
<tr>
<td>218</td>
<td>03</td>
</tr>
<tr>
<td>219</td>
<td>09</td>
</tr>
<tr>
<td>220</td>
<td>12</td>
</tr>
<tr>
<td>221</td>
<td>17</td>
</tr>
<tr>
<td>222</td>
<td>08</td>
</tr>
<tr>
<td>223</td>
<td>08</td>
</tr>
<tr>
<td>224</td>
<td>08</td>
</tr>
<tr>
<td>225</td>
<td>08</td>
</tr>
<tr>
<td>226</td>
<td>13</td>
</tr>
<tr>
<td>227A</td>
<td>08</td>
</tr>
<tr>
<td>227B</td>
<td>02</td>
</tr>
<tr>
<td>228</td>
<td>10</td>
</tr>
<tr>
<td>230</td>
<td>05</td>
</tr>
<tr>
<td>231</td>
<td>21</td>
</tr>
<tr>
<td>234</td>
<td>02</td>
</tr>
<tr>
<td>235A</td>
<td>21</td>
</tr>
<tr>
<td>236</td>
<td>17</td>
</tr>
<tr>
<td>237</td>
<td>17</td>
</tr>
<tr>
<td>238</td>
<td>18</td>
</tr>
<tr>
<td>239</td>
<td>09</td>
</tr>
<tr>
<td>240A</td>
<td>03</td>
</tr>
<tr>
<td>240B</td>
<td>03</td>
</tr>
<tr>
<td>241A</td>
<td>07</td>
</tr>
<tr>
<td>241B</td>
<td>15</td>
</tr>
<tr>
<td>241C</td>
<td>15</td>
</tr>
<tr>
<td>241D</td>
<td>15</td>
</tr>
<tr>
<td>244</td>
<td>13</td>
</tr>
<tr>
<td>245</td>
<td>20</td>
</tr>
<tr>
<td>246</td>
<td>08</td>
</tr>
<tr>
<td>247</td>
<td>08</td>
</tr>
<tr>
<td>248</td>
<td>08</td>
</tr>
<tr>
<td>249A</td>
<td>05</td>
</tr>
<tr>
<td>249B</td>
<td>08</td>
</tr>
<tr>
<td>250A</td>
<td>16</td>
</tr>
<tr>
<td>250B</td>
<td>19</td>
</tr>
<tr>
<td>251</td>
<td>04</td>
</tr>
<tr>
<td>COURTYARD GATE</td>
<td>21</td>
</tr>
</tbody>
</table>
SECTION 088000
GLAZING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes glazing for the following products and applications, including those specified in other
Sections where glazing requirements are specified by reference to this Section:

1. Windows.
2. Doors.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design glass, including comprehensive engineering analysis according to
ASTM E 1300 by a qualified professional engineer, using the following design criteria:

1. Design Wind Pressures: As indicated.

1.3 PRECONSTRUCTION TESTING

A. Preconstruction Adhesion and Compatibility Testing: Test each glazing material type, tape sealant,
gasket, glazing accessory, and glass-framing member for adhesion to and compatibility with elastomeric
glazing sealants.

1. Testing will not be required if data are submitted based on previous testing of current sealant
products and glazing materials matching those submitted.

1.4 ACTION SUBMITTALS

A. Product Data: For each glass product and glazing material indicated.

B. Glass Samples: For each type of glass product other than clear monolithic vision glass; 12 inches square.

C. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same
designations indicated on Drawings.

D. Delegated-Design Submittal: For glass indicated to comply with performance requirements and design
criteria, including analysis data signed and sealed by the qualified professional engineer responsible for
their preparation. Provide test data to confirm compliance with wind pressures indicated on structural
drawings as part of tested assembly to match door or window frame.

1.5 INFORMATIONAL SUBMITTALS

A. Preconstruction adhesion and compatibility test report.
1.6 QUALITY ASSURANCE

A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below, unless more stringent requirements are indicated. Refer to these publications for glazing terms not otherwise defined in this Section or in referenced standards.

B. Safety Glazing Labeling: Where safety glazing labeling is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.

C. Fire-Protection-Rated Glazing Labeling: Permanently mark fire-protection-rated glazing with certification label of a testing agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name, test standard, whether glazing is for use in fire doors or other openings, whether or not glazing passes hose-stream test, whether or not glazing has a temperature rise rating of 450 deg F, and the fire-resistance rating in minutes.

D. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.

1.7 WARRANTY

A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer's standard form in which coated-glass manufacturer agrees to replace coated-glass units that deteriorate within specified warranty period. Deterioration of coated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in coating.

1. Warranty Period: 10 years from date of Substantial Completion.

B. Manufacturer's Special Warranty on Laminated Glass: Manufacturer's standard form in which laminated-glass manufacturer agrees to replace laminated-glass units that deteriorate within specified warranty period. Deterioration of laminated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.

1. Warranty Period: 10 years from date of Substantial Completion.

C. Manufacturer's Special Warranty on Insulating Glass: Manufacturer's standard form in which insulating-glass manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.

1. Warranty Period: 10 years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 GLASS PRODUCTS, GENERAL

A. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass lites in thicknesses as needed to comply with requirements indicated.

B. Strength: Where float glass is indicated, provide annealed float glass, Kind HS heat-treated float glass, or Kind FT heat-treated float glass. Where heat-strengthened glass is indicated, provide Kind HS heat-treated float glass or Kind FT heat-treated float glass. Where fully tempered glass is indicated, provide Kind FT heat-treated float glass.

C. Windborne-Debris-Impact Resistance: Provide exterior glazing that passes basic-protection testing requirements in ASTM E1996 for Project Wind Zone when tested according to ASTM E1886. Test specimens shall be no smaller in width and length than glazing indicated for use on the Project and shall be installed in same manner as glazing indicated for use on the Project.
 1. Large-Missile Test: For all glazing, regardless of height above grade.

2.2 GLASS PRODUCTS

A. Float Glass: ASTM C1036, Type I, Quality-Q3, Class I (clear) unless otherwise indicated.

B. Heat-Treated Float Glass: ASTM C1048; Type I; Quality-Q3; Class I (clear) unless otherwise indicated; of kind and condition indicated.

2.3 LAMINATED GLASS

A. Manufacturers: Subject to compliance with requirements (and tested assemblies for openings), available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. AGC
 2. Pilkington
 3. Approved equal

B. Windborne-Debris-Impact-Resistant Laminated Glass: ASTM C1172, and complying with testing requirements in 16 CFR 1201 for Category II materials, with "Windborne-Debris-Impact Resistance" Paragraph in "Glass Products, General" Article, and with other requirements specified. Use materials that have a proven record of no tendency to bubble, discolor, or lose physical and mechanical properties after fabrication and installation.
 1. Construction: Laminate glass with one of the following to comply with interlayer manufacturer's written recommendations:
 a. Polyvinyl butyral interlayer.
 b. Polyvinyl butyral interlayers reinforced with polyethylene terephthalate film.
 c. Ionoplast interlayer.
 d. Cast-in-place and cured-transparent-resin interlayer.
 e. Cast-in-place and cured-transparent-resin interlayer reinforced with polyethylene terephthalate film.
 2. Interlayer Thickness: Provide thickness not less than that indicated and as needed to comply with requirements.
 3. Interlayer Color: Clear unless otherwise indicated.
 4. Tint to match existing glazing.
2.4 INSULATING GLASS

A. Manufacturers: Subject to compliance with requirements (and tested assemblies for openings), provide products by one of the following or comparable per Section 002600.
 1. AGC
 2. PPG
 3. Pilkington

B. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E 2190, and complying with other requirements specified.
 1. Sealing System: Dual seal.
 2. Spacer: Manufacturer's standard spacer material and construction
 3. Tint to match existing glazing

2.5 FIRE-PROTECTION-RATED GLAZING

A. Fire-Protection-Rated Glazing, General: Listed and labeled by a testing agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated, based on testing according to NFPA 252 for door assemblies and NFPA 257 for window assemblies.

2.6 GLAZING GASKETS

A. Dense Compression Gaskets: Molded or extruded gaskets of profile and hardness required to maintain watertight seal, made from one of the following:
 1. EPDM complying with ASTM C 864.
 2. Silicone complying with ASTM C 1115.
 3. Thermoplastic polyolefin rubber complying with ASTM C 1115.

B. Soft Compression Gaskets: Extruded or molded, closed-cell, integral-skinned EPDM, silicone or thermoplastic polyolefin rubber gaskets complying with ASTM C 509, Type II, black; of profile and hardness required to maintain watertight seal.
 1. Application: Use where soft compression gaskets will be compressed by inserting dense compression gaskets on opposite side of glazing or pressure applied by means of pressure-glazing stops on opposite side of glazing.

2.7 GLAZING SEALANTS

A. General:
 1. Compatibility: Provide glazing sealants that are compatible with one another and with other materials they will contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
 2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.

A. Neutral-curing silicone glazing sealant complying with ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.

B. Glazing Sealants for Fire-Rated Glazing Products: Products that are approved by testing agencies that listed and labeled fire-resistant glazing products with which they are used for applications and fire-protection ratings indicated.
2.8 GLAZING TAPES

A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C 1281 and AAMA 800 for products indicated below:
 1. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.

B. Expanded Cellular Glazing Tapes: Closed-cell, PVC foam tapes; factory coated with adhesive on both surfaces; and complying with AAMA 800 for the following types:
 1. AAMA 810.1, Type 1, for glazing applications in which tape acts as the primary sealant.
 2. AAMA 810.1, Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.

2.9 MISCELLANEOUS GLAZING MATERIALS

A. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

B. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.

C. Spacers: Elastomeric blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.

D. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).

E. Perimeter Insulation for Fire-Resistive Glazing: Product that is approved by testing agency that listed and labeled fire-resistant glazing product with which it is used for application and fire-protection rating indicated.

2.10 MONOLITHIC-GLASS TYPES

A. Glass Type GL-1 For all interior glazing not located in a fire rated assembly: Clear tempered float glass.
 1. Thickness: .25 inch
 2. Provide safety glazing labeling.

2.11 FIRE-RATED GLASS TYPES

A. Glass Type GL-2: For all glazing in fire rated assemblies (doors, borrowed lites, etc.). Clear.
 1. Thickness of Each Glass Ply: .25 inch minimum
 2. 20 minute fire rating per tested door assembly
 3. Provide fire rating labeling.

B. Glass Type GL-2: For exterior storefront windows. Insulated Laminated glass unit shall comply with ASTM E 1300-04 and ASTM E1996. Insulated Laminated glass unit is exterior glazed with .5625” glazing penetration using structural silicone and a FG-5185 vinyl gasket between the aluminum on the interior side of the glass and a FG-1133 vinyl gasket on the exterior side of the glass. There shall be two (2) neopreme setting blocks between the glass on the bottom and the aluminum at each section of the glass unit.
 1. Insulated Laminated glass unit thickness: (2) ¼” heat strengthened outboard (1) 1/4” heat strengthen inboard. Approximately 1” total thickness
 2. Argon filled air space
 3. Interlayer for laminated pane: To match tested assembly
 4. Provide safety glazing labeling.
 5. Tint to match existing glazing
PART 3 - EXECUTION

3.1 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.

B. Adjust glazing channel dimensions as required by Project conditions during installation to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

C. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass is glass with edge damage or other imperfections that, when installed, could weaken glass and impair performance and appearance.

D. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

E. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

G. Provide spacers for glass lites where length plus width is larger than 50 inches.

H. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

3.2 TAPE GLAZING

A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.

B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.

C. Cover vertical framing joints by applying tapes to heads and sills first and then to jambs. Cover horizontal framing joints by applying tapes to jambs and then to heads and sills.

D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.

E. Center glass lites in openings on setting blocks and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

3.3 GASKET GLAZING (DRY)

A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.
C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

E. Install gaskets so they protrude past face of glazing stops.

3.4 SEALANT GLAZING (WET)

A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.

B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.

C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.

3.5 CLEANING AND PROTECTION

A. Protect exterior glass from damage immediately after installation by attaching crossed streamers to framing held away from glass. Do not apply markers to glass surface. Remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer.

C. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains; remove as recommended in writing by glass manufacturer.

D. Remove and replace glass that is broken, chipped, cracked, or abraded or that is damaged from natural causes, accidents, and vandalism, during construction period.

END OF SECTION 088000
SECTION 092900
GYPSUM BOARD

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Interior gypsum board.
2. Tile backing panels.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Samples: For the following products:
1. Trim Accessories: Full-size Sample in 12-inch-long length for each trim accessory indicated.

1.4 QUALITY ASSURANCE
A. Mockups: Before beginning gypsum board installation, install mockups of at least 100 sq. ft. in surface area to demonstrate aesthetic effects and set quality standards for materials and execution.
1. Install mockups for the following:
a. Each level of gypsum board finish indicated for use in exposed locations.
b. Each texture finish indicated.
2. Apply or install final decoration indicated, including painting and wallcoverings, on exposed surfaces for review of mockups.
3. Simulate finished lighting conditions for review of mockups.
4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.5 DELIVERY, STORAGE AND HANDLING
A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.6 FIELD CONDITIONS
A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written recommendations, whichever are more stringent.
B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.
C. Do not install panels that are wet, those that are moisture damaged, and those that are mold damaged.
1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.
B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL
A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that
correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Gypsum.
 2. CertainTeed Corp.
 3. Georgia-Pacific Gypsum LLC.
 5. Temple-Inland.
 6. USG Corporation.
B. Gypsum Board, Type X: ASTM C 1396.
 1. Thickness: 5/8 inch.
 2. Long Edges: Tapered.
C. Gypsum Ceiling Board: ASTM C 1396.
 1. Thickness: 1/2 inch.
 2. Long Edges: Tapered.
D. Moisture- and Mold-Resistant Gypsum Board: ASTM C 1396. With moisture- and mold-resistant core and paper surfaces.
 1. Core: 5/8 inch, Type X.
 2. Long Edges: Tapered.
 4. Locations: Restrooms, janitor closets, other locations where water exposure is probable.

2.4 TILE BACKING PANELS
A. Cementitious Backer Units: ANSI A118.9 and ASTM C 1288 or 1325, with manufacturer's standard edges.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corp.; FiberCement BackerBoard.
 b. James Hardie Building Products, Inc.; Hardiebacker.
 c. USG Corporation; DUROCK Cement Board.
 d. Approved equal
 2. Refer to TCA Installation system #W244
 3. Thickness: 5/8 inch (12.7 mm)

2.5 TRIM ACCESSORIES
A. Interior Trim: ASTM C 1047.
 1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc.
 2. Shapes:
 a. Cornerbead.
 b. Bullnose bead.
 c. LC-Bead: J-shaped; exposed long flange receives joint compound.
 d. L-Bead: L-shaped; exposed long flange receives joint compound.
 e. U-Bead: J-shaped; exposed short flange does not receive joint compound.
 f. Expansion (control) joint.
 g. Curved-Edge Cornerbead: With notched or flexible flanges.
B. Aluminum Trim: Extruded accessories of profiles and dimensions indicated.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fry Reglet Corp.
 b. Gordon, Inc.
 c. Pittcon Industries.
 2. Aluminum: Alloy and temper with not less than the strength and durability properties of ASTM B 221, Alloy 6063-T5.
 3. Finish: Corrosion-resistant primer compatible with joint compound and finish materials specified.
2.6 JOINT TREATMENT MATERIALS
A. General: Comply with ASTM C 475/C 475M.
B. Joint Tape:
1. Interior Gypsum Board: Paper.
2. Glass-Mat Gypsum Sheathing Board: 10-by-10 glass mesh.
3. Tile Backing Panels: As recommended by panel manufacturer.
C. Joint Compound for Interior Gypsum Board: For each coat use formulation that is compatible with other compounds applied on previous or for successive coats.
 1. Prefilling: At open joints, rounded or beveled panel edges, and damaged surface areas, use setting-type taping compound.
 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use drying-type, all-purpose compound.
 a. Use setting-type compound for installing paper-faced metal trim accessories.
 3. Fill Coat: For second coat, use drying-type, all-purpose compound.
 4. Finish Coat: For third coat, use drying-type, all-purpose compound.
 5. Skim Coat: For final coat of Level 5 finish, use drying-type, all-purpose compound.
D. Joint Compound for Tile Backing Panels:
 1. Glass-Mat, Water-Resistant Backing Panel: As recommended by backing panel manufacturer.
 2. Cementitious Backer Units: As recommended by backer unit manufacturer.

2.7 AUXILIARY MATERIALS
A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written recommendations.
B. Laminating Adhesive: Adhesive or joint compound recommended for directly adhering gypsum panels to continuous substrate.
 1. Laminating adhesive shall have a VOC content of 50 Insert value g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
C. Steel Drill Screws: ASTM C 1002, unless otherwise indicated.
 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.
D. Sound Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.
E. Acoustical Joint Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Accumetric LLC; BOSS 824 Acoustical Sound Sealant.
 b. Pecora Corporation; AC-20 FTR AIS-919.
 d. USG Corporation; SHEETROCK Acoustical Sealant.
 2. Acoustical joint sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and substrates including welded hollow-metal frames and framing, with Installer present, for compliance with requirements and other conditions affecting performance.
B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL
A. Comply with ASTM C 840.
B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more
than 1/16 inch of open space between panels. Do not force into place.

D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.

E. Form control and expansion joints with space between edges of adjoining gypsum panels.

F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc., except in chases braced internally.

1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.

2. Fit gypsum panels around ducts, pipes, and conduits.

3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch-wide joints to install sealant.

G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments, except floors. Provide 1/4- to 1/2-inch-wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

I. Wood Framing: Install gypsum panels over wood framing, with floating internal corner construction. Do not attach gypsum panels across the flat grain of wide-dimension lumber, including floor joists and headers. Float gypsum panels over these members or provide control joints to counteract wood shrinkage.

J. STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer's written recommendations for locating edge trim and closing off sound-flanking paths around or through assemblies, including sealing partitions above acoustical ceilings.

K. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

3.3 APPLYING INTERIOR GYPSUM BOARD

A. Install interior gypsum board in the following locations:

1. Wallboard Type: Vertical surfaces unless otherwise indicated.

2. Type X: Fire Rated Vertical surfaces unless otherwise indicated.

3. Ceiling Type: Ceiling surfaces.

4. Moisture- and Mold-Resistant Type: In all restrooms and janitorial rooms.

5. Glass-Mat Interior Type: Behind all wall tile.

B. Single-Layer Application:

1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.

2. On partitions/walls, apply gypsum panels vertically (parallel to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
 b. At stairwells and other high walls, install panels horizontally unless otherwise indicated or required by fire-resistance-rated assembly.

3. On furring members, apply gypsum panels vertically (parallel to framing) with no end joints. Locate edge joints over furring members.

4. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

C. Multi-Layer Application:

1. On ceilings, apply gypsum board indicated for base layers before applying base layers on walls/partitions; apply face layers in same sequence. Apply base layers at right angles to framing members and offset face-layer joints one framing member, 16 inches minimum, from parallel base-layer joints, unless otherwise indicated or required by fire-resistance-rated assembly.

2. On partitions/walls, apply gypsum board indicated for base layers and face layers vertically (parallel to framing) with joints of base layers located over stud or furring member and face-layer joints offset at least one stud or furring member with base-layer joints, unless otherwise indicated or required by fire-resistance-rated assembly. Stagger joints on opposite sides of partitions.

3. On Z-furring members, apply base layer vertically (parallel to framing) and face layer either vertically (parallel to framing) or horizontally (perpendicular to framing) with vertical joints offset at
least one furring member. Locate edge joints of base layer over furring members.

4. Fastening Methods: Fasten base layers and face layers separately to supports with screws.

D. Laminating to Substrate: Where gypsum panels are indicated as directly adhered to a substrate (other than studs, joists, furring members, or base layer of gypsum board), comply with gypsum board manufacturer's written recommendations and temporarily brace or fasten gypsum panels until fastening adhesive has set.

3.4 INSTALLING TRIM ACCESSORIES

A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.

B. Control Joints: Install control joints according to ASTM C 840 and in specific locations approved by Architect for visual effect.

C. Interior Trim: Install in the following locations:
 1. Cornerbead: Use at outside corners unless otherwise indicated.
 2. LC-Bead: Use at exposed panel edges.
 3. Curved-Edge Cornerbead: Use at curved openings.

D. Exterior Trim: Install in the following locations:
 1. Cornerbead: Use at outside corners.
 2. LC-Bead: Use at exposed panel edges.

E. Aluminum Trim: Install in locations indicated on Drawings.

3.5 FINISHING GYPSUM BOARD

A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.

B. Prefill open joints, rounded or beveled edges, and damaged surface areas.

C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.

D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 2. Level 2: Panels that are substrate for tile Panels that are substrate for acoustical tile Where indicated on Drawings.
 3. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 a. Primer and its application to surfaces are specified in other Division 09 Sections.

E. Glass-Mat Gypsum Sheathing Board: Finish according to manufacturer's written instructions for use as exposed soffit board.

F. Glass-Mat Faced Panels: Finish according to manufacturer's written instructions.

G. Cementitious Backer Units: Finish according to manufacturer's written instructions.

H. Labeling: Label Fire rated partitions with 4" stenciled letters at concealed locations as required by International Building Code.

3.6 PROTECTION

A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.

C. Remove and replace panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 092900
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Ceramic tile.
 2. Waterproof membrane.
 3. Crack isolation membrane.
 4. Metal edge strips.

1.3 DEFINITIONS
 A. General: Definitions in the ANSI A108 series of tile installation standards and in ANSI A137.1 apply to Work of this Section unless otherwise specified.
 C. Module Size: Actual tile size plus joint width indicated.
 D. Face Size: Actual tile size, excluding spacer lugs.

1.4 PERFORMANCE REQUIREMENTS
 A. Static Coefficient of Friction: For tile installed on walkway surfaces, provide products with the following values as determined by testing identical products per ASTM C 1028:
 1. Level Surfaces: Minimum 0.60.
 2. Step Treads: Minimum 0.60.
 3. Ramp Surfaces: Minimum 0.80.

1.5 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Shop Drawings: Show locations of each type of tile and tile pattern. Show widths, details, and locations of expansion, contraction, control, and isolation joints in tile substrates and finished tile surfaces.
 C. Samples for Initial Selection: For each type of tile and grout indicated. Include Samples of accessories involving color selection.
 D. Product Certificates: For each type of product, signed by product manufacturer.
 E. Material Test Reports: For each tile-setting and -grouting product and special purpose tile.

1.6 QUALITY ASSURANCE
 A. Source Limitations for Tile: Obtain tile of each type and color or finish from one source or producer.
 1. Obtain tile of each type and color or finish from same production run and of consistent quality in appearance and physical properties for each contiguous area.
 B. Source Limitations for Setting and Grouting Materials: Obtain ingredients of a uniform quality for each mortar, adhesive, and grout component from one manufacturer and each aggregate from one source or producer.
 C. Source Limitations for Other Products: Obtain each of the following products specified in this Section from a single manufacturer for each product:
 1. Waterproof membrane.
 2. Crack isolation membrane.
 4. Metal edge strips.
 D. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 1. Build mockup of each type of floor and wall tile installation.
2. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Deliver and store packaged materials in original containers with seals unbroken and labels intact until time of use. Comply with requirements in ANSI A137.1 for labeling tile packages.
B. Store tile and cementitious materials on elevated platforms, under cover, and in a dry location.
C. Store aggregates where grading and other required characteristics can be maintained and contamination can be avoided.
D. Store liquid materials in unopened containers and protected from freezing.
E. Handle tile that has temporary protective coating on exposed surfaces to prevent coated surfaces from contacting backs or edges of other units. If coating does contact bonding surfaces of tile, remove coating from bonding surfaces before setting tile.

1.8 PROJECT CONDITIONS
A. Environmental Limitations: Do not install tile until construction in spaces is complete and ambient temperature and humidity conditions are maintained at the levels indicated in referenced standards and manufacturer’s written instructions.

1.9 EXTRA MATERIALS
A. Furnish extra materials that match and are from same production runs as products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Tile and Trim Units: Furnish quantity of full-size units equal to 3 percent of amount installed for each type, composition, color, pattern, and size indicated.
2. Grout: Furnish quantity of grout equal to 3 percent of amount installed for each type, composition, and color indicated.

PART 2 - PRODUCTS
2.1 PRODUCTS, GENERAL
A. ANSI Ceramic Tile Standard: Provide tile that complies with ANSI A137.1 for types, compositions, and other characteristics indicated.
1. Provide tile complying with Standard grade requirements unless otherwise indicated.
B. ANSI Standards for Tile Installation Materials: Provide materials complying with ANSI A108.02, ANSI standards referenced in other Part 2 articles, ANSI standards referenced by TCA installation methods specified in tile installation schedules, and other requirements specified.
C. Factory Blending: For tile exhibiting color variations within ranges, blend tile in factory and package so tile units taken from one package show same range in colors as those taken from other packages and match approved Samples.
D. Mounting: For factory-mounted tile, provide back- or edge-mounted tile assemblies as standard with manufacturer unless otherwise indicated.
1. Where tile is indicated for installation in wet areas, do not use back- or edge-mounted tile assemblies unless tile manufacturer specifies in writing that this type of mounting is suitable for installation indicated and has a record of successful in-service performance.
E. Factory-Applied Temporary Protective Coating: Where indicated under tile type, protect exposed surfaces of tile against adherence of mortar and grout by precoating with continuous film of petroleum paraffin wax, applied hot. Do not coat unexposed tile surfaces.

2.2 TILE PRODUCTS
A. Basis of design: Provide products as listed below or comparable products per Specification 002600

B. CT-1 Colored-Body Porcelain Floor Tile
1. Manufacturer: Interceramic
2. Product: Skyline
3. Color: Meier
4. Size 12”x24”
5. Grout Joints: 3/16”
6. Grout: Mapei Opticolor 09 Grey
7. CT-1 Base: 3”x12” Bullnose
C. CT-2 Colored-Body Porcelain Floor Tile
1. Manufacturer: Interceramic
2. Product: Skyline
3. Color: Wright
4. Size: 12"x24"
5. Grout Joints: 3/16"
6. Grout: Mapei Opticolor 09 Grey

D. CT-3 Colored-Body Porcelain Mosaic Tile
1. Manufacturer: Interceramic
2. Product: Skyline
3. Color: Wright
4. Size: 12"x12" Linear Hex Mosaic (vertical orientation)
5. Grout Joints: 3/16"
6. Grout: Mapei Opticolor 09 Grey

2.3 WATERPROOF MEMBRANE
A. General: Manufacturer's standard product, selected from the following, that complies with ANSI A118.10 and is recommended by the manufacturer for the application indicated. Include reinforcement and accessories recommended by manufacturer.
B. Chlorinated Polyethylene Sheet: Nonplasticized, chlorinated polyethylene faced on both sides with nonwoven polyester fabric; 0.030-inch nominal thickness.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Noble Company (The); Nobleseal TS.

2.4 CRACK ISOLATION MEMBRANE
A. General: Manufacturer's standard product, selected from the following, that complies with ANSI A118.12 for high performance and is recommended by the manufacturer for the application indicated. Include reinforcement and accessories recommended by manufacturer.
B. Chlorinated Polyethylene Sheet: Nonplasticized, chlorinated polyethylene faced on both sides with nonwoven polyester fabric; 0.030-inch nominal thickness.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Noble Company (The); Nobleseal CIS.

2.5 SETTING MATERIALS
 1. Reinforcing Wire Fabric: Galvanized, welded wire fabric, 2 by 2 inches by 0.062-inch diameter; comply with ASTM A 185 and ASTM A 82 except for minimum wire size.
 2. Latex Additive: Manufacturer's standard water emulsion, serving as replacement for part or all of gaging water, of type specifically recommended by latex-additive manufacturer for use with field-mixed portland cement and aggregate mortar bed.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bonsal American; an Oldcastle company.
 b. Custom Building Products.
 c. Laticrete International, Inc.
 d. MAPEI Corporation.
 2. Provide prepackaged, dry-mortar mix containing dry, dispersible, vinyl acetate or acrylic additive to which only water must be added at Project site.
 4. For wall applications, provide mortar that complies with requirements for nonsagging mortar in addition to the other requirements in ANSI A118.4.

2.6 GROUT MATERIALS
A. Polymer-Modified Tile Grout: ANSI A118.7.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Mapei Corporation
 b. Bonsal American; an Oldcastle company.
 c. Custom Building Products.
d. Laticrete International, Inc.

2. Polymer Type: Acrylic resin or styrene-butadiene rubber in liquid-latex form for addition to prepackaged dry-grout mix.

B. Water-Cleanable Epoxy Grout: ANSI A118.3.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Mapei Corporation.
 b. Bonsal American; an Oldcastle company.
 c. Bostik, Inc.
 d. Custom Building Products.
 e. Laticrete International, Inc.
 f. Mer-Kote Products, Inc.

2.7 ELASTOMERIC SEALANTS
 A. General: Provide sealants, primers, backer rods, and other sealant accessories that comply with the following requirements and with the applicable requirements in Division 07 Section "Joint Sealants."
 1. Use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Refer to Section 079500 for specific acceptable sealants.

2.8 MISCELLANEOUS MATERIALS
 A. Aluminum Schluter transition strips to be selected by Architect from Manufacturer's full range
 B. Trowelable Underlayments and Patching Compounds: Latex-modified, portland cement-based formulation provided or approved by manufacturer of tile-setting materials for installations indicated.
 C. Metal Edge Strips: Angle or L-shape, height to match tile and setting-bed thickness, metallic or combination of metal and PVC or neoprene base, designed specifically for flooring applications; stainless-steel, ASTM A 666, 300 Series exposed-edge material.
 D. Tile Cleaner: A neutral cleaner capable of removing soil and residue without harming tile and grout surfaces, specifically approved for materials and installations indicated by tile and grout manufacturers.
 E. Grout Sealer (for use on cementitious grout): Manufacturer's standard product for sealing grout joints and that does not change color or appearance of grout.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Bonsal American; an Oldcastle company; Grout Sealer.
 b. Custom Building Products; Grout and Tile Sealer.
 c. MAPEI Corporation; KER 003, Silicone Spray Sealer for Cementitious Tile Grout.

2.9 MIXING MORTARS AND GROUT
 A. Mix mortars and grouts to comply with referenced standards and mortar and grout manufacturers' written instructions.
 B. Add materials, water, and additives in accurate proportions.
 C. Obtain and use type of mixing equipment, mixer speeds, mixing containers, mixing time, and other procedures to produce mortars and grouts of uniform quality with optimum performance characteristics for installations indicated.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions where tile will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of installed tile.
 1. Verify that substrates for setting tile are firm, dry, clean, free of coatings that are incompatible with tile-setting materials including curing compounds and other substances that contain soap, wax, oil, or silicone; and comply with flatness tolerances required by ANSI A108.01 for installations indicated.
 2. Verify that concrete substrates for tile floors installed with thin-set mortar comply with surface finish requirements in ANSI A108.01 for installations indicated.
 a. Verify that surfaces that received a steel trowel finish have been mechanically scarified.
 b. Verify that protrusions, bumps, and ridges have been removed by sanding or grinding.
 3. Verify that installation of grounds, anchors, recessed frames, electrical and mechanical units of work, and similar items located in or behind tile has been completed.
 4. Verify that joints and cracks in tile substrates are coordinated with tile joint locations; if not coordinated, adjust joint locations in consultation with Architect.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Fill cracks, holes, and depressions in concrete substrates for tile floors installed with thin-set mortar with trowelable leveling and patching compound specifically recommended by tile-setting material manufacturer.
B. Where indicated, prepare substrates to receive waterproofing by applying a reinforced mortar bed that complies with ANSI A108.1A and is sloped 1/4 inch per foot toward drains.
C. Blending: For tile exhibiting color variations, verify that tile has been factory blended and packaged so tile units taken from one package show same range of colors as those taken from other packages and match approved Samples. If not factory blended, either return to manufacturer or blend tiles at Project site before installing.

3.3 TILE INSTALLATION
A. Comply with TCA's "Handbook for Ceramic Tile Installation" for TCA installation methods specified in tile installation schedules. Comply with parts of the ANSI A108 Series "Specifications for Installation of Ceramic Tile" that are referenced in TCA installation methods, specified in tile installation schedules, and apply to types of setting and grouting materials used.
1. For the following installations, follow procedures in the ANSI A108 Series of tile installation standards for providing 95 percent mortar coverage:
 a. Exterior tile floors
 b. Tile floors in wet areas.
 c. Tile floors composed of tiles 8 by 8 inches or larger.
 d. Tile floors composed of rib-backed tiles.
B. Extend tile work into recesses and under or behind equipment and fixtures to form complete covering without interruptions unless otherwise indicated. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.
C. Accurately form intersections and returns. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so plates, collars, or covers overlap tile.
D. Jointing Pattern: Lay tile in grid pattern unless otherwise indicated. Lay out tile work and center tile fields in both directions in each space or on each wall area. Lay out tile work to minimize the use of pieces that are less than half of a tile. Provide uniform joint widths unless otherwise indicated.
 1. For tile mounted in sheets, make joints between tile sheets same width as joints within tile sheets so joints between sheets are not apparent in finished work.
 2. Where adjoining tiles on floor, base, walls, or trim are specified or indicated to be same size, align joints.
 3. Where tiles are specified or indicated to be whole integer multiples of adjoining tiles on floor, base, walls, or trim, align joints unless otherwise indicated.
E. Joint Widths: Unless otherwise indicated, install tile with the following joint widths:
 2. Quarry Tile: 1/4 inch.
F. Lay out tile wainscots to dimensions indicated or to next full tile beyond dimensions indicated.
G. Expansion Joints: Provide expansion joints and other sealant-filled joints, including control, contraction, and isolation joints, where indicated. Form joints during installation of setting materials, mortar beds, and tile. Do not saw-cut joints after installing tiles.
 1. Where joints occur in concrete substrates, locate joints in tile surfaces directly above them.
 2. Prepare joints and apply sealants to comply with requirements in Division 07 Section "Joint Sealants."
H. Metal Edge Strips: Install where exposed edge of tile flooring meets carpet, wood, or other flooring that finishes flush with top of tile.
I. Grout Sealer: Apply grout sealer to cementitious grout joints in tile floors according to grout-sealer manufacturer's written instructions. As soon as grout sealer has penetrated grout joints, remove excess sealer and sealer from tile faces by wiping with soft cloth.

3.4 WATERPROOFING INSTALLATION
A. Install waterproofing to comply with ANSI A108.13 and manufacturer's written instructions to produce waterproof membrane of uniform thickness and bonded securely to substrate.
B. Do not install tile or setting materials over waterproofing until waterproofing has cured and been tested to determine that it is watertight.

3.5 CRACK ISOLATION MEMBRANE INSTALLATION
A. Install crack isolation membrane to comply with ANSI A108.17 and manufacturer's written instructions to produce membrane of uniform thickness and bonded securely to substrate.
B. Do not install tile or setting materials over crack isolation membrane until membrane has cured.

3.6 CLEANING AND PROTECTING
A. Cleaning: On completion of placement and grouting, clean all ceramic tile surfaces so they are free of foreign matter.
 1. Remove latex-portland cement grout residue from tile as soon as possible.
 2. Clean grout smears and haze from tile according to tile and grout manufacturer's written instructions but no sooner than 10 days after installation. Use only cleaners recommended by tile and grout manufacturers and only after determining that cleaners are safe to use by testing on samples of tile and other surfaces to be cleaned. Protect metal surfaces and plumbing fixtures from effects of cleaning. Flush surfaces with clean water before and after cleaning.
 3. Remove temporary protective coating by method recommended by coating manufacturer and that is acceptable to tile and grout manufacturer. Trap and remove coating to prevent drain clogging.
B. Protect installed tile work with kraft paper or other heavy covering during construction period to prevent staining, damage, and wear. If recommended by tile manufacturer, apply coat of neutral protective cleaner to completed tile walls and floors.
C. Prohibit foot and wheel traffic from tiled floors for at least seven days after grouting is completed.
D. Before final inspection, remove protective coverings and rinse neutral protective cleaner from tile surfaces.

3.7 INTERIOR TILE INSTALLATION SCHEDULE
A. Interior Floor Installations, Concrete Subfloor:
 1. Tile Installation F113: Thin-set mortar; TCA F113.
 b. Grout: Water-cleanable epoxy grout.
 2. Tile Installation F115: Thin-set mortar; epoxy grout; TCA F115.
 b. Grout: Water-cleanable epoxy grout.
 3. Tile Installation F122: Thin-set mortar on waterproof membrane; TCA F122.
 b. Grout: Water-cleanable epoxy grout.
 4. Tile Installation F125A: Thin-set mortar on crack isolation membrane; TCA F125A.
 b. Grout: Water-cleanable epoxy grout.
B. Interior Wall Installations, on Studs or Furring:
 b. Grout: Polymer-modified sanded Polymer-modified unsanded grout; Water-cleanable epoxy grout.
 2. Tile Installation W245: Thin-set mortar on coated glass-mat, water-resistant gypsum backer board; TCA W245.
 b. Grout: [Polymer-modified sanded Polymer-modified unsanded] [Water-cleanable epoxy grout].

END OF SECTION 096000
SECTION 095113
SUSPENDED ACOUSTICAL CEILING

PART 1 - GENERAL

1.1 SECTION INCLUDES
 A. Suspended metal grid ceiling system and perimeter trim.
 B. Acoustical tile.
 C. Non-fire rated assembly.

1.2 RELATED SECTIONS
 A. Division 15- Air Outlets and Inlets: Air diffusion devices in ceiling system.
 B. Division 16- Electrical: Light fixtures in ceiling system.
 C. Refer to Drawing Sheet 7.1 for locations.

1.3 REFERENCES
 A. ASTM C635- Metal Suspension System for Acoustical Tile and Lay-in Panel Ceilings.
 B. ASTM C636- Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels.
 D. ASTM E580- Practice for Application of Ceiling Suspension System for Acoustical Tile and Lay-in Panels in Areas Requiring Seismic Restrain.
 E. ASTM E1264- Classification of Acoustical Ceiling Products.
 F. Ceiling and Interior System Contractors Association (CISCA)- Acoustical Ceilings: Use and Practice.

1.4 SYSTEM DESCRIPTION
 A. Suspension system to rigidly secure acoustical ceiling system including integral mechanical and electrical components with maximum deflection of V360.

1.5 SUBMITTALS
 A. Submit under provisions of Section 01300.
 B. Product Data: Provide data on metal grid system components and acoustical units.
 C. Samples: Submit two samples 12 x 12 inches in size illustrating material and finish of acoustical units.
 D. Samples: Submit two samples each 12 inches long of suspension system main runner, cross runner, edge trim, and clips.
 E. Manufacturer’s Installation instructions: Indicate special procedures, and perimeter conditions requiring special attention.

1.6 QUALIFICATIONS
 A. Grid Manufacturer: Company specializing in manufacturing the products specified in this section with minimum of three years documented experience.
 B. Acoustical Units Manufacturer: Company specializing in manufacturing the product specified in this section with minimum of three years documented experience.

1.7 REGULATOR REQUIREMENTS
 A. Conform to International Building Code for combustibility requirements for materials.

1.8 ENVIRONMENTAL REQUIREMENTS
 A. Maintain uniform temperature of minimum 60 degrees F and maximum humidity of 40 percent prior to, during and after acoustical unit installation.

1.9 COORDINATION
 A. Coordinate work under the provisions in Division 01 Sections.
 B. Coordinate work to ensure acoustical ceilings are not installed until building is enclosed, sufficient heat or cooling is provided, dust generating activities have terminated, and overhead work is completed, tested, and approved.
 C. Install acoustical units after interior work is dry.
1.10 EXTRA MATERIALS
 A. Furnish under provisions Section 017700.
 B. Provide 50 sq. ft. of extra tile to Owner.

PART 2 - PRODUCTS

2.1 MANUFACTURERS-SUSPENSION SYSTEM
 A. USG
 B. Substitutions: Under provisions of Section 002600.

2.2 SUSPENSION SYSTEM MATERIALS
 A. Non-fire Rated Grid: ASTM C635, heavy duty; exposed T; components die cut and interlocking.
 C. Exposed Grid Surface Width: 15/16 inch reveal.
 E. Accessories: Stabilizer bars, clips, splices, edge molding, hold down clips, additional accessories required for suspended grid system.
 F. Support Channels and Hangers: Galvanized steel; size and type to suit application, and ceiling system flatness requirement specified.
 G. Edge trim for suspended clouds: USG Compasso Standard 2.25" (with clips as required)

2.3 MANUFACTURES-ACOUSTICAL UNITS
 A. Armstrong
 B. Substitutions: Under provisions of Section 012500.

2.4 ACOUSTICAL UNIT MATERIALS
 A. Acoustical Tile: ASTM E1264, conforming to the following:
 1. Size: Refer to sheet A-7.1
 2. Thickness: 5/8 inches
 3. Composition: Mineral
 4. Light reflectance: LR-1
 5. NRC Range: 0.55 to 0.65
 6. STC Range: 40 to 44
 7. Fire Hazard classification: Class A
 8. Edge: Square
 9. Surface Color: White
 10. Surface Finish: Non-directly pattern
 11. Tolerance Int. Conditions: Not exceeding 85 degrees F and 85% relative humidity without deflection.

2.5 ACCESSORIES
 A. A. Touch-Up Paint: Type and color to match acoustical and grid units.

PART 3 - EXAMINATION

3.1 EXAMINATION
 A. Verify that layout hood installation by others.

3.2 INSTALLATION, LAY-IN GRID SUSPENSION SYSTEM
 A. Install suspension system in accordance with ASTM C636, manufacture’s instructions and as supplemented in this section.
 B. Install system capable of supporting imposed loads to a deflection of 1/360 maximum.
 C. Locate system on room axis according to reflected plan.
 D. Install after major above ceiling work is complete. Coordinate the locations of hangers with other work.
 E. Hang suspension system independent of walls, columns, ducts, pipes and conduit. Where carrying members are spliced, avoid visible displacement of face plane of adjacent members.
 F. Where ducts or other equipment prevent the regulate spacing of hangers, reinforce the nearest affected hangers and related carrying channels to span the extra distance.
 G. Do not support components on main runners or cross runners if weight caused total dead load to exceed deflection capability.
H. Provide main support tee at location of ceiling hung protection screens in classrooms. Provide additional hanger reinforcement on main tee supporting projection screens.
I. Do not eccentricity load system, or produce rotation of runners.
J. Install decorative edge trim at clouds in Dining Hall. Provide clips at each runner as recommended by manufacturer.
K. Install edge molding at intersection of ceiling and vertical surfaces, using longest practical lengths.

3.3 INSTALLATION-AcouSTICAL UNITS
A. Install acoustical units in accordance with manufacturer’s instruction.
B. Fit acoustical units in place, free from damage edges or other defects detrimental to appearance and function.
C. Lay directional patterned units in basket weave pattern. Fit border trim neatly against abutting surfaces.
D. Install units after above ceiling work is complete.
E. Install acoustical units level, in uniform plane, and free from twist, wrap and dents.
F. Cut tile to fit irregular grid and perimeter edge trim.
G. Where bull nose concrete block corners or round obstructions occur, provide performed closer to match edge molding.
H. Install hold-down clips to retain all acoustical panels tight to grid at all corridor conditions.

3.4 ERECTION TOLERANCES
A. Maximum Variation from Flat and Level Surface: 1/8 inch in 10 feet.
B. Maximum Variation from Plumb of Grid Members Caused by Eccentric Loads: 2 degrees.

END OF SECTION 095113
SECTION 096513

RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and
 Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Resilient base.
 2. Resilient molding accessories / transition strips

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Samples for Initial Selection: For each type of product indicated.
 C. Product Schedule: For resilient products. Use same designations indicated on Drawings.

1.4 DELIVERY, STORAGE, AND HANDLING
 A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient
 temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more
 than 90 deg F.

1.5 PROJECT CONDITIONS
 A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or
 more than 95 deg F, in spaces to receive resilient products during the following time periods:
 1. 48 hours before installation.
 2. During installation.
 3. 48 hours after installation.
 B. Until Substantial Completion, maintain ambient temperatures within range recommended by
 manufacturer, but not less than 55 deg F or more than 95 deg F.
 C. Install resilient products after other finishing operations, including painting, have been completed.

1.6 EXTRA MATERIALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for
 storage and identified with labels describing contents.
 1. Furnish not less than 10 linear feet for every 500 linear feet or fraction thereof, of each type, color,
 pattern, and size of resilient product installed.

PART 2 - PRODUCTS

2.1 RESILIENT BASE
 A. Resilient Base:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Roppe [To match existing]
 b. Refer to 002600 for substitution procedures
 1. Material Requirement: Type TV (vinyl, thermoplastic).
 C. Minimum Thickness: 0.125 inch.
 D. Height: 2 1/2 inches.
 E. Lengths: Coils in manufacturer's standard length.
 F. Outside Corners: Job formed.
 G. Inside Corners: Job formed.
 H. Finish: Satin.
I. Colors and Patterns: To be selected by architect from manufacturers full range of colors [To match existing].

2.2 RESILIENT MOLDING ACCESSORY
A. Resilient Molding Accessory:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Roppe Corporation, USA.
 b. Burke Mercer Flooring Products; Division of Burke Industries, Inc.
 c. Flexco, Inc.
 d. Johnsonite.
 e. R.C.A. Rubber Company (The).
 f. VPI, LLC; Floor Products Division.
 B. Description: Reducer strip for resilient floor covering; Transition strips.
 C. Material: Rubber.
 D. Profile and Dimensions: As required to ensure accessible transitions from each flooring type.
 E. Colors and Patterns: To be selected by architect from manufacturers full range of colors.

2.3 INSTALLATION MATERIALS
A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by manufacturer for applications indicated.
B. Adhesives: Water-resistant type recommended by manufacturer to suit resilient products and substrate conditions indicated.
 1. Use adhesives that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 a. Cove Base Adhesives: Not more than 50 g/L.
 b. Rubber Floor Adhesives: Not more than 60 g/L.
C. Metal Edge Strips: Extruded aluminum with mill finish of width shown, of height required to protect exposed edges of tiles, and in maximum available lengths to minimize running joints.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
B. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Prepare substrates according to manufacturer’s written instructions to ensure adhesion of resilient products.
B. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound and remove bumps and ridges to produce a uniform and smooth substrate.
C. Do not install resilient products until they are same temperature as the space where they are to be installed.
 1. Move resilient products and installation materials into spaces where they will be installed at least 48 hours in advance of installation.
D. Sweep and vacuum clean substrates to be covered by resilient products immediately before installation.

3.3 RESILIENT BASE INSTALLATION
A. Comply with manufacturer's written instructions for installing resilient base.
B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.
C. Install resilient base in lengths as long as practicable without gaps at seams and with tops of adjacent pieces aligned.
D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.
E. Do not stretch resilient base during installation.
F. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer's recommended adhesive filler material.
G. Job-Formed Corners:
 1. Outside Corners: Use straight pieces of maximum lengths possible. Form without producing
discoloration (whitening) at bends.
 2. Inside Corners: Use straight pieces of maximum lengths possible.

3.4 RESILIENT ACCESSORY INSTALLATION
A. Comply with manufacturer's written instructions for installing resilient accessories.
B. Resilient Molding Accessories: Butt to adjacent materials and tightly adhere to substrates throughout
 length of each piece. Install reducer strips at all locations where flooring material changes or would
 otherwise be exposed.

3.5 CLEANING AND PROTECTION
A. Comply with manufacturer's written instructions for cleaning and protection of resilient products.
B. Perform the following operations immediately after completing resilient product installation:
 1. Remove adhesive and other blemishes from exposed surfaces.
 2. Sweep and vacuum surfaces thoroughly.
 3. Damp-mop surfaces to remove marks and soil.
C. Protect resilient products from mars, marks, indentations, and other damage from construction operations
 and placement of equipment and fixtures during remainder of construction period.
D. Cover resilient products until Substantial Completion.

END OF SECTION 096513
SECTION 096519
RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Vinyl Plank Flooring.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Samples: For each exposed product and for each color and pattern specified.

1.3 CLOSEOUT SUBMITTALS
A. Maintenance data.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: An entity that employs installers and supervisors who are competent in techniques required by manufacturer for floor tile installation.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Fire-Test-Response Characteristics: For resilient floor tile, as determined by testing identical products according to ASTM E648 or NFPA 253 by a qualified testing agency.
 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

2.2 VINYL PLANK FLOORING
A. Company: Mohawk Group
B. Characteristics:
 1. Luxury Vinyl Tile: Graniac
 2. Gauge: 0.10"
 3. Sizes: 6"x48"
 4. Wear Layer: 12 mil
 5. Complies with ASTM F 1700, Class III, Type B (Embossed)
 6. Refer to products Technical Specifications data sheet for detailed specifications.
 7. Color: 959 Grey Matters
 8. All products are FloorScore Certified
9. This product is manufactured in a factory that has ISO 9002 and ISO 14001 certifications
10. Product must be 100% virgin vinyl and contain at least 8% bio based renewable material
11. Product must have an enhanced urethane wear layer.

2.3 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by floor tile manufacturer for applications indicated.

B. Adhesives: Water-resistant type recommended by floor tile and adhesive manufacturers to suit floor tile and substrate conditions indicated.

C. Transition Strips: Provide Roppe rubber transition strips at all flooring terminations or transitions. Final color and profile to be selected by Architect from Manufacturer's full range.

D. Floor Polish: Provide protective, liquid floor-polish products recommended by floor tile manufacturer.

PART 3 - EXECUTION

3.1 PREPARATION

A. Prepare substrates according to floor tile manufacturer's written instructions to ensure adhesion of resilient products.

B. Concrete Substrates: Prepare according to ASTM F710.

1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by floor tile manufacturer. Do not use solvents.
3. Alkalinity and Adhesion Testing: Perform tests recommended by floor tile manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing, but not less than 5 or more than 9 pH.
4. Moisture Testing: Perform tests so that each test area does not exceed 200 sq. ft., and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 a. Anhydrous Calcium Chloride Test: ASTM F1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 b. Relative Humidity Test: Using in-situ probes, ASTM F2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.

C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.

D. Do not install floor tiles until materials are the same temperature as space where they are to be installed.

1. At least 48 hours in advance of installation, move resilient floor tile and installation materials into spaces where they will be installed.

E. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient floor tile.
3.2 FLOOR TILE INSTALLATION

A. Comply with manufacturer's written instructions for installing floor tile.

B. Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.
 1. Lay tiles square with room axis- match existing.

C. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.
 1. Lay tiles with grain running in one direction.

D. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.

E. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.

F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor tiles as marked on substrates. Use chalk or other nonpermanent marking device.

G. Install floor tiles on covers for telephone and electrical ducts, building expansion-joint covers, and similar items in installation areas. Maintain overall continuity of color and pattern between pieces of tile installed on covers and adjoining tiles. Tightly adhere tile edges to substrates that abut covers and to cover perimeters.

H. Adhere floor tiles to substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.

I. Install transition strips at all terminations or transitions to different materials.

END OF SECTION 096519
SECTION 096813
TILE CARPETING

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes modular carpet tile.

1.2 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings: For carpet tile installation, plans showing the following:
 1. Columns, doorways, enclosing walls or partitions, built-in cabinets, and locations where cutouts are required in carpet tiles.
 2. Carpet tile type, color, and dye lot.
 3. Type of subfloor.
 4. Type of installation.
 5. Pattern of installation.
 6. Pattern type, location, and direction.
 7. Pile direction.
 8. Type, color, and location of insets and borders.
 9. Type, color, and location of edge, transition, and other accessory strips.
 10. Transition details to other flooring materials.
 C. Samples: For each exposed product and for each color and texture required.

1.4 INFORMATIONAL SUBMITTALS
 A. Product test reports.
 B. Sample warranty.

1.5 CLOSEOUT SUBMITTALS
 A. Maintenance data.

1.6 QUALITY ASSURANCE
 A. Installer Qualifications: Certified by the International Certified Floorcovering Installers Association at the Commercial II certification level.
1.7 WARRANTY

A. Special Warranty for Carpet Tiles: Manufacturer agrees to repair or replace components of carpet tile installation that fail in materials or workmanship within specified warranty period.

1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 CARPET TILE

A. Products: Subject to compliance with requirements, provide the following:

1. Proposers to include an allowance of $37.00 per square yard for this product for initial pricing purposes. Final product determination to be made at a later date. Allowance price to be adjusted upon final product selection, and any credit or increase to this amount will be formalized via Allowance Expenditure.

B. Collection: To be determined

C. Color: To be determined, final pattern to include a field color with several accent colors

D. Pattern: To be determined, final pattern to be a randomized pattern (provided by Architect) with approximately 20% accent colors

E. Style Number: To be determined

F. Color Number: To be determined

G. Size: 24"x24".

H. Tufted Weight: To be determined

I. Construction: To be determined

J. Fiber: To be determined

K. Protective treatment: SSP Shaw soil protection.

2.2 INSTALLATION ACCESSORIES

A. Refer to Section 096513 for transition strips

B. Trowelable Leveling and Patching Compounds: Latex-modified, hydraulic-cement-based formulation provided or recommended by carpet tile manufacturer.

C. Adhesives: Water-resistant, mildew-resistant, nonstaining, pressure-sensitive type to suit products and subfloor conditions indicated, that comply with flammability requirements for installed carpet tile, and are recommended by carpet tile manufacturer for releasable installation.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Concrete Slabs:

1. Moisture Testing: Perform tests so that each test area does not exceed 200 sq. ft., and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.

 a. Anhydrous Calcium Chloride Test: ASTM F1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.

 b. Relative Humidity Test: Using in situ probes, ASTM F2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.

 c. Perform additional moisture tests recommended in writing by adhesive and carpet tile manufacturers. Proceed with installation only after substrates pass testing.

B. Painted Subfloors: Perform bond test recommended in writing by adhesive manufacturer.

1. Access Flooring Systems: Verify access floor substrate is compatible with carpet tile and adhesive, if any, and underlayment surface is gaps greater than 1/8 inch and protrusions more than 1/32 inch.

3.2 PREPARATION

A. General: Comply with CRI's "CRI Carpet Installation Standards" and with carpet tile manufacturer's written installation instructions for preparing substrates indicated to receive carpet tile.

B. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, depressions, and protrusions in substrates. Fill or level cracks, holes and depressions 1/8 inch wide or wider, and protrusions more than 1/32 inch unless more stringent requirements are required by manufacturer's written instructions.

C. Concrete Substrates: Remove coatings, including curing compounds, and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, without using solvents. Use mechanical methods recommended in writing by adhesive and carpet tile manufacturers.

D. Metal Substrates: Clean grease, oil, soil and rust, and prime if recommended in writing by adhesive manufacturer. Rough sand painted metal surfaces and remove loose paint. Sand aluminum surfaces, to remove metal oxides, immediately before applying adhesive.

E. Broom and vacuum clean substrates to be covered immediately before installing carpet tile.

3.3 INSTALLATION

A. General: Comply with CRI's "CRI Carpet Installation Standard," Section 18, "Modular Carpet" and with carpet tile manufacturer's written installation instructions.

B. Installation Method: As recommended in writing by carpet tile manufacturer.

C. Maintain dye-lot integrity. Do not mix dye lots in same area.

D. Maintain pile-direction patterns recommended in writing by carpet tile manufacturer.
E. Cut and fit carpet tile to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet tile manufacturer.

F. Extend carpet tile into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.

G. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on carpet tile as marked on subfloor. Use nonpermanent, nonstaining marking device.

H. Install pattern parallel to walls and borders.

I. Install transition strips at all terminations and transitions to different material

J. Protect carpet tile against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by carpet tile manufacturer.

END OF SECTION 096813
SECTION 099000
PAINTING

PART 1 - GENERAL

1.1 WORK INCLUDED
 A. Surface preparation.
 B. Surfaces finish schedule.

1.2 RELATED WORK
 A. Refer to Room Finish Schedule and interior wall elevations and exterior elevations and building sections.

1.3 QUALITY ASSURANCE
 A. Product Manufacturer: Company specializing in manufacturing quality paint and finish products with three (3) years experience.
 B. Applicator: Company specializing in commercial painting and finishing with five (5) years documented experience.

1.4 SUBMITTALS
 A. Submit product data under provisions of Section 013300.
 B. Submit samples under provisions of Section 013300.
 C. Submit manufacture application instructions under provisions of Section 013300.

1.5 FIELD SAMPLES
 A. Provide samples under provisions of Sections 013300.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Deliver products to site in sealed and labeled containers; inspect to verify acceptance.
 B. Container labeling to include manufacturer’s name, type of paint, brand name, brand code, coverage, surface preparation, drying time, cleanup, color designation, and instructions for mixing and reducing.
 C. Store paint materials at minimum, ambient temperature of 45 degrees F and a maximum of 90 degrees F, in well ventilated area, unless required otherwise by manufacturer’s instructions.
 D. Take precautionary measures to prevent fire hazards and spontaneous combustion.

1.7 ENVIRONMENTAL REQUIREMENTS
 A. Provide continuous ventilation and heating facilities to maintain surface and ambient temperatures above 45 degrees F for 24 hours before, during, and 48 hours after application of finishes, unless required otherwise by manufacturer’s instructions.
 B. Do not apply exterior coatings during rain or snow, or when relative is about 50 percent, unless otherwise by manufacturer’s instructions.
 C. Minimum Application Temperatures for Latex Paints: 45 degrees F for interior; 50 degrees F for exteriors; unless required otherwise by manufacturer’s instructions.
 D. Minimum Application Temperatures for Varnish and Finishes: 65 degrees F for interiors or exteriors; unless required otherwise by manufacturer’s instructions.

1.8 EXTRA STOCK
 A. Provide one gallon container of each color and coating to Owner.
 B. Label each container with color, texture, and room locations in addition to the manufacturer’s label.

PART 2 - PRODUCTS

2.1 ACCENT COLORS
 A. Contractor to price 15% of wall surface as Dark Accent Colors, to be determined at a later date by Owner/Architect.

2.2 ACCEPTABLE MANUFACTURERS-PAINT
 A. Sherwin Williams Product: Architectural Grade.
 B. Substitutions Under provisions of Section 012500.
2.3 ACCEPTABLE MANUFACTURERS-VARNISH AND URETHANE
A. Sherwin Williams Product: Architectural Grade.
B. Substitutions Under provisions of Section 012500.

2.4 ACCEPTABLE MANUFACTURERS-STAIN
A. Sherwin Williams Product: Architectural Grade.
B. Substitutions Under provisions of Section 012500.

2.5 ACCEPTABLE MANUFACTURERS-PRIMER-SEALERS
A. Sherwin Williams Product: Architectural Grade.
B. Substitutions Under provisions of Section 012500.

2.6 MATERIALS
A. Coatings: Ready mixed, except field catalyzed coatings. Process pigment to a soft paste consistency, capable of being readily and uniformly dispersed to a homogeneous coating.
B. Coatings: Good flow and brushing properties; capable of drying or curing free of streaks or sags.
C. Accessory Materials: Paint thinners and other materials not specifically indicated but required to achieve the finishes specified, of commercial quality.

PART 3 - EXECUTION

3.1 INSPECTION
A. Verify that surfaces and substrate conditions are ready to receive work as instructed by the product manufacturer.
B. Examine surfaces schedule to be finished prior to commencement of work. Report any condition that may potentially affect proper application.
C. Beginning of installation means acceptance of existing surfaces.

3.2 PREPARATION
A. Correct minor defects and clean surfaces which affect work of this Section.
C. Shop Primed Steel Surfaces: Sand and scrape to remove loose primer and rust. Feather edges to make tough-up patches inconspicuous. Clean surfaces with solvent. Prime bare steel surfaces.
D. Interior Wood Items to Receive Finish: Wipe off dust and grit prior to priming. Seal knots, pitch streaks, and sappy sections with sealer. Fill nail holes and cracks after primer has dried; sand between coats.
E. Metal Doors Schedule for Painting: Seal top and bottom edges with primer.

3.3 PROTECTION
A. Protect elements surrounding the work of this Section from damage or disfiguration.
B. Repair damage to other surfaces caused by work of this Section.
C. Furnish drop cloths, shields, and protective methods to prevent spray or droppings from disfiguring other surfaces.
D. Remove empty paint containers from site.

3.4 APPLICATION
A. Apply products in accordance with manufacturer’s instructions.
B. Do not apply finishes to surfaces that are not dry.
C. Apply each coat to uniform finish.
D. Apply each coat of paint slightly darker than preceding coat unless otherwise approved.
E. Sand lightly between coats to achieve required finish.
F. Allow applied coat to dry before next coat is applied.
G. Where clear finishes are required, tint fillers to match wood. Work fillers into the grain before set. Wipe excess from surfaces.
H. Prime back surfaces of interior and exterior woodwork with primer paint.
I. Prime back surfaces of interior woodwork scheduled to receive stain or varnish. Finish with gloss varnish reduced 25 percent with mineral spirits.

3.5 FINISHING MECHANICAL AND ELECTRICAL EQUIPMENT
A. Prime and paint exterior exposed pipes, conduit, boxes, brackets, collar and supports.
B. Paint interior surfaces of air ducts, and convectors and baseboard heating cabinets that are visible through grilles and louvers with one coat of flat black paint, limit of sight line. Paint dampers exposed behind louvers, grilles, and convectors and baseboard cabinets match face panels.
C. Paint exposed conduit and electrical equipment occurring in finished areas.
D. Paint both sides and edges of plywood backboards for electrical and telephone equipment before installing equipment.

3.6 CLEANING
A. As work proceeds, promptly remove paint where spilled, splashed, or splattered.
B. During progress of work, maintain premises free of unnecessary accumulation of tools, equipment, surplus materials, and debris.
C. Collect cotton waste, cloths, and material which may constitute a fire hazard, place in closed metal containers and remove daily from site.

3.7 SCHEDULE-EXTERIOR SURFACES
Note: Number of coats required for each product may vary from that which is indicated in order to achieve manufacturer recommended minimum dry film thickness. This list is not all-inclusive for the large number of substrates to be encountered. Contractor to fully comply with manufacturer’s recommendations for preparation and application for each different substrate required.
A. Steel- Shop Primed
 1. Touch-up with red oxide primer.
 2. Two coats alkyd enamel, gloss.
 a. Sherwin Williams- Silicone Alkyd Enamel B56.
 3. Minimum total dry film thickness 7.0 mil
B. Steel- Galvanized
 1. One coat galvanized metal primer.
 2. Two coats alkyd enamel, gloss.
 a. Sherwin Williams- Silicone Alkyd Enamel B56.

END OF SECTION 099000
SECTION 099300
STAINING AND TRANSPARENT FINISHING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes surface preparation and application of wood stains and transparent finishes.

1. Interior Substrates:
 a. Dressed lumber (finish carpentry or woodwork).
 b. Wood-based panel products.

1.2 DEFINITIONS

A. MPI Gloss Level 1: Not more than 5 units at 60 degrees and 10 units at 85 degrees, according to ASTM D523.
B. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D523.
C. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D523.
D. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D523.
E. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D523.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

1. Include printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.

B. Samples: For each type of finish system and in each color and gloss of finish required.

1.4 QUALITY ASSURANCE

A. Mockups: Apply mockups of each finish system indicated and each color selected to verify preliminary selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.

1. Architect will select one surface to represent surfaces and conditions for application of each type of finish system and substrate.
 a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft..
 b. Other Items: Architect will designate items or areas required.

2. Final approval of stain color selections will be based on mockups.
a. If preliminary stain color selections are not approved, apply additional mockups of additional stain colors selected by Architect at no added cost to Owner.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers:
 1. Sherwin Williams
 2. Olympic Stains
 3. Benjamin Moore

B. Products: Subject to compliance with requirements, provide one of the products listed in wood finish systems schedules for the product category indicated.

C. Stain Colors: Door stain shall be a custom manual match to match plastic laminate furniture finishes for the doors throughout the office.

2.2 MATERIALS, GENERAL

A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products List."

B. Material Compatibility:
 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a paint system, products shall be recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.

C. Stain Colors: To match existing.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Interior Wood Substrates: 15 percent, when measured with an electronic moisture meter.

C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

D. Proceed with finish application only after unsatisfactory conditions have been corrected.
 1. Beginning finish application constitutes Contractor's acceptance of substrates and conditions.
3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and finishing.

1. After completing finishing operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

C. Clean and prepare surfaces to be finished according to manufacturer's written instructions for each substrate condition and as specified.

1. Remove dust, dirt, oil, and grease by washing with a detergent solution; rinse thoroughly with clean water and allow to dry. Remove grade stamps and pencil marks by sanding lightly. Remove loose wood fibers by brushing.
2. Remove mildew by scrubbing with a commercial wash formulated for mildew removal and as recommended by stain manufacturer.

3.3 APPLICATION

A. Apply finishes according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."

B. Apply finishes to produce surface films without cloudiness, holidays, lap marks, brush marks, runs, ropiness, or other surface imperfections.

3.4 INTERIOR WOOD -FINISH-SYSTEM SCHEDULE

A. Wood Substrates: doors.

1. Water-Based Semitransparent Stain System MPI EXT 6.3N:
 c. Topcoat: Stain, exterior, water based, semitransparent, MPI #156.
2. Semitransparent Stain System MPI EXT 6.3D:
 b. Topcoat: Stain, exterior, solvent based, semitransparent, MPI #13.
3. Clear, Two-Component Polyurethane Varnish System MPI EXT 6.3G:
 a. Prime Coat: Varnish, aliphatic polyurethane, two component, matching topcoat.
 b. Topcoat: Varnish, aliphatic polyurethane, two component (MPI Gloss Level 6 or 7), MPI #78.

B. Wood Substrates: Wood-based panel products.

1. Water-Based Semitransparent Stain System MPI EXT 6.4L:
 c. Topcoat: Stain, exterior, water based, semitransparent, MPI #156.
2. Semitransparent Stain System MPI EXT 6.4D:
 b. Topcoat: Stain, exterior, solvent based, semitransparent, MPI #13.

C. Wood Substrates: Wood paneling and casework.
 1. Semitransparent Stain System MPI INT 6.4C:
 b. Topcoat: Stain, exterior, solvent based, semitransparent, MPI #13.

2. Water-Based Varnish over Stain System MPI INT 6.4U:
 a. Stain Coat: Stain, semitransparent, for interior wood, MPI #90.
 d. Topcoat: Varnish, water based, clear, satin (MPI Gloss Level 4), MPI #128.
 e. Topcoat: Varnish, water based, clear, semi-gloss (MPI Gloss Level 5), MPI #129.
 f. Topcoat: Varnish, water based, clear, gloss (MPI Gloss Level 6), MPI #130.

3. Polyurethane Varnish over Stain System MPI INT 6.4E:
 a. Stain Coat: Stain, semitransparent, for interior wood, MPI #90.
 d. Topcoat: Varnish, interior, polyurethane, oil modified, satin (MPI Gloss Level 4), MPI #57.
 e. Topcoat: Varnish, interior, polyurethane, oil modified, gloss (MPI Gloss Level 6), MPI #56.

4. Polyurethane Varnish System MPI INT 6.4J:
 c. Topcoat: Varnish, interior, polyurethane, oil modified, satin (MPI Gloss Level 4), MPI #57.
 d. Topcoat: Varnish, interior, polyurethane, oil modified, gloss (MPI Gloss Level 6), MPI #56.

3.5 CLEANING AND PROTECTION

A. Protect work of other trades against damage from finish application. Correct damage by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

B. At completion of construction activities of other trades, touch up and restore damaged or defaced finished wood surfaces.

END OF SECTION 099300
PART 1 - GENERAL

1.1 WORK INCLUDED
 A. Surface preparation.
 B. Interior Water Based coating formulated to function as a dry erase paint

1.2 RELATED WORK
 A. Refer to Room Finish Schedule and interior wall elevations.

1.3 QUALITY ASSURANCE
 A. Product Manufacturer: Company specializing in manufacturing quality paint and finish products with five (5) years experience.
 B. Applicator: Company specializing in commercial painting and finishing with five (5) years documented experience.

1.4 SUBMITTALS
 A. Submit product data under provisions of Section 013300.
 B. Submit samples under provisions of Section 013300.
 C. Submit manufacturer application instructions under provisions of Section 013300.

1.5 FIELD SAMPLES
 A. Provide samples under provisions of Sections 013300.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Deliver products to site in sealed and labeled containers; inspect to verify acceptance.
 B. Container labeling to include manufacturer's name, type of paint, brand name, brand code, coverage, surface preparation, drying time, cleanup, color designation, and instructions for mixing and reducing.
 C. Store paint materials at minimum, ambient temperature of 45 degrees F and a maximum of 90 degrees F, in well ventilated area, unless required otherwise by manufacturer's instructions.
 D. Take precautionary measures to prevent fire hazards and spontaneous combustion.

1.7 ENVIRONMENTAL REQUIREMENTS
 A. Provide continuous ventilation and heating facilities to maintain surface and ambient temperatures above 45 degrees F for 24 hours before, during, and 48 hours after application of finishes, unless required otherwise by manufacturer's instructions.
 B. Do not apply clear dry erase coating until space is enclosed and weatherproof, wet work in space is completed and nominally dry, work above ceilings is complete, and ambient temperature and humidity conditions are and will be continuously maintained at values near those indicated for final occupancy.

1.8 EXTRA STOCK
 A. Provide one gallon container of coating to Owner.
 B. Label each container with the manufacturer's label.

PART 2 - PRODUCTS

2.1 CLEAR DRY ERASE COATING
 A. Provide VOC-compliant, water-based polyurethane-fortified clear dry erase coating, capable of being applied over unlimited colors.

2.2 ACCEPTABLE MANUFACTURERS
 A. 'ClearErase' as manufactured by Master Coating Technologies, Inc..
 B. Substitutions Under provisions of Section 012500.

2.3 MATERIALS
 A. Accessory Materials: Provide the following for each room to receive wall coating:
 1. Markers: 'Low Odor Dry Erase Markers' by Expo- in 5 different colors
 2. Cleaner/Wipes: 'Dry Erase Board Cleaner' or 'Wipes' by Expo.
PART 3 - EXECUTION

3.1 INSPECTION
A. Verify that surfaces and substrate conditions are ready to receive work as instructed by the product manufacturer.
B. Examine surfaces schedule to be finished prior to commencement of work. Report any condition that may potentially affect proper application.
C. Beginning of installation means acceptance of existing surfaces.

3.2 PREPARATION
A. Correct minor defects and clean surfaces which affect work of this Section.
B. Gypsum Board Surfaces: Prepare surfaces to Level 5 smoothness in accordance with GA 214. Base coats may be brushed, rolled, or sprayed. Repair minor defects. Spot prime defects after repair.

3.3 MIXING
A. Mix Coating Part 1 and Part 2 per all manufacturer recommendations and instructions.

3.4 PROTECTION
A. Protect elements surrounding the work of this Section from damage or disfiguration.
B. Repair damage to other surfaces caused by work of this Section.
C. Furnish drop cloths, shields, and protective methods to prevent spray or droppings from disfiguring other surfaces.
D. Remove empty paint containers from site.

3.5 APPLICATION
A. Apply products in accordance with manufacturer’s instructions.
B. Do not apply finishes to surfaces that are not dry.
C. Apply each coat to uniform finish with roller per all manufacturer recommendations and instructions.
D. Apply each coat as needed within minutes after the first coat (wet on wet recoat technique).

3.6 CLEANING
A. As work proceeds, promptly remove paint where spilled, splashed, or splattered.
B. During progress of work, maintain premises free of unnecessary accumulation of tools, equipment, surplus materials, and debris.
C. Collect cotton waste, cloths, and material which may constitute a fire hazard, place in closed metal containers and remove daily from site.

END OF SECTION 099666
SECTION 101400
SIGNAGE

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes the following:
 1. Panel signs.
 2. All other wayfinding and identity signage to be per Allowance

1.2 DEFINITIONS
A. ADA-ABA Accessibility Guidelines: Texas Accessibility Guidelines for Buildings and Facilities; Architectural Barriers Act (ABA) Accessibility Guidelines."

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: Show fabrication and installation details for signs.
 1. Show sign mounting heights, locations of supplementary supports to be provided by others, and accessories.
 2. Provide message list, typestyles, graphic elements, including tactile characters and Braille, and layout for each sign.
C. Samples: For each sign type and for each color and texture required.

1.4 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.1 PANEL SIGNS
A. Basis-of-Design Product: To match existing Subject to compliance with requirements, provide or a comparable product by one of the following:
 1. Gemini Incorporated.
B. Interior Panel Signs: Provide one sign beside each interior door, refer to plans for sizes and quantities. Provide smooth sign panel surfaces constructed to remain flat under installed conditions within a tolerance of plus or minus 1/16 inch (1.5 mm) measured diagonally from corner to corner, complying with the following requirements:
 1. High-Pressure Decorative Laminate: 0.048 inch (1.21 mm) thick.
 2. Green glass to match existing green glass signage on levels 3 and 4.
3. Laminated Sheet: High-pressure engraved stock with contrasting color face laminated to acrylic core as selected by Architect from manufacturer's full range.

4. Laminated, Etched Photopolymer: Raised graphics with Braille 1/32 inch (0.8 mm) above surface with contrasting colors as selected by Architect from manufacturer's full range and laminated to acrylic back.

5. All signage on doors that communicate with Lobby 202 and 101E to be thick green glass (to match existing on third and fourth floors) with raised font and braille.

6. All private offices to have sign with 'office' in raised font and braille with paper insert.

7. All restrooms to have sign with raised pictogram, font, and braille.

8. All conference rooms and service spaces to have sign with raised font and braille.

9. All egress and stair signage to have sign with raised font, pictogram, and braille.

10. Edge Condition: Square cut.

 a. Wall mounted with two-face tape.
 b. For glass substrates provide backing plate to cover sign back- match finish and size.
 c. Manufacturer's standard anchors for substrates encountered.

13. Color: As selected by Architect from manufacturer's full range.

14. Tactile Characters: Characters and Grade 2 Braille raised 1/32 inch (0.8 mm) above surface with contrasting colors.

15. Furnish insert material and software for creating text and symbols for PC-Windows computers for Owner production of paper inserts.

C. Tactile and Braille Sign: Manufacturer's standard process for producing text and symbols complying with ADA-ABA Accessibility Guidelines and with ICC/ANSI A117.1. Text shall be accompanied by Grade 2 Braille. Produce precisely formed characters with square-cut edges free from burrs and cut marks; Braille dots with domed or rounded shape.

 1. Raised-Copy Thickness: Not less than 1/32 inch (0.8 mm).

2.2 ACCESSORIES

A. Anchors and Inserts: Provide nonferrous-metal or hot-dip galvanized anchors and inserts for exterior installations and elsewhere as required for corrosion resistance. Use toothed steel or lead expansion-bolt devices for drilled-in-place anchors. Furnish inserts, as required, to be set into concrete or masonry work.

2.3 FABRICATION

A. General: Provide manufacturer's standard signs of configurations indicated.

 1. Welded Connections: Comply with AWS standards for recommended practices in shop welding. Provide welds behind finished surfaces without distortion or discoloration of exposed side. Clean exposed welded surfaces of welding flux and dress exposed and contact surfaces.
 2. Mill joints to tight, hairline fit. Form joints exposed to weather to exclude water penetration.
 3. Conceal fasteners if possible; otherwise, locate fasteners where they will be inconspicuous.

2.4 ALUMINUM FINISHES

A. Standard Finishes: architect to select from full range of painted finishes available
2.5 INSTALLATION

A. Locate signs and accessories where indicated, using mounting methods of types described and complying with manufacturer's written instructions.

1. Install signs level, plumb, and at heights indicated, with sign surfaces free of distortion and other defects in appearance.
2. Interior Wall Signs: Install signs on walls adjacent to latch side of door where applicable. Where not indicated or possible, such as double doors, install signs on nearest adjacent walls. Locate to allow approach within 3 inches of sign without encountering protruding objects or standing within swing of door.

B. Wall-Mounted Signs: Comply with sign manufacturer's written instructions except where more stringent requirements apply.

1. Two-Face Tape AND Construction Adhesive: Mount signs to smooth, nonporous surfaces. Do not use this method for vinyl-covered or rough surfaces.
SECTION 102800
TOILET AND BATH ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Public-use washroom accessories.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Product Schedule: Indicating types, quantities, sizes, and installation locations by room of each accessory required.
 1. Identify products using designations indicated.

1.3 INFORMATIONAL SUBMITTALS

A. Warranty: Sample of special warranty.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.5 WARRANTY

A. Special Mirror Warranty: Manufacturer's standard form in which manufacturer agrees to replace mirrors that develop visible silver spoilage defects and that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PUBLIC-USE WASHROOM ACCESSORIES

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated or comparable product by one of the following:
 1. Kimberly-Clark
 3. American Specialties, Inc.
 5. GAMCO Specialty Accessories; a division of Bobrick Washroom Equipment, Inc.
 6. Tubular Specialties Manufacturing, Inc.
B. Toilet Tissue (Roll) Dispenser:
 2. Description: Double-roll dispenser.
 5. Capacity: Designed for 6 inch diameter tissue rolls.
 6. Material and Finish: Heavy-duty cast-aluminum bracket with satin finish with molded high-impact
 ABS spindles.

C. Sanitary-Napkin Disposal Unit: (provide in all restrooms)
 3. Door or Cover: Self-closing, disposal-opening cover and hinged face panel with tumbler lockset.
 5. Material and Finish: Stainless steel, No. 4 finish (satin).

D. Liquid Soap Dispenser:
 1. Reference accessory schedule.

E. Grab Bar-36:
 3. Material: Stainless steel, 0.05 inch thick.
 a. Finish: Smooth, No. 4 finish (satin).
 5. Configuration and Length: Straight, 36 inches long.

F. Grab Bar-42:
 3. Material: Stainless steel, 0.05 inch thick.
 a. Finish: Smooth, No. 4 finish (satin).
 5. Configuration and Length: Straight, 42 inches long.

G. Mirror Unit 1:
 2. Frame: Stainless-steel channel.
 a. Corners: Manufacturer's standard.
 a. One-piece, galvanized-steel, wall-hanger device with spring-action locking mechanism to
 hold mirror unit in position with no exposed screws or bolts.
 b. Wall bracket of galvanized steel, equipped with concealed locking devices requiring a
 special tool to remove.
 4. Size: 24 inch wide, 36 inch high.
H. Coat Hook:
 1. Description: Double-prong unit.

2.2 FABRICATION

A. Keys: Provide universal keys for internal access to accessories for servicing and resupplying. Provide minimum of eight keys to Owner's representative.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.

B. Grab Bars: Install to withstand a downward load of at least 250 lbf, when tested according to ASTM F 446.

END OF SECTION 102800
SECTION 104413
FIRE EXTINGUISHER CABINETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
 B. 104416 - PORTABLE FIRE EXTINGUISHERS

1.2 SUMMARY
 A. Section Includes:
 1. Fire protection cabinets for the following:
 a. Portable fire extinguishers.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for fire protection cabinets.
 1. Fire Protection Cabinets: Include roughing-in dimensions, details showing mounting methods, relationships of box and trim to surrounding construction, door hardware, cabinet type, trim style, and panel style.
 2. Show location of knockouts for hose valves.
 B. Shop Drawings: For fire protection cabinets. Include plans, elevations, sections, details, and attachments to other work.
 C. Samples for Verification: For each type of exposed finish required, prepared on Samples of size indicated below:
 1. Size: 6 by 6 inches square.

1.4 QUALITY ASSURANCE
 A. Fire-Rated, Fire Protection Cabinets: Listed and labeled to comply with requirements in ASTM E 814 for fire-resistance rating of walls where they are installed.
 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.5 COORDINATION
 A. Coordinate size of fire protection cabinets to ensure that type and capacity of fire extinguishers indicated are accommodated.
 B. Coordinate size of fire protection cabinets to ensure that type and capacity of fire hoses, hose valves, and hose racks indicated are accommodated.
 C. Coordinate sizes and locations of fire protection cabinets with wall depths.

1.6 SEQUENCING
 A. Apply vinyl lettering on field-painted, fire protection cabinets after painting is complete.

PART 2 - PRODUCTS

2.1 MATERIALS
 A. Cold-Rolled Steel Sheet: ASTM A 1008, Commercial Steel (CS), Type B.
 B. Aluminum: Alloy and temper recommended by aluminum producer and manufacturer for type of use and finish indicated, and as follows:
 C. Stainless-Steel Sheet: ASTM A 666, Type 304.
 D. Clear Float Glass: ASTM C 1036, Type I, Class 1, Quality q3, 3 mm thick.
 E. Tempered Float Glass: ASTM C 1048, Kind FT, Condition A, Type I, Quality q3, 3 mm thick, Class 1 (clear).
 F. Tempered Break Glass: ASTM C 1048, Kind FT, Condition A, Type I, Quality q3, 1.5 mm thick.
2.2 FIRE PROTECTION CABINET

A. Cabinet Type: Suitable for fire extinguisher.

1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Kidde Residential and Commercial Division, Subsidiary of Kidde PLC.
 c. Larsen's Manufacturing Company;
 d. Potter Roemer LLC.

B. Cabinet Material: Steel sheet.

1. Shelf: Same metal and finish as cabinet.

C. Semi-recessed Cabinet: Cabinet box partially recessed in walls of sufficient depth to suit style of trim indicated; with one-piece combination trim and perimeter door frame overlapping surrounding wall surface with exposed trim face and wall return at outer edge (backbend). Provide where walls are of insufficient depth for recessed cabinets but are of sufficient depth to accommodate semi-recessed cabinet installation.

1. Rolled-Edge Trim: 2-1/2-inch backbend depth.

D. Cabinet Trim Material: Steel sheet.

E. Door Material: Steel sheet

F. Door Style: Vertical duo panel with frame.

G. Door Glazing: Clear float glass.

H. Door Hardware: Manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated.

1. Provide projecting door pull and friction latch.
2. Provide continuous hinge, of same material and finish as trim, permitting door to open 180 degrees.

I. Accessories:

1. Mounting Bracket: Manufacturer's standard steel, designed to secure fire extinguisher to fire protection cabinet, of sizes required for types and capacities of fire extinguishers indicated, with plated or baked-enamel finish.

2. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as directed by Architect.

a. Identify fire extinguisher in fire protection cabinet with the words "FIRE EXTINGUISHER."
 1) Location: Applied to cabinet door.
 3) Lettering Color: Black.
 4) Orientation: Vertical.

J. Finishes:

1. Manufacturer's standard baked-enamel paint for the following:
 a. Exterior of cabinet, door, and trim except for those surfaces indicated to receive another finish.
 b. Interior of cabinet and door.

2. Steel: Manufacturer's standard painted finish.

2.3 FABRICATION

A. Fire Protection Cabinets: Provide manufacturer's standard box (tub) with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated.

1. Weld joints and grind smooth.
2. Provide factory-drilled mounting holes.
3. Prepare doors and frames to receive locks.
4. Install door locks at factory.

B. Cabinet Doors: Fabricate doors according to manufacturer's standards, from materials indicated and coordinated with cabinet types and trim styles selected.

1. Fabricate door frames with tubular stiles and rails and hollow-metal design, minimum 1/2 inch thick.
2. Miter and weld perimeter door frames.

C. Cabinet Trim: Fabricate cabinet trim in one piece with corners mitered, welded, and ground smooth.

2.4 GENERAL FINISH REQUIREMENTS

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Protect mechanical finishes on exposed surfaces of fire protection cabinets from damage by applying a strippable, temporary protective covering before shipping.

C. Finish fire protection cabinets after assembly.
D. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.5 STEEL FINISHES
A. Surface Preparation: Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning".
B. Baked-Enamel or Powder-Coat Finish: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat. Comply with coating manufacturer's written instructions for applying and baking to achieve a minimum dry film thickness of 2 mils.
C. Color: As selected by Architect.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in for cabinets to verify actual locations of piping connections before cabinet installation.
B. Examine walls and partitions for suitable framing depth and blocking where semi-recessed and semi-recessed cabinets will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Prepare recesses for semi-recessed fire protection cabinets as required by type and size of cabinet and trim style.

3.3 INSTALLATION
A. General: Install fire protection cabinets in locations and at mounting heights indicated or, if not indicated, at heights acceptable to authorities having jurisdiction.
 1. Fire Protection Cabinets: 54 inches above finished floor to top of cabinet.
B. Fire Protection Cabinets: Fasten cabinets to structure, square and plumb.
 1. Unless otherwise indicated, provide recessed fire protection cabinets. If wall thickness is not adequate for recessed cabinets, provide semi-recessed fire protection cabinets.
 2. Provide inside latch and lock for break-glass panels.
 3. Fasten mounting brackets to inside surface of fire protection cabinets, square and plumb.
C. Identification: Apply vinyl lettering at locations indicated.

3.4 ADJUSTING AND CLEANING
A. Remove temporary protective coverings and strippable films, if any, as fire protection cabinets are installed unless otherwise indicated in manufacturer's written installation instructions.
B. Adjust fire protection cabinet doors to operate easily without binding. Verify that integral locking devices operate properly.
C. On completion of fire protection cabinet installation, clean interior and exterior surfaces as recommended by manufacturer.
D. Touch up marred finishes, or replace fire protection cabinets that cannot be restored to factory-finished appearance. Use only materials and procedures recommended or furnished by fire protection cabinet and mounting bracket manufacturers.
E. Replace fire protection cabinets that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 104413
SECTION 104416
FIRE EXTINGUISHERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
B. 104413 - FIRE EXTINGUISHER CABINETS

1.2 SUMMARY
A. Section includes portable, hand-carried fire extinguishers and mounting brackets for fire extinguishers.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated. Include rating and classification, material descriptions, dimensions of individual components and profiles, and finishes for fire extinguisher and mounting brackets.
B. Warranty: Sample of special warranty.

1.4 QUALITY ASSURANCE
A. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Portable Fire Extinguishers."
B. Fire Extinguishers: Listed and labeled for type, rating, and classification by an independent testing agency acceptable to authorities having jurisdiction.
1. Provide fire extinguishers approved, listed, and labeled by FMG.

1.5 COORDINATION
A. Coordinate type and capacity of fire extinguishers with fire protection cabinets to ensure fit and function.

1.6 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace fire extinguishers that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Failure of hydrostatic test according to NFPA 10.
 b. Faulty operation of valves or release levers.
2. Warranty Period: Six years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PORTABLE, HAND-CARRIED FIRE EXTINGUISHERS
A. Fire Extinguishers: Type, size, and capacity for each mounting bracket indicated.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Kidde Residential and Commercial Division; Subsidiary of Kidde plc.
 c. Larsen's Manufacturing Company.
 d. Potter Roemer LLC.
2. Valves: Manufacturer's standard.
3. Handles and Levers: Manufacturer's standard.
4. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B and bar coding for documenting fire extinguisher location, inspections, maintenance, and recharging.
B. Multipurpose Dry-Chemical Type in Steel Container: UL-rated 4-A:60-B:C, 10-lb nominal capacity, with monoammonium phosphate-based dry chemical in enameled-steel container.

2.2 MOUNTING BRACKETS
A. Mounting Brackets: Manufacturer's standard galvanized steel, designed to secure fire extinguisher to wall or structure, of sizes required for types and capacities of fire extinguishers indicated, with plated or red baked-enamel finish.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Larsen's Manufacturing Company.
 c. Potter Roemer LLC.

B. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as indicated by Architect.
 1. Identify bracket-mounted fire extinguishers with the words "FIRE EXTINGUISHER" in red letter decals applied to mounting surface.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine fire extinguishers for proper charging and tagging.
 1. Remove and replace damaged, defective, or undercharged fire extinguishers.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. General: Install fire extinguishers and mounting brackets in locations indicated and in compliance with requirements of authorities having jurisdiction.
 1. Mounting Brackets: 54 inches above finished floor to top of fire extinguisher.
 B. Mounting Brackets: Fasten mounting brackets to surfaces, square and plumb, at locations indicated.

END OF SECTION 104416
SECTION 123661.19
QUARTZ AGGLOMERATE COUNTERTOPS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Quartz agglomerate countertops.

1.2 ACTION SUBMITTALS
A. Product Data: For countertop materials.
B. Shop Drawings: For countertops. Show materials, finishes, edge and backsplash profiles, methods of joining, and cutouts for plumbing fixtures.
C. Samples: For each type of material exposed to view.

PART 2 - PRODUCTS

2.1 QUARTZ AGGLOMERATE COUNTERTOP MATERIALS
A. Quartz Agglomerate: Solid sheets consisting of quartz aggregates bound together with a matrix of filled plastic resin and complying with ICPA SS-1, except for composition.
 1. Manufacturer: CAMBRIA; 1-866-CAMBRIA, Rep Lauren Newbum 210-452-0364
 2. Collection: Marble
 3. Size: 122”X55 1/2” Slab
 4. Finish: Polished
 5. Thickness: 3/4” (2cm) with a 4cm edge profile
 6. Color: Britannica
B. Plywood: Exterior softwood plywood complying with DOC PS 1, Grade C-C Plugged, touch sanded.

2.2 COUNTERTOP FABRICATION
A. Fabricate countertops according to quartz agglomerate manufacturer’s written instructions and the AWI/AWMA/CWI’s "Architectural Woodwork Standards."
 1. Grade: Premium.
B. Configuration:
 1. Front: To match existing.
 2. End Splash: Match Exist.
C. Countertops: 3/4-inch- thick, quartz agglomerate[with wood-trimmed edges] [with front edge built up with same material].
D. Joints: Fabricate countertops without joints.

E. Joints: Fabricate countertops in sections for joining in field.

F. Cutouts and Holes:
 1. Undercounter Plumbing Fixtures: Make cutouts for fixtures using template or pattern furnished by fixture manufacturer. Form cutouts to smooth, even curves.

2.3 INSTALLATION MATERIALS

A. Adhesive: Product recommended by quartz agglomerate manufacturer.

B. Sealant for Countertops: Comply with applicable requirements in Section 079200 "Joint Sealants."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Fasten countertops by screwing through corner blocks of base units into underside of countertop. Predrill holes for screws as recommended by manufacturer.

B. Fasten subtops to cabinets by screwing through subtops into cornerblocks of base cabinets. Shim as needed to align subtops in a level plane.

C. Secure countertops to subtops with adhesive according to quartz agglomerate manufacturer's written instructions.

D. Bond joints with adhesive and draw tight as countertops are set. Mask areas of countertops adjacent to joints to prevent adhesive smears.

E. Install aprons to backing and countertops with adhesive.

F. Complete cutouts not finished in shop. Mask areas of countertops adjacent to cutouts to prevent damage while cutting. Make cutouts to accurately fit items to be installed, and at right angles to finished surfaces unless beveling is required for clearance. Ease edges slightly to prevent snapping.

G. Apply sealant to gaps at walls; comply with Section 079200 "Joint Sealants."

END OF SECTION 123661.19
SECTION 210517
SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES
A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 STACK-SLEEVE FITTINGS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Zurn Industries, LLC.
B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.
2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. Metraflex Company (The).
4. Pipeline Seal and Insulator, Inc.
5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. HOLDRITE.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.
D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade: Cast-iron wall sleeves.

2. Exterior Concrete Walls below Grade: Cast-iron wall sleeves with sleeve-seal system.
 a. Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade: Cast-iron wall sleeves with sleeve-seal system.
 a. Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade: Galvanized-steel-pipe sleeves

5. Interior Partitions: Galvanized-steel-pipe sleeves

END OF SECTION 210517
SECTION 210518
ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
 A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
 B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
 C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
 D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.

2.2 FLOOR PLATES
 A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
 B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION
 A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Insulated Piping: One-piece, stamped-steel type.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 d. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
 f. Bare Piping in Equipment Rooms: One-piece, cast-brass type with rough-brass finish.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. New Piping: One-piece, floor-plate type.
 2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 210518
SECTION 211313
WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Work includes but is not limited to the following:
1. Reconfigure sprinkler systems and sprinkler head types and locations for the renovated spaces. Reuse existing sprinkler piping and stand pipes to extent possible. Coordinate types of sprinkler heads and finishes with existing and with Architectural ceiling elements.
2. Prior to submitting bid, Contractor shall
 a. Coordinate limits of construction, and ceiling types with Architectural plans.
 b. Coordinate the exact scope of work and any unusual site conditions with AHJ, prior to submitting bid.
 c. Perform a site walkthrough to investigate location and condition of existing fire suppression piping.
 d. Coordinate locations of ductwork, cable trays, condenser water piping, and other utilities. Relocate piping as necessary.
 e. Paint exposed piping and accessories. Coordinate with Architect.

1.3 DEFINITIONS

A. Standard Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure higher than standard 175 psig.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For wet-pipe sprinkler systems.
 1. Include plans, elevations, sections, and attachment details.
 2. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For wet-pipe sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping.
 2. HVAC hydronic piping.
 3. Ductwork.
 4. Plumbing systems.
5. Items penetrating finished ceiling include the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.

B. Qualification Data: For qualified Installer and professional engineer.

C. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

D. Welding certificates.

E. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

F. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wet-pipe sprinkler systems and specialties to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

1.8 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional certified at NICET Level 3 or higher.

B. Welding Qualifications: Qualify procedures and operators according to 2010 ASME Boiler and Pressure Vessel Code.

1.9 FIELD CONDITIONS

A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:
 1. Notify Architect no fewer than 7 days in advance of proposed interruption of sprinkler service.
 2. Do not proceed with interruption of sprinkler service without Architect's written permission.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 2. NFPA 13R.

B. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

C. Delegated Design: Engage a qualified professional, as defined in Section 014000 "Quality Requirements," to design wet-pipe sprinkler systems.
 1. Coordinate fire-hydrant flow test records with Architect and Civil Engineer.
 2. Sprinkler system design shall be approved by authorities having jurisdiction.
 a. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 b. Sprinkler Occupancy Hazard Classifications:
 1) Building Service Areas: Ordinary Hazard, Group 1.
 2) Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 3) General Storage Areas: Ordinary Hazard, Group 1.
 4) Libraries except Stack Areas: Light Hazard.
 5) Library Stack Areas: Ordinary Hazard, Group 2.
 6) Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 7) Office and Public Areas: Light Hazard.
 8) Classrooms: Light Hazard.

3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
 d. Special Occupancy Hazard: As determined by authorities having jurisdiction.

4. Maximum Protection Area per Sprinkler: According to UL listing.

5. Maximum Protection Area per Sprinkler:
 a. Office Spaces: 120 sq. ft.
 b. Storage Areas: 130 sq. ft.
 c. Mechanical Equipment Rooms: 130 sq. ft.
 d. Electrical Equipment Rooms: 130 sq. ft.
 e. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.

6. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 a. Light-Hazard Occupancies: 100 gpm for 30 minutes.
 b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes.

2.2 STEEL PIPE AND FITTINGS

A. Standard-Weight, Galvanized- and Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

B. Schedule 30, Galvanized- and Black-Steel Pipe: ASTM A 135/A 135M; ASTM A 795/A 795M, Type E; or ASME B36.10M wrought steel, with wall thickness not less than Schedule 30 and not more than Schedule 40. Pipe ends may be factory or field formed to match joining method.

E. Malleable- or Ductile-Iron Unions: UL 860.

F. Cast-Iron Flanges: ASME 16.1, Class 125.

G. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

I. Grooved-Joint, Steel-Pipe Appurtenances:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. Corcoran Piping System Co.
 c. Shurjoint Piping Products.
 d. Tyco Fire & Building Products LP.
 e. Victaulic Company.

4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213 rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

J. Steel Pressure-Seal Fittings: UL 213, FM Global-approved, 175-psig pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers' pressure-seal tools.
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Victoraulic Company.

2.3 PIPING JOINING MATERIALS

A. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

B. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES

A. General Requirements:
1. Valves shall be UL listed or FM approved.

B. Ball Valves:
1. Manufacturers:
 a. Anvil International, Inc.
 b. Victoraulic Company.

2. Standard: UL 1091 except with ball instead of disc.
3. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
4. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
5. Valves NPS 3: Ductile-iron body with grooved ends.

C. Bronze Butterfly Valves:
 1. Manufacturers:
 a. Fivalco Inc.
 b. Global Safety Products, Inc.
 c. Milwaukee Valve Company.
 2. Standard: UL 1091.
 5. End Connections: Threaded.

D. Iron Butterfly Valves:
 1. Manufacturers:
 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Pratt, Henry Company.
 h. Shurjoint Piping Products.
 i. Tyco Fire & Building Products LP.
 j. Victaulic Company.
 2. Standard: UL 1091.
 4. Body Material: Cast or ductile iron.
 5. Style: wafer.

E. Check Valves:
 1. Manufacturers:
 a. AFAC Inc.
 b. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 c. Anvil International, Inc.
 d. Crane Co.; Crane Valve Group; Crane Valves.
 e. Crane Co.; Crane Valve Group; Jenkins Valves.
 f. Crane Co.; Crane Valve Group; Stockham Division.
 g. Fire Protection Products, Inc.
 h. Fivalco Inc.
 i. Globe Fire Sprinkler Corporation.
 j. Groeniger & Company.
 k. Kennedy Valve; a division of McWane, Inc.
 l. Matco-Norca.
 m. Metraflex, Inc.
 n. Milwaukee Valve Company.
 o. Mueller Co.; Water Products Division.
 p. NIBCO INC.
 q. Potter Roemer.
 r. Reliable Automatic Sprinkler Co., Inc.
 s. Shurjoint Piping Products.
 t. Tyco Fire & Building Products LP.
 u. United Brass Works, Inc.
v. Venus Fire Protection Ltd.
w. Victaulic Company.
x. Viking Corporation.
y. Watts Water Technologies, Inc.

4. Type: Swing check.
5. Body Material: Cast iron.
6. End Connections: Flanged or grooved.

F. Bronze OS&Y Gate Valves:
1. Manufacturers:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. United Brass Works, Inc.

5. End Connections: Threaded.

G. Iron OS&Y Gate Valves:
1. Manufacturers:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Clow Valve Company; a division of McWane, Inc.
 d. Crane Co.; Crane Valve Group; Crane Valves.
 e. Crane Co.; Crane Valve Group; Jenkins Valves.
 f. Crane Co.; Crane Valve Group; Stockham Division.
 g. Hammond Valve.
 h. Milwaukee Valve Company.
 i. Mueller Co.; Water Products Division.
 j. NIBCO INC.
 k. Shurjoint Piping Products.
 l. Tyco Fire & Building Products LP.
 m. United Brass Works, Inc.
 n. Watts Water Technologies, Inc.

4. Body Material: Cast or ductile iron.
5. End Connections: Flanged or grooved.

H. Indicating-Type Butterfly Valves:
1. Manufacturers:
 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
 d. Kennedy Valve; a division of McWane, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Shurjoint Piping Products.
 h. Tyco Fire & Building Products LP.
 i. Victaulic Company.
2. Standard: UL 1091.
4. Valves NPS 2 and Smaller:
 a. Valve Type: Ball or butterfly.
 b. Body Material: Bronze.
 c. End Connections: Threaded.

5. Valves NPS 2-1/2 and Larger:
 a. Valve Type: Butterfly.
 b. Body Material: Cast or ductile iron.
 c. End Connections: Flanged, grooved, or wafer.

I. NRS Gate Valves:
1. Manufacturers:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Clow Valve Company; a division of McWane, Inc.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Kennedy Valve; a division of McWane, Inc.
 f. Mueller Co.; Water Products Division.
 g. NIBCO INC.
 h. Tyco Fire & Building Products LP.

3. Pressure Rating: 250 psig minimum
5. Stem: Nonrising.
6. End Connections: Flanged or grooved.

J. Indicator Posts:
1. Manufacturers:
 a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 b. American Valve, Inc.
 c. Clow Valve Company; a division of McWane, Inc.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Kennedy Valve; a division of McWane, Inc.
 f. Mueller Co.; Water Products Division.
 g. NIBCO INC.
 h. Tyco Fire & Building Products LP.

3. Type: Horizontal for wall mounting.
4. Body Material: Cast iron with extension rod and locking device.

2.5 TRIM AND DRAIN VALVES

A. General Requirements:
 2. Pressure Rating: 175 psig minimum.
2.6 SPECIALTY VALVES

A. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

B. Pressure Rating:

C. Body Material: Cast or ductile iron.

D. Size: Same as connected piping.

E. End Connections: Flanged or grooved.

F. Alarm Valves:
 1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 b. Reliable Automatic Sprinkler Co., Inc. (The).
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 3. Design: For horizontal or vertical installation.
 4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.
 5. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
 6. Drip Cup Assembly: Pipe drain with check valve to main drain piping.
 7. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Automatic (Ball Drip) Drain Valves:
 1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Reliable Automatic Sprinkler Co., Inc. (The).
 b. Tyco Fire & Building Products LP.
 4. Type: Automatic draining, ball check.

2.7 HOSE CONNECTIONS

A. Manufacturers:
 1. AFAC Inc.
 2. Central Sprinkler Corp.
 4. Fire-End and Croker Corp.
 5. Fire Protection Products, Inc.
11. Potter-Roemer; Fire-Protection Div.
12. United Brass Works, Inc.

B. Description: UL 668, brass or bronze, 300-psig minimum pressure rating, hose valve for connecting fire hose. Include angle or gate pattern design; female NPS inlet and male hose outlet; and lugged cap, gasket, and chain. Include NPS 1-1/2 or NPS 2-1/2 as indicated, and hose valve threads according to NFPA 1963 and matching local fire department threads.

1. Valve Operation: Nonadjustable type, unless pressure-regulating type is indicated.
2. Finish: Rough chrome-plated.

2.8 FIRE-DEPARTMENT CONNECTIONS

A. Exposed-Type, Fire-Department Connection:
1. Manufacturers:
 a. AFAC Inc.
 c. Fire-End & Croker Corporation.
 d. Fire Protection Products, Inc.
 e. GMR International Equipment Corporation.
 f. Guardian Fire Equipment, Inc.
 g. Tyco Fire & Building Products LP.
 h. Wilson & Cousins Inc.

3. Type: Exposed, projecting, for wall mounting.
6. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
7. Caps: Brass, lugged type, with gasket and chain.
8. Escutcheon Plate: Round, brass, wall type.
10. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE, or AUTO SPKR."
11. Finish: Rough brass or bronze.

B. Flush-Type, Fire-Department Connection:
1. Manufacturers:
 a. AFAC Inc.
 c. GMR International Equipment Corporation.
 d. Guardian Fire Equipment, Inc.
 e. Potter Roemer.

3. Type: Flush, for wall mounting.
6. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
7. Caps: Brass, lugged type, with gasket and chain.
8. Escutcheon Plate: Rectangular, brass, wall type.
10. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE or AUTO SPKR."

C. Yard-Type, Fire-Department Connection:
1. Manufacturers:
 a. AFAC Inc.
 c. Fire-End & Croker Corporation.
 d. Fire Protection Products, Inc.
 e. GMR International Equipment Corporation.
 f. Guardian Fire Equipment, Inc.
 g. Wilson & Cousins Inc.

3. Type: Exposed, freestanding.
6. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
7. Caps: Brass, lugged type, with gasket and chain.
10. Sleeve: Brass.
11. Sleeve Height: 18 inches.
12. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE or AUTO SPKR."
13. Finish, Including Sleeve: Rough brass or bronze.

2.9 SPRINKLER PIPING SPECIALTIES

A. Branch Outlet Fittings:
 4. Type: Mechanical-tee and -cross fittings.
 5. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
 6. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
 7. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:
 3. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
 4. Size: Same as connected piping.
 5. Inlet and Outlet: Threaded or grooved.

C. Branch Line Testers:
 4. Size: Same as connected piping.
 5. Inlet: Threaded.
 6. Drain Outlet: Threaded and capped.
 7. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:
3. Body Material: Cast- or ductile-iron housing with sight glass.
4. Size: Same as connected piping.
5. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:
4. Size: Same as connected piping.
5. Length: Adjustable.
6. Inlet and Outlet: Threaded.

F. Flexible Sprinkler Hose Fittings:
2. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
4. Size: Same as connected piping, for sprinkler.

2.10 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Reliable Automatic Sprinkler Co., Inc. (The).
 3. Tyco Fire & Building Products LP.
 4. Victaulic Company.

B. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

C. Pressure Rating for Residential Sprinklers: 175-psig maximum.

D. Pressure Rating for Automatic Sprinklers: 175-psig minimum.

E. Pressure Rating for High-Pressure Automatic Sprinklers: 250-psig minimum.

F. Automatic Sprinklers with Heat-Responsive Element:
 2. Nonresidential Applications: UL 199.
 3. Residential Applications: UL 1626.
 4. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

J. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 1. Ceiling Mounting: Chrome-plated steel, two piece, with 1-inch vertical adjustment.
 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

K. Sprinkler Guards:
 2. Type: Wire cage with fastening device for attaching to sprinkler.
2.11 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Water-Motor-Operated Alarm:
 2. Type: Mechanically operated, with Pelton wheel.
 3. Alarm Gong: Cast aluminum with red-enamel factory finish.
 4. Size: 8-1/2-inches diameter.
 5. Components: Shaft length, bearings, and sleeve to suit wall construction.
 7. Outlet: NPS 1 drain connection.

C. Electrically Operated Alarm Bell:
 2. Type: Vibrating, metal alarm bell.
 3. Finish: Red-enamel factory finish, suitable for outdoor use.
 4. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application

D. Water-Flow Indicators:
 3. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 4. Type: Paddle operated.
 6. Design Installation: Horizontal or vertical.

E. Pressure Switches:
 2. Type: Electrically supervised water-flow switch with retard feature.
 4. Design Operation: Rising pressure signals water flow.

F. Valve Supervisory Switches:
 2. Type: Electrically supervised.
 4. Design: Signals that controlled valve is in other than fully open position.
 5. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application

2.12 MANUAL CONTROL STATIONS

A. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide" for hydraulic operation, with union, NPS 1/2 pipe nipple, and bronze ball valve.

B. Include metal enclosure labeled "MANUAL CONTROL STATION," with operating instructions and cover held closed by breakable strut to prevent accidental opening.

2.13 CONTROL PANELS

A. Description: Single-area, two-area, or single-area cross-zoned control panel as indicated, including NEMA ICS 6, Type 1 enclosure, detector, alarm, and solenoid-valve cuitry for operation of deluge valves.
1. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide" when used with thermal detectors and Class A detector circuit wiring.
2. Electrical characteristics are 120-V ac, 60 Hz, with 24-V dc rechargeable batteries.
3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Manual Control Stations: Electric operation, metal enclosure, labeled "MANUAL CONTROL STATION," with operating instructions and cover held closed by breakable strut to prevent accidental opening.

C. Manual Control Stations: Hydraulic operation, with union, NPS 1/2 pipe nipple, and bronze ball valve. Include metal enclosure labeled "MANUAL CONTROL STATION," with operating instructions and cover held closed by breakable strut to prevent accidental opening.

D. Panels Components:
 1. Power supply.
 2. Battery charger.
 3. Standby batteries.
 5. Electrically supervised solenoid valves and polarized fire-alarm bell.
 7. Single-pole, double-throw auxiliary alarm contacts.
 8. Rectifier.

2.14 PRESSURE GAGES

A. Standard: UL 393.

B. Dial Size: 3-1/2- to 4-1/2-inch diameter.

C. Pressure Gage Range: 0- to 250-psig minimum.

D. Label: Include "WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING

A. Retain existing.

3.3 WATER-SUPPLY CONNECTIONS

A. Retain existing.

B. PIPING INSTALLATION
C. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated on approved working plans.
 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
 2. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

D. Piping Standard: Comply with NFPA 13 requirements for installation of sprinkler piping.

E. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

F. Install unions adjacent to each valve in pipes NPS 2 and smaller.

G. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

H. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

I. Install sprinkler piping with drains for complete system drainage.

J. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

K. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

L. Install alarm devices in piping systems.

M. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13. In seismic-rated areas, refer to Section 210548 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment."

N. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they are not subject to freezing.

O. Fill sprinkler system piping with water.

P. Install electric heating cables and pipe insulation on sprinkler piping in areas subject to freezing.

Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

R. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

S. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping."

3.4 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.
B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Twist-Locked Joints: Insert plain end of steel pipe into plain-end-pipe fitting. Rotate retainer lugs one-quarter turn or tighten retainer pin.

I. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

K. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

L. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

M. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

N. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

O. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

P. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.

3.5 INSTALLATION OF COVER SYSTEM FOR SPRINKLER PIPING

A. Install cover system, brackets, and cover components for sprinkler piping according to manufacturer's "Installation Manual" and NFPA 13 or NFPA 13R for supports.
3.6 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
1. Install valves in vertical position for proper direction of flow, in main supply to system.
2. Install alarm valves with bypass check valve and retarding chamber drain-line connection.

3.7 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.

3.8 FIRE-DEPARTMENT CONNECTION INSTALLATION

A. Coordinate with AHJ and Civil Engineer to coordinate FDC type.

3.9 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.10 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
4. Energize circuits to electrical equipment and devices.
5. Coordinate with fire-alarm tests. Operate as required.
6. Coordinate with fire-pump tests. Operate as required.
7. Verify that equipment hose threads are same as local fire department equipment.

B. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.11 CLEANING

A. Clean dirt and debris from sprinklers.
B. Only sprinklers with their original factory finish are acceptable. Remove and replace any sprinklers that are painted or have any other finish than their original factory finish.

3.12 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain specialty valves and pressure-maintenance pumps.

3.13 PIPING SCHEDULE

A. Piping between Fire Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends, cast-iron threaded fittings, and threaded grooved ends, grooved-end fittings, grooved-end-pipe couplings, and grooved joints.

B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.

C. Standard-pressure, wet-pipe sprinkler system shall be the following:
 1. NPS 2" and smaller: Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. NPS 2-1/2 and larger: Standard-weight, black-steel pipe with grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

D. Paint exposed piping. Coordinate with Architect.

3.14 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
 1. Rooms without Ceilings: Upright sprinklers.
 2. Rooms with Suspended Ceilings: Recessed Pendent sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
 1. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon. Verify that new sprinkler finishes match existing.

C. Match finishes and paint colors with architectural elements. Request Architect for final approval on finishes

END OF SECTION 211313
SECTION 220010
SUMMARY OF PLUMBING WORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 22 Specification Sections, apply to this Section.

1.2 WORK COVERED BY CONTRACT DOCUMENTS

A. The following Summary of Work is intended as an aid to achieve an understanding of the various elements of work included in the project, and is not intended to be all-inclusive. Detailed descriptions of work and requirements are given in drawings and specifications.

B. Contract Documents were prepared for the Project by:
 Ethos Engineering,
 119 West Van Buren, Suite 101
 Harlingen, Texas 78550
 Phone Number: (956) 230-3435

C. Scope of Work: Refer to drawings for a detailed Scope of Work.

1. Provide all materials and labor associated with new fully-operational plumbing systems for the project “Reese Building Renovations”, including but not limited to the following:
 a. Relocation of existing plumbing utilities as required to accommodate plumbing renovations.
 b. Plumbing fixtures and appliances such as water closets, lavatories, faucets, drinking fountains, instantaneous and storage type electric domestic water heaters, floor drains, valves, fittings, hardware and specialties.
 c. Potable water distribution piping and service connections to site utilities. Insulate piping to prevent condensation.
 d. Sanitary waste water and vent piping and service line connections to site utilities.
 e. Painting: See Division 9 specifications. Paint all exposed piping, insulation, hangers, accessories in interior exposed areas. Paint exterior pipe supports. Coordinate paint type, color and scope of work with Architect.

1.3 ALLOWANCES

A. See Division 0 Specifications.

1.4 COORDINATION

A. All plumbing work shall be done under sub-contract to a General Contractor. Plumbing Contractor shall coordinate all work through General Contractor, who is ultimately responsible for the entire project.

B. Prior to bidding, Plumbing Contractor shall coordinate all work in Division-22 for integration with civil work, mechanical work, electrical work, irrigation work and general construction. A detailed list of inclusion and exclusions shall be provided to General Contractors at least three days prior to the end of the period set aside to request clarifications so that coordination of any missing items may be addressed and clarified by Architect/Engineer as needed.

1. Coordinate water line diameter, tap size, meter size and backflow preventer size with MEP Engineer. While meter size may be smaller, water line diameter, tap, backflow preventer sizes
C. All electrical work required for operation of plumbing systems shall be coordinated through the General Contractor prior to bidding to ensure that all starters, disconnects, conduit and wiring are provided as part of the project. All components needed for a full operational installation of systems shall be provided.

D. All Building Automation Systems (BAS) required for operation of plumbing systems shall be coordinated through the General Contractor prior to bidding, to ensure that all equipment, materials, valves, sensors, devices and labor are provided as part of the project. All components needed for a full operational installation of systems shall be provided.

E. Plumbing Contractor shall coordinate and supervise installation of all controls systems, and coordinate with electrical contractors and equipment suppliers as needed. All components needed for a full operational installation of systems shall be provided.

F. Contractor shall coordinate with other divisions for power and control of plumbing systems. It is not the intent of this specification to dictate who will conduct work, only to state the requirements of conducting the work.

G. Cooperate fully with other contractors so that work under those contracts may be carried out smoothly, without interfering with or delaying work under this Contract.

H. Coordinate with Div. 1 for work sequence and optimization of construction schedule.

I. Coordinate with Div. 21 for Fire Suppression System.

J. Coordinate with Div. 23 for Mechanical System.

K. Coordinate with Div. 26 electrical contractor for providing power to plumbing equipment, and for Fire Alarm Systems interface with plumbing systems.

L. Issue written notification of the following tasks and allow five (5) days for Engineer to respond and schedule an inspection as required. Failure to issue written notification may result in work having to be redone to allow for proper inspection. It is contractor's responsibility to make sure Engineer receives notification.

1. Upon completion of underground piping installation and prior to testing or covering up.
2. Upon completion of all water piping installation and prior to insulation and/or testing.
3. Upon completion of ductwork and prior to testing and insulating.
4. Above ceiling inspections prior to ceiling tile installation.
5. When ready to request manufacturer's start-up of each piece of equipment.
6. When ready for Substantial Completion Inspection.
7. When ready for Final Inspection.

M. General

1. The Contractor shall execute all work hereinafter specified or indicated on accompanying Drawings. Contractor shall provide all equipment necessary and usually furnished in connection with such work and systems whether or not mentioned specifically herein or on the Drawings.
2. The Contractor shall be responsible for fitting his material and apparatus into the building and shall carefully lay out his work at the site to conform to the structural conditions, to avoid all obstructions, to conform to the details of the installation and thereby to provide an integrated satisfactory operating installation.
3. The Mechanical, Electrical, Plumbing, and associated Drawings are necessarily diagrammatic by their nature, and are not intended to show every connection in detail or every pipe or conduit in its exact location. These details are subject to the requirements of standards referenced elsewhere in these specifications, and structural and architectural conditions. The Contractor shall carefully investigate structural and finish conditions and shall coordinate the separate trades in order to avoid interference between the various phases of work. Work shall be organized and laid out so that it will be concealed in furred chases and suspended ceilings, etc., in finished portions of the building.
building, unless specifically noted to be exposed. All exposed work shall be installed parallel or perpendicular to the lines of the building unless otherwise noted.

4. When the mechanical, electrical and plumbing drawings do not give exact details as to the elevation of pipe, conduit and ducts, the Contractor shall physically arrange the systems to fit in the space available at the elevations intended with proper grades for the functioning of the system involved. Piping, exposed conduit and the duct systems are generally intended to be installed true and square to the building construction, and located as high as possible against the structure in a neat and workmanlike manner. The Drawings do not show all required offsets, control lines, pilot lines and other location details. Work shall be concealed in all finished areas.

1.5 WORK SEQUENCE

A. Locate Utilities:

1. Coordinate with power, water, sewer, telephone, communications, and other utilities as well as designated Owner’s personnel to locate all utilities prior to digging in any area.
2. Obtain any approvals required from utilities to relocate utilities.
3. Cost of relocating or bypassing utilities indicated on drawings shall be included in Base Bid.

B. Coordinate with Division 1 requirements to optimize construction schedule.

C. Provide equipment and material submittals, coordination drawings and shop drawings as required by specifications.

D. Submit detailed plumbing Schedule of Values with Submittals. Plumbing Submittals will not be accepted without a detailed Schedule of Values.

E. Sequence construction in coordination with work by other disciplines.

1.6 CONTRACTOR USE OF PREMISES

A. Use of the Site: Limit use of the premises to work in areas indicated. Confine operations to areas within contract limits indicated. Do not disturb portions of the site beyond the areas in which the Work is indicated.

1. Driveways and Entrances: Keep driveways and entrances to construction site clear and available to other Contractors, Owner, and A/E personnel at all times. Do not use these areas for parking or storage of materials. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.

B. Site Safety: Take every precaution to ensure the site does not present a threat to the safety of occupants and/or workers. Minimal safety requirements include, but are not limited to the following:

1. Temporary fencing around construction areas.
2. Yellow caution tape and construction barricades along open trenches during the day. Trenches shall be covered at night and warning lights provided on construction barricades.
3. Temporary fencing around equipment while site work is in progress.

1.7 SUBMITTALS

A. Manufacturer’s standard dimensioned drawings, performance and product data shall be edited to delete reference to equipment, features, or information which is not applicable to the equipment being supplied for this project.

B. Provide all plumbing submittals at the same time in one or multiple bound volumes. Include originals from manufacturer or high-quality copies. Faxes and copies of faxes are not acceptable.
C. Provide sufficient copies of approved data, with the engineer’s approved stamp, for inclusion in the operations and maintenance manuals.

D. Provide detailed coordination drawings showing how plumbing system components will be installed in coordination with work by others. Engineer’s drawing files will be made available to Contractor for producing coordination and as-built drawings upon request.

1.8 SCHEDULE OF VALUES - Special Requirements

A. Plumbing Contractor shall submit a Schedule of Values reflecting the total value of Plumbing Work in the Contract, and broken down into the following items as a minimum, with a line-item for Materials/Equipment and another for Labor:

1. Plumbing fixtures and equipment
2. Plumbing materials
3. Plumbing labor
4. Allowances.
5. Miscellaneous
6. Administrative and project management.

B. Schedule of Values shall be included with bound submittals. Submittals without a Schedule of Values shall not be reviewed.

1.9 EQUIPMENT MANUFACTURERS

A. Plumbing design is based on equipment and materials scheduled and specified. These are used as the basis for performance characteristics, quality, and physical dimensions/weight.

B. Equipment and materials by other APPROVED manufacturers may be provided by Contractor. In doing so, Contractor assumes responsibility for the performance, quality, and physical dimensions of the proposed units.

C. Any costs associated with modifications to the design due to submittal of equipment and/or materials other than those used as the basis of design are the Contractor’s responsibility. This includes any design time, production of drawings, and time delays.

D. Where use of equipment and/or materials other than those used as the basis of design impact other disciplines, Contractor shall assume responsibility for all costs associated with any APPROVED modifications. This may include resizing of electrical circuits, modifying openings in the structure, relocating floor drains, etc.

1.10 OPERATIONS AND MAINTENANCE MANUALS & TRAINING

A. Submit Operations and Maintenance Manuals two weeks prior to Substantial Completion Inspection. Engineer will not conduct a Substantial Completion Inspection without having reviewed Operations and Maintenance Manuals.

B. Use Operations and Maintenance Manuals as a guide for conducting training of Owner’s personnel.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 220010
SECTION 220517
SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES
 A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
 B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
 C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
 D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 STACK-SLEEVE FITTINGS
 A. Manufacturers:
 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
 B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.
2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).
 4. Pipeline Seal and Insulator, Inc.
 5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers:
 1. Presealed Systems.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.
a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.

1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.
3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade: Cast-iron wall sleeves

2. Exterior Concrete Walls below Grade: Cast-iron wall sleeves with sleeve-seal system.
 a. Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system

3. Concrete Slabs-on-Grade: Cast-iron wall sleeves with sleeve-seal system.
 a. Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade: Galvanized-steel-pipe sleeves

5. Interior Partitions: Galvanized-steel-pipe sleeves

END OF SECTION 220517
SECTION 220518
ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.

2.2 FLOOR PLATES
A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Insulated Piping: One-piece, stamped-steel type.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 d. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with rough-brass finish.
 f. Bare Piping in Equipment Rooms: One-piece, cast-brass type with rough-brass finish.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.
2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 220518
SECTION 220519
METERS AND GAUGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Liquid-in-glass thermometers.
 2. Thermowells.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Product Certificates: For each type of meter and gauge, from manufacturer.
C. Operation and Maintenance Data: For meters and gauges to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-Glass THERMOMETERS
A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 1. Manufacturers:
 a. Trerice, H. O. Co.
 b. Weiss Instruments, Inc.
 c. Winters Instruments - U.S.
 3. Case: Cast aluminum; 9-inch nominal size unless otherwise indicated.
 4. Case Form: Adjustable angle unless otherwise indicated.
 5. Tube: Glass with magnifying lens and blue or red organic liquid.
 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
 7. Window: Glass.
 8. Stem: Aluminum and of length to suit installation.
 b. Design for Thermowell Installation: Bare stem.
 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.
2.2 THERMOWELLS

A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: brass.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. Bore: Diameter required to match thermometer bulb or stem.
 7. Insertion Length: Length required to match thermometer bulb or stem.
 8. Lagging Extension: Include on thermowells for insulated piping and tubing.
 9. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 TEST PLUGS

A. Manufacturers
 1. Flow Design, Inc.
 2. Trerice, H. O. Co.
 3. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 4. Weiss Instruments, Inc.

B. Description: Test-station fitting made for insertion into piping tee fitting.

C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

D. Thread Size: NPS ¼ or NPS 1/2, ASME B1.20.1 pipe thread.

E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

F. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

2.4 TEST-PLUG KITS

A. Manufacturers:
 1. Flow Design, Inc.
 2. Trerice, H. O. Co.
 3. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 4. Weiss Instruments, Inc.

B. Furnish one test-plug kit(s) containing one thermometer(s), one pressure gauge and adapter, and carrying case. Thermometer sensing elements, pressure gauge, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.

C. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch-diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.

D. Pressure Gauge: Small, Bourdon-tube insertion type with 2- to 3-inch-diameter dial and probe. Dial range shall be at least 0 to 200 psig.

E. Carrying Case: Metal or plastic, with formed instrument padding.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install test plugs in piping tees.

G. Install thermometers in the following locations:
 1. Inlets and outlets of each domestic water heat exchanger.

3.2 CONNECTIONS

A. Install meters and gauges adjacent to machines and equipment to allow service and maintenance of meters, gauges, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gauges to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each domestic water heater shall be the following:
 1. Industrial-style, liquid-in-glass type.
 2. Test plug with EPDM self-sealing rubber inserts.

B. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Hot-Water Piping: 0 to 200 deg F.

END OF SECTION 22 05 19
SECTION 220523
GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Bronze ball valves.
 2. Bronze gate valves.
B. Related Sections:
 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS
A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. NRS: Nonrising stem.
E. OS&Y: Outside screw and yoke.
F. RS: Rising stem.

1.4 SUBMITTALS
A. Product Data: For each type of valve indicated. Include body, seating, and trim materials; valve design; pressure and temperature classifications; end connections; arrangement; dimensions; and required clearances. Include list indicating valve and its application. Include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.

1.5 QUALITY ASSURANCE
A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
2. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 2. Handwheel: For valves other than quarter-turn types.
 3. Handlever: For quarter-turn valves NPS 6 and smaller.
 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 5 plug valves, for each size square plug-valve head.

E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 1. Gate Valves: With rising stem.
 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
 1. Solder Joint: With sockets according to ASME B16.18.
 2. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.
2.2 BRONZE BALL VALVES

A. One-Piece, Reduced-Port, Bronze Ball Valves with Bronze Trim:

1. Manufacturers:
 a. Crane Co.; Crane Valve Group; Stockham Div.
 b. Grinnell Corporation.
 c. NIBCO INC.
 e. Kitz Corporation

2. Description:
 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE or TFE.
 g. Stem: Bronze.
 h. Ball: Chrome-plated brass.
 i. Port: Reduced.

2.3 BRONZE GATE VALVES

A. Class 150, Bronze Gate Valves:

1. Manufacturers:
 a. Crane Co.; Crane Valve Group; Stockham Div.
 b. Grinnell Corporation.
 c. NIBCO INC.
 d. Hammond Valve.
 e. Kitz Corporation.
 f. Milwaukee Valve Company.
 g. Red-White Valve Corporation.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

2.4 BRONZE GLOBE VALVES

A. Class 150, Bronze Globe Valves with Nonmetallic Disc:

1. Manufacturers:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. Red-White Valve Corporation.
2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
 B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
 C. Examine threads on valve and mating pipe for form and cleanliness.
 D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
 E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION
 A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
 B. Locate valves for easy access and provide separate support where necessary.
 C. Install valves in horizontal piping with stem at or above center of pipe.
 D. Install valves in position to allow full stem movement.

3.3 ADJUSTING
 A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS
 A. If valve applications are not indicated, use the following:
 1. Shutoff Service: Ball, or gate, or plug valves.
3. Throttling Service: Globe or ball valves.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Ball Valves: One piece, regular port, bronze with bronze trim.
 3. Bronze Gate Valves: Class 150.
 4. Bronze Globe Valves: Class 150, bronze, nonmetallic disc.

B. Pipe NPS 2-1/2 and Larger:
 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 2. Iron Ball Valves: Class 150.
 4. Iron Gate Valves: Class 250.

END OF SECTION 220523
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Fastener systems.
 5. Pipe stands.
 6. Equipment supports.

B. Related Sections:
 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 2. Section 220516 "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.
 3. Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Metal framing systems.
3. Fiberglass strut systems.
4. Pipe stands.
5. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of trapeze hangers.
2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:

1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.
2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Manufacturers:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.
 c. Flex-Strut Inc.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut Corporation; Tyco International, Ltd.
 g. Wesanco, Inc.
 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 4. Channels: Continuous slotted steel channel with inturned lips.
 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 8. Plastic Coating: PVC.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers:
 1. Carpenter & Paterson, Inc.
 3. ERICO International Corporation.
 5. PHS Industries, Inc.
 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 7. Piping Technology & Products, Inc.
 8. Rilco Manufacturing Co., Inc.
 9. Value Engineered Products, Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
2.6 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece plastic base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:
 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One or more; plastic.
 3. Vertical Members: Two or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.7 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.8 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.9 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.

G. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
N. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 099113 "Exterior Painting." Section 099123 "Interior Painting." Section 099600 "High-Performance Coatings."

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use stainless-steel pipe hangers and attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

3. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.

4. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

5. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

6. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel l-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel l-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel l-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

Q. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

R. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Elastomeric isolation pads.
 2. Elastomeric isolation mounts.
 3. Restrained elastomeric isolation mounts.
 4. Elastomeric hangers.
 5. Spring hangers.
 B. Related Requirements:
 1. Section 210548.13 "Vibration Controls for Fire-Suppression Piping and Equipment" for devices for fire-suppression equipment and systems.
 2. Section 230548.13 "Vibration Controls for HVAC" for devices for HVAC equipment and systems.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device type required.
 B. Shop Drawings:
 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment.
 C. Delegated-Design Submittal: For each vibration isolation device.
 1. Include design calculations for selecting vibration isolators.

1.4 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Show coordination of vibration isolation device installation for plumbing piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.
 B. Welding certificates.
1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ace Mountings Co., Inc.
2. Amber/Booth Company, Inc.
4. Isolation Technology, Inc.
7. Vibration Eliminator Co., Inc.
8. Vibration Isolation.

B. Elastomeric Isolation Pads:

1. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
2. Size: Factory or field cut to match requirements of supported equipment.
3. Pad Material: Oil and water resistant with elastomeric properties.
4. Surface Pattern: Ribbed, Waffle, non-slip pattern.
5. Infused nonwoven cotton or synthetic fibers.
7. Sandwich-Core Material: Resilient and elastomeric.

C. Double-Deflection, Elastomeric Isolation Mounts:

1. Mounting Plates:
 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.

2. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

D. Restrained Elastomeric Isolation Mounts:

1. Description: All-directional isolator with restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 a. Housing: Cast-ductile iron or welded steel.
 b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

E. Freestanding, Laterally Stable, Open-Spring Isolators:

1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory-drilled steel plate for bolting to structure with an elastomeric isolator pad attached to the underside. Baseplates shall limit floor load to 500 psig.
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

F. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:
1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top housing with threaded mounting holes and internal leveling device, elastomeric pad.

G. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
1. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
2. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

H. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
8. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

2.2 FACTORY FINISHES

A. Finish: Manufacturer's standard prime-coat finish ready for field painting.

B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 1. Powder coating on springs and housings.
 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
 3. Baked enamel or powder coat for metal components on isolators for interior use.
 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static within specified loading limits.

3.3 VIBRATION CONTROL DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete." Section 033053 "Miscellaneous Cast-in-Place Concrete."

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

END OF SECTION 220548.13
SECTION 220553
IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Stencils.
5. Valve tags.
6. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
D. Valve numbering scheme.
E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:
 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
 2. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 3. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 4. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
 5. Fasteners: Stainless-steel rivets or self-tapping screws.
 6. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
B. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
C. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
D. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
E. Fasteners: Stainless-steel rivets or self-tapping screws.
F. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
G. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
C. **Self-Adhesive Pipe Labels:** Printed plastic with contact-type, permanent-adhesive backing.

D. **Pipe Label Contents:** Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 1. **Flow-Direction Arrows:** Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. **Lettering Size:** At least 1/2 inch.

2.4 STENCILS

A. **Stencils for Piping:**
 1. **Lettering Size:** Size letters according to ASME A13.1 for piping.
 2. **Stencil Paint:** Exterior, gloss, alkyd enamel in colors complying with recommendations in ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.
 3. **Identification Paint:** Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.

2.5 VALVE TAGS

A. **Valve Tags:** Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. **Tag Material:** Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. **Fasteners:** Brass beaded chain.

B. **Valve Schedules:** For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

A. **Description:** Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.
 1. **Size:** 3 by 5-1/4 inches minimum.
 2. **Fasteners:** Brass grommet and wire.
 3. **Nomenclature:** Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 4. **Color:** Safety yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.
3.2 GENERAL INSTALLATION REQUIREMENTS
A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION
A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION
A. Piping Color Coding: Painting of piping is specified in Section 099123 "Interior Painting." and Section 099600 "High-Performance Coatings."
B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.
 1. Identification Paint: Use for contrasting background.
C. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

3.5 VALVE-TAG INSTALLATION
A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 1. Valve-Tag Size and Shape:

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553
SECTION 220719
PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following plumbing piping services:
 1. Domestic cold-water piping.
 2. Domestic hot-water piping.
 3. Domestic recirculating hot-water piping.
 4. Domestic chilled-water piping for drinking fountains.
 5. Storm water piping.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance, thickness, and jackets (both factory- and field-applied, if any).
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail insulation application at pipe expansion joints for each type of insulation.
 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 6. Detail application of field-applied jackets.
 7. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.
B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Ins taller for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 1. Products:
 a. Armaflex
 b. K-Flex

G. Mineral-Fiber, Preformed Pipe Insulation:
 1. Products:
 a. Johns Manville; Micro-Lok.
 b. Knauf Insulation; 1000(Pipe Insulation.
 c. Owens Corning; Fiberglas Pipe Insulation.
 2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

 1. Products:
 a. Insulco, Division of MFS, Inc.; Triple I.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Products:
 a. Foster Products Corporation, H. B. Fuller Company
 b. Aeroflex
 c. Armacell
 d. K-Flex
 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products:
 a. Childers Products, Division of ITW; CP-82.
 c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 d. Marathon Industries, Inc.; 225.
 e. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

 1. Products:
 a. Childers Products, Division of ITW; CP-82.
2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
1. Products:
 a. Childers Products, Division of ITW; CP-35.
 b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 c. ITW TACC, Division of Illinois Tool Works; CB-50.
 d. Marathon Industries, Inc.; 590.
 e. Mon-Eco Industries, Inc.; 55-40.
 f. Vimasco Corporation; 749.
2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

2.5 SEALANTS

A. Joint Sealants:
1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Permanently flexible, elastomeric sealant.
3. Service Temperature Range: Minus 100 to plus 300 deg F.
5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. FSK and Metal Jacket Flashing Sealants:
1. Products:
 a. Childers Products, Division of ITW; CP-76-8.
 b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Vimasco Corporation; 750.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 1. Products: Childers Products, Division of ITW; CP-76.
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.

2.8 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd.

2.9 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. Metal Jacket:
 1. Products:
 a. Childers Products, Division of ITW; Metal Jacketing Systems.
 b. PABCO Metals Corporation; Surefit.
 c. RPR Products, Inc.; Insul-Mate.
 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Indoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper
 d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
C. Underground Direct-Buried Jacket: 125-mil-thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.

2.10 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Products:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 b. Compac Corp.; 104 and 105.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 2. Width: 3 inches.
 3. Thickness: 11.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Products:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 b. Compac Corp.; 110 and 111.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 2. Width: 3 inches.
 3. Thickness: 6.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.11 SECUREMENTS

A. Bands:
 1. Products:
 a. Childers Products; Bands.
 b. PABCO Metals Corporation; Bands.
 c. RPR Products, Inc.; Bands.
 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 316; 0.015 inch thick, 3/4 inch wide.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

C. Wire: 0.080-inch nickel-copper alloy.

See Editing Instruction No. 1 in the Evaluations for cautions about naming manufacturers. Retain subparagraph and list of manufacturers below. See Section 016000 "Product Requirements."

 1. Manufacturers:
 b. Childers Products.
 c. PABCO Metals Corporation.
 d. RPR Products, Inc.
2.12 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:
 1. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

B. Protective Shielding Piping Enclosures:
 1. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 1. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.
H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 078413 “Penetration Firestopping” for firestopping and fire-resistant joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 “Penetration Firestopping.”

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
9. Stencil or label the outside insulation jacket of each union with the word “union.” Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:
1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.9 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 EQUIPMENT INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.

B. Insulate indoor and outdoor equipment in paragraphs below that is not factory insulated.

C. Domestic hot-water storage tank insulation shall be the following, of thickness to provide an R-value of 13: Mineral-fiber pipe and tank.

3.12 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water: All piping Piping embedded in walls, and exposed to view:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1-inch thick, with two coats of protective coating recommended by the insulation manufacturer.
B. Domestic Hot and Recirculated Hot Water:
 1. Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-inch thick, with two coats of protective coating recommended by the insulation manufacturer.

C. Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: ¾-inch thick, with two coats of protective coating recommended by the insulation manufacturer.

D. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch thick.

E. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch thick.

F. Hot Service Drains:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

G. Hot Service Vents:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.

H. Rainwater conductors, and roof drain bodies:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1-inch thick, with two coats of protective coating recommended by the insulation manufacturer.

I. Vapor barrier on all piping, except on hot water piping.

J. Insulation shall be painted where exposed to view. Coordinate with Architect.

3.14 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Domestic Water Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Vapor barrier.

3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. Piping, Exposed: Aluminum, Smooth: 0.020 inch thick.

3.16 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.
END OF SECTION 220719
SECTION 221116
DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.
 2. Encasement for piping.

B. Related Requirements:
 1. Section 221113 "Facility Water Distribution Piping" for water-service piping and water meters outside the building from source to the point where water-service piping enters the building.

1.3 ACTION SUBMITTALS
A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS
A. System purging and disinfecting activities report.
B. Field quality-control reports.

1.5 FIELD CONDITIONS
A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 1. Notify Architect no fewer than two days in advance of proposed interruption of water service.
 2. Do not interrupt water service without Architect's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping components shall be marked with "NSF-pw."
2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
B. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
D. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
E. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.
F. Copper Pressure-Seal-Joint Fittings:
 1. Fittings for NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber, O-ring seal in each end.
 2. Fittings for NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber, O-ring seal in each end.
G. Copper Push-on-Joint Fittings:
 1. Description:
 a. Cast-copper fitting complying with ASME B16.18 or wrought-copper fitting complying with ASME B 16.22.
 b. Stainless-steel teeth and EPDM-rubber, O-ring seal in each end instead of solder-joint ends.
H. Copper-Tube, Extruded-Tee Connections:
 1. Description: Tee formed in copper tube according to ASTM F 2014.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.
B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
C. Solder Filler Metals: ASTM B 32, lead-free alloys.
D. Flux: ASTM B 813, water flushable.
E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.4 ENCASEMENT FOR PIPING

A. Standard: ASTM A 674 or AWWA C105/A21.5.
B. Form: tube.
2.5 TRANSITION FITTINGS

A. General Requirements:

1. Same size as pipes to be joined.
2. Pressure rating at least equal to pipes to be joined.
3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

C. Sleeve-Type Transition Coupling: AWWA C219.

1. Manufacturers:
 a. Cascade Waterworks Manufacturing.
 b. Dresser, Inc.; Dresser Piping Specialties.
 c. Ford Meter Box Company, Inc. (The).
 d. JCM Industries.
 e. Romac Industries, Inc.
 f. Smith-Blair, Inc; a Sensus company.
 g. Viking Johnson; c/o Mueller Co.

D. Plastic-to-Metal Transition Unions:

1. Manufacturers:
 b. Harvel Plastics, Inc.
 c. Spears Manufacturing Company.

2. Description:
 a. PVC four-part union.
 b. Brass threaded end.
 c. Solvent-cement-joint plastic end.
 d. Rubber O-ring.
 e. Union nut.

2.6 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers:
 b. Central Plastics Company.
 c. EPCO Sales, Inc.
 d. Hart Industries International, Inc.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 f. Zum Plumbing Products Group; Wilkins Water Control Products.

C. Dielectric Flanges:
1. Manufacturers:
 b. Central Plastics Company.
 c. EPCO Sales, Inc.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

3. Factory-fabricated, bolted, companion-flange assembly.
5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
2. Nonconducting materials for field assembly of companion flanges.
4. Gasket: Neoprene or phenolic.
5. Bolt Sleeves: Phenolic or polyethylene.

E. Dielectric Nipples:
1. Manufacturers:
 a. Perfection Corporation; a subsidiary of American Meter Company.
 b. Precision Plumbing Products, Inc.
 c. Victaulic Company.
3. Electroplated steel nipple complying with ASTM F 1545.
4. Pressure Rating and Temperature: 300 psig at 225 deg F.
5. End Connections: Male threaded or grooved.

2.7 FLEXIBLE CONNECTORS

A. Manufacturers:
1. Flex-Hose Co., Inc.
2. Flex Pression, Ltd.
3. Flex-Weld, Inc.
4. Hyspan Precision Products, Inc.
5. Metraflex, Inc.
6. Universal Metal Hose; a Hyspan company

B. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
1. Working-Pressure Rating: Minimum 200 psig
2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.
PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.

D. Install underground copper tube in PE encasement according to ASTM A 674 or AWWA C105/A21.5.

E. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 221119 "Domestic Water Piping Specialties."

F. Install shutoff valve immediately upstream of each dielectric fitting.

G. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."

H. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.

I. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

J. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

K. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

L. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

M. Install piping to permit valve servicing.

N. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

O. Install piping free of sags and bends.

P. Install fittings for changes in direction and branch connections.

Q. Install PEX piping with loop at each change of direction of more than 90 degrees.

R. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
S. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump.

T. Install thermostats in hot-water circulation piping.

U. Install thermometers on outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.

E. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

F. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

G. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.

B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use ball or gate valves for piping NPS 2 and smaller. Use butterfly or gate valves for piping NPS 2-1/2 and larger.

C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.
2. **Stop-and-Waste Drain Valves:** Instead of hose-end drain valves where indicated.

D. Install balancing valve in each hot-water circulation return branch and discharge side of each pump and circulator. Set balancing valves partly open to restrict but not stop flow. Use ball valves for piping NPS 2 and smaller and butterfly valves for piping NPS 2-1/2 and larger. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves.

E. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for calibrated balancing valves.

3.5 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:

1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
2. Fittings for NPS 2 and Larger: Sleeve-type coupling.

C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.6 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

3.7 FLEXIBLE CONNECTOR INSTALLATION

A. Install flexible connectors in suction and discharge piping connections to each domestic water pump and in suction and discharge manifold connections to each domestic water booster pump.

B. Install bronze-hose flexible connectors in copper domestic water tubing.

C. Install stainless-steel-hose flexible connectors in steel domestic water piping.

3.8 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Vertical Piping: MSS Type 8 or 42, clamps.
2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.
C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 6. NPS 6: 10 feet with 5/8-inch rod.
 7. NPS 8: 10 feet with 3/4-inch rod.

F. Install supports for vertical copper tubing every 10 feet.

G. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.9 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.10 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

B. Label pressure piping with system operating pressure.

3.11 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:

1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in “Piping Tests” Subparagraph below and to ensure compliance with requirements.

c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:

a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.12 ADJUSTING

A. Perform the following adjustments before operation:

1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.

 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.

5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.13 CLEANING

A. Clean and disinfect domestic water piping as follows:
1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.

2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:

 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.

 b. Fill and isolate system according to either of the following:

 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.

 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.

 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.

 d. Repeat procedures if biological examination shows contamination.

 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Clean non-potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.

2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:

 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.

 b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

C. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.14 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.

D. Under-building-slab, domestic water, building-service piping, up to NPS 8 and larger, shall be the following:

 1. Soft copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and brazed joints.

E. Aboveground domestic water piping, NPS 2 and smaller, shall be the following:

 1. Hard copper tube, ASTM B 88, Type L; copper, solder-joint fittings; and brazed joints.

 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.

F. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be the following:

 1. Hard copper tube, ASTM B 88, Type L; copper, solder-joint fittings; and brazed joints.
2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
3. Hard copper tube, ASTM B 88, Type L; grooved-joint, copper-tube appurtenances; and grooved joints.

G. Aboveground, combined domestic water-service and fire-service-main piping, NPS 6 to NPS 12, shall be the following:
1. Plain-end, ductile-iron pipe; grooved-joint, ductile-iron-pipe appurtenances; and grooved joints.

3.15 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION 221116
SECTION 221119
DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Backflow preventers.
2. Outlet boxes.
3. Wall hydrants.
5. Trap-seal primer valves.
6. Trap-seal primer systems.
7. Flexible connectors.

B. Related Requirements:

1. Section 220519 "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
2. Section 221116 "Domestic Water Piping" for water meters.
3. Section 224713 "Drinking Fountains" for water filters for water coolers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For domestic water piping specialties.

1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61 Annex G[and NSF 14].[Mark "NSF-pw" on plastic piping components.]

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: [125 psig (860 kPa)] unless otherwise indicated.

2.3 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:

B. Manufacturers:
 1. Zurn
 2. Wilkins
 3. Or Approved Equal.

C. Description:
 2. Operation: Continuous-pressure applications.
 3. Pressure Loss: [12 psig (83 kPa)]
 4. Size: see drawings.
 5. Body: Bronze for NPS 2 (DN 50) and smaller.
 6. End Connections: Threaded for NPS 2 (DN 50) and smaller.
 8. Accessories:
 a. Valves NPS 2 (DN 50) and Smaller: Ball type with threaded ends on inlet and outlet.
 b. Valves NPS 2-1/2 (DN 65) and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

2.4 OUTLET BOXES

A. Icemaker Outlet Boxes <IMB>:

1. Manufacturers:
 a. Guy Gray
 b. Zurn
 c. Moen

2. Description: See schedule.

2.5 WALL HYDRANTS

1. Manufacturers:
 a. Zurn
 b. Woodford
 c. Or Approved Equal
2. Description: See schedule.

2.6 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:
 1. Manufacturers:
 a. Zurn.
 b. Mifab.
 c. Or “Approved equal”.
 3. Type: [Stainless Steel Metal bellows].
 4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.7 TRAP-SEAL PRIMER DEVICE

A. Supply-Type, Trap-Seal Primer Device:
 1. Manufacturers:
 a. PPP or Approved Equal
 3. Pressure Rating: 125 psig (860 kPa) minimum.
 5. Inlet and Outlet Connections: NPS 1/2 (DN 15) threaded, union, or solder joint.
 6. Gravity Drain Outlet Connection: NPS 1/2 (DN 15) threaded or solder joint.
 7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

2.8 FLEXIBLE CONNECTORS

A. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 1. Working-Pressure Rating: Minimum [200 psig (1380 kPa)].
 2. End Connections NPS 2 (DN 50) and Smaller: Threaded steel-pipe nipple.
 3. End Connections NPS 2-1/2 (DN 65) and Larger: Flanged steel nipple.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 3. Do not install bypass piping around backflow preventers.
B. Install outlet boxes recessed in wall or surface mounted on wall. Install 2-by-4-inch (38-by-89-mm) fire-retardant-treated-wood blocking, wall reinforcement between studs. Comply with requirements for fire-retardant-treated-wood blocking in Section 061000 "Rough Carpentry."

C. Install water-hammer arresters in water piping according to PDI-WH 201.

D. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

3.2 CONNECTIONS

A. Comply with requirements for ground equipment in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Fire-retardant-treated-wood blocking is specified in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Reduced-pressure-principle backflow preventers.
 2. Outlet boxes.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Test each reduced-pressure-principle backflow preventer [double-check, backflow-prevention assembly] [and] double-check, detector-assembly backflow preventer according to authorities having jurisdiction and the device's reference standard.

B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 221119
SECTION 221316
SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.
 3. Encasement for underground metal piping.

B. Related Sections:
 1. Section 221313 "Facility Sanitary Sewers" for sanitary sewerage piping and structures outside the building.

1.3 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For solvent drainage system. Include plans, elevations, sections, and details.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

1. Notify Architect no fewer than two days in advance of proposed interruption of sanitary waste service.
2. Do not proceed with interruption of sanitary waste service without Architect’s written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.

C. Heavy-Duty, Hubless-Piping Couplings:
 a. Manufacturers:
 1) ANACO.
 2) Clamp-All Corp.
 3) Ideal Div.; Stant Corp.
 4) Mission Rubber Co.
 5) Tyler Pipe; Soil Pipe Div.
 3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.3 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

C. Adhesive Primer: ASTM F 656.
 1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive primer shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Solvent Cement: ASTM D 2564.
1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Solvent cement shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 SPECIALTY PIPE FITTINGS

A. Transition Couplings:

1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
3. Shielded, Nonpressure Transition Couplings:
 b. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
4. Pressure Transition Couplings:
 b. Description: Metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.
 c. Center-Sleeve Material: Stainless steel.
 d. Gasket Material: Natural or synthetic rubber.
 e. Metal Component Finish: Corrosion-resistant coating or material.

B. Dielectric Fittings:

1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
2. Dielectric Unions:
 a. Description:
 1) Standard: ASSE 1079.
 2) Pressure Rating: 150 psig.
 3) End Connections: Solder-joint copper alloy and threaded ferrous.
3. Dielectric Flanges:
 a. Description:
 1) Standard: ASSE 1079.
 2) Factory-fabricated, bolted, companion-flange assembly.
 3) Pressure Rating: 150 psig.
 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
4. Dielectric-Flange Insulating Kits:
 a. Description:
 1) Nonconducting materials for field assembly of companion flanges.
 2) Pressure Rating: 150 psig.
 3) Gasket: Neoprene or phenolic.
 4) Bolt Sleeves: Phenolic or polyethylene.
 5) Washers: Phenolic with steel backing washers.
5. Dielectric Nipples:
 a. Description:
1) Standard: IAPMO PS 66
2) Electroplated steel nipple.
3) Pressure Rating: 300 psig at 225 deg F.
4) End Connections: Male threaded or grooved.
5) Lining: Inert and noncorrosive, propylene.

2.5 ENCASEMENT FOR UNDERGROUND METAL PIPING

A. Standard: ASTM A 674 or AWWA C105/A 21.5.
B. Material: high-density, cross-laminated polyethylene film of 0.004-inch minimum thickness.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
E. Install piping to permit valve servicing.
F. Install piping at indicated slopes.
G. Install piping free of sags and bends.
H. Install fittings for changes in direction and branch connections.
I. Install piping to allow application of insulation.
J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required
gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

N. Install aboveground PVC piping according to ASTM D 2665.

O. Install underground PVC piping according to ASTM D 2321.

P. Install engineered soil and waste drainage and vent piping systems as follows:
 2. Sovent Drainage System: Comply with ASSE 1043 and sovent fitting manufacturer's written installation instructions.
 3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

Q. Plumbing Specialties:
 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."
 2. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."

R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

B. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.
3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:

1. Install transition couplings at joints of piping with small differences in OD's.
2. In Drainage Piping: Shielded, nonpressure transition couplings.
4. In Underground Force Main Piping:
 a. NPS 1-1/2 and Smaller: Fitting-type transition couplings.
 b. NPS 2 and Larger: Pressure transition couplings.

B. Dielectric Fittings:

1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.
4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Vertical Piping: MSS Type 8 or Type 42, clamps.
2. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
2. NPS 3: 60 inches with 1/2-inch rod.
3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
2. NPS 3: 48 inches with 1/2-inch rod.
3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.

H. Install supports for vertical PVC piping every 48 inches.

I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 5. Comply with requirements for cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
 6. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.7 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.

3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

3.9 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.

3.10 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

A. Underground and above ground (unless noted otherwise), soil, waste, and vent piping shall be the following:

1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

B. In Return Air Plenum: Soil, waste, and vent piping shall be the following:

1. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.

END OF SECTION 221316
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Cleanouts.
 2. Floor drains.
 3. Roof flashing assemblies.
 4. Through-penetration firestop assemblies.
 5. Miscellaneous sanitary drainage piping specialties.
 6. Flashing materials.

1.3 DEFINITIONS

B. FOG: Fats, oils, and greases.
C. FRP: Fiberglass-reinforced plastic.
D. HDPE: High-density polyethylene plastic.
E. PE: Polyethylene plastic.
F. PP: Polypropylene plastic.
G. PVC: Polyvinyl chloride plastic.
H. Shop Drawings: Show fabrication and installation details for frost-resistant vent terminals.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 COORDINATION
A. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 CLEANOUTS
A. Metal Floor Cleanouts:
 1. ASME A112.36.2M, Cast-Iron Cleanouts: see detail on plans.
 2. Standard: ASME A112.36.2M for [cast-iron soil pipe with cast-iron ferrule] [threaded, adjustable housing] cleanout.
 3. Size: Same as connected branch.
 4. Type: [Threaded, adjustable housing].
 5. Body or Ferrule: [Cast iron].
 6. Clamping Device: [Required].
 7. Outlet Connection: [Threaded].
 8. Closure: [Cast-iron plug].
 9. Adjustable Housing Material: [Cast iron] with [threads].
 10. Frame and Cover Material and Finish: [Nickel-bronze, copper alloy]
 11. Frame and Cover Shape: [Round].

B. Plastic Wall Cleanouts:
 1. See detail on plans.
 2. Size: Same as connected branch.
 3. Body: PVC.
 5. Riser: Drainage pipe fitting and riser to cleanout of same material as drainage piping.

2.2 FLOOR DRAINS
A. Manufacturers:
 1. Zurn.
 2. Mifab.

B. Description: See schedules.

2.3 ROOF FLASHING ASSEMBLIES
A. Roof Flashing Assemblies:
1. Description: Manufactured assembly made of [6.0-lb/sq. ft. (30-kg/sq. m), 0.0938-inch- (2.4-mm-)] thick, lead flashing collar and skirt extending at least [6 inches (150 mm)] from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.
 b. Low-Silhouette Vent Cap: With vandal-proof vent cap.
 c. Extended Vent Cap: With field-installed, vandal-proof vent cap.

2.4 THROUGH-PENETRATION FIRESTOP ASSEMBLIES
A. Through-Penetration Firestop Assemblies:
 2. Size: Same as connected soil, waste, or vent stack.
 3. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 5. Special Coating: Corrosion resistant on interior of fittings.

2.5 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES
A. Floor-Drain, Trap-Seal Primer Fittings <Insert drawing designation if any>:
 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 2. Size: Same as floor drain outlet with NPS 1/2 (DN 15) side inlet.
B. Air-Gap Fittings:
 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 2. Body: Bronze or cast iron.
 3. Inlet: Opening in top of body.
 4. Outlet: Larger than inlet.
 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.
C. Sleeve Flashing Device:
 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend [1 inch (25 mm)] [2 inches (51 mm)] <Insert dimension> above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 2. Size: As required for close fit to riser or stack piping.
D. Stack Flashing Fittings:
 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 2. Size: Same as connected stack vent or vent stack.
2.6 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Use: 4.0-lb/sq. ft. (20-kg/sq. m), 0.0625-inch (1.6-mm) thickness.
 2. Vent Pipe Flashing: 3.0-lb/sq. ft. (15-kg/sq. m), 0.0469-inch (1.2-mm) thickness.
 3. Burning: 6-lb/sq. ft. (30-kg/sq. m), 0.0938-inch (2.4-mm) thickness.

B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Applications: 12 oz./sq. ft. (3.7 kg/sq. m or 0.41-mm thickness).
 2. Vent Pipe Flashing: 8 oz./sq. ft. (2.5 kg/sq. m or 0.27-mm thickness).

C. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch (1.01-mm) minimum thickness, unless otherwise indicated. Include G90 (Z275) hot-dip galvanized, mill-phosphatized finish for painting if indicated.

D. Elastic Membrane Sheet: ASTM D 4068, flexible, chlorinated polyethylene, 40-mil (1.01-mm) minimum thickness.

E. Fasteners: Metal compatible with material and substrate being fastened.

F. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

G. Solder: ASTM B 32, lead-free alloy.

H. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4 (DN 100). Use NPS 4 (DN 100) for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet (15 m) for piping NPS 4 (DN 100) and smaller and 100 feet (30 m) for larger piping.
 4. Locate at base of each vertical soil and waste stack.

B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

D. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
a. Coordinate with Structural Drawings prior installation.
b. Radius, 30 Inches (750 mm) or Less: Equivalent to 1 percent slope, but not less than 1/4-inch (6.35-mm) total depression.
c. Radius, 30 to 60 Inches (750 to 1500 mm): Equivalent to 1 percent slope.
d. Radius, 60 Inches (1500 mm) or Larger: Equivalent to 1 percent slope, but not greater than 1-inch (25-mm) total depression.

3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

E. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.

F. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.

G. Install through-penetration firestop assemblies in plastic [conductors] [and] [stacks] at floor penetrations.

H. Assemble open drain fittings and install with top of hub [1 inch (25 mm)] [2 inches (51 mm)] above floor.

I. Install deep-seal traps on floor drains and other waste outlets, if indicated.

J. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

K. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

L. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

M. Install vent caps on each vent pipe passing through roof.

N. Install wood-blocking reinforcement for wall-mounting-type specialties.

O. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft. (30-kg/sq. m), 0.0938-inch (2.4-mm) thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft. (20-kg/sq. m), 0.0625-inch (1.6-mm) thickness or thinner.
2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches (250 mm), and skirt or flange extending at least 8 inches (200 mm) around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches (200 mm) around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches (200 mm) around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 076200 "Sheet Metal Flashing and Trim."

F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 LABELING AND IDENTIFYING
A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL
A. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.6 PROTECTION
A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following conventional plumbing fixtures and related components:
 1. Faucets for lavatories and sinks.
 2. Flushometers.
 3. Toilet seats.
 4. Protective shielding guards.
 5. Fixture supports.
 7. Lavatories.

B. Related Sections include the following:
 1. Division 10 Section "Toilet, Bath, and Laundry Accessories."
 2. Division 22 Section "Domestic Water Piping Specialties" for backflow preventers, floor drains, and specialty fixtures not included in this Section.
 3. Division 22 Section "Drinking Fountains and Water Coolers."
 4. Division 31 Section "Facility Water Distribution Piping" for exterior plumbing fixtures and hydrants.

1.3 DEFINITIONS

B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.

C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.

D. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.

E. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.

F. FRP: Fiberglass-reinforced plastic.

G. PMMA: Polymethyl methacrylate (acrylic) plastic.

H. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.

D. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.
 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

G. Comply with the following applicable standards and other requirements specified for plumbing fixtures:
 1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
 2. Porcelain-Enameled, Formed-Steel Fixtures: ASME A112.19.4M.
 4. Vitreous-China Fixtures: ASME A112.19.1M.

H. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:
 1. Backflow Protection Devices for Faucets with Side Spray: ASME A112.18.3M.
 2. Backflow Protection Devices for Faucets with Hose-Thread Outlet: ASME A112.18.3M.
 5. Hose-Connection Vacuum Breakers: ASSE 1011.

I. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:
2. Brass and Copper Supplies: ASME A112.18.1.

J. Comply with the following applicable standards and other requirements specified for miscellaneous components:
2. Floor Drains: ASME A112.6.3.
5. Off-Floor Fixture Supports: ASME A112.6.1M.

1.6 WARRANTY
A. Special Warranties: Manufacturer's standard form in which manufacturer agrees to repair or replace components of whirlpools that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Structural failures of unit shell.
 b. Faulty operation of controls, blowers, pumps, heaters, and timers.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

PART 2 - PRODUCTS

2.1 LAVATORY FAUCETS
A. Lavatory Faucets:
1. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include the following:
2.
a. Chicago Faucets.
 b. Elkay Manufacturing Co.
 c. Moen, Inc.
 d.
3. Description: See plumbing schedule.

2.2 SINK FAUCETS
A. Sink Faucets:
1. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include the following:
2.
a. Chicago Faucets.
 b. Elkay Manufacturing Co.
 c. Moen, Inc.
 d.
3. Description: See plumbing schedule.

2.3 FLUSHOMETERS
A. Flushometers:
1. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include the following:

2.
 a. Sloan Valve Company.
 b. Zurn
 c.

3. Description: See plumbing schedule.

2.4 TOILET SEATS

A. Toilet Seats:
 1. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include the following:
 a. American Standard Companies, Inc.
 b. Bemis Manufacturing Company.
 c. Kohler Co.
 d.
 2. Description: See plumbing schedule.

2.5 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. TRUEBRO, Inc.
 2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

2.6 FIXTURE SUPPORTS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B.
 1. MIFAB Manufacturing Inc.
 2. Zurn Plumbing Products Group; Specification Drainage Operation.

C. Water-Closet Supports:
 1. Description: See plumbing schedule.

D. Lavatory Supports:
 1. Description: See plumbing schedule.

E. Sink Supports:
 1. Description: See plumbing schedule.

2.7 WATER CLOSETS

A. Water Closets:
 1. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include the following:
 b. American Standard Companies, Inc.
 c. Zum
 d. Kohler
 e. Toto USA.
2. Description: See plumbing schedule.

2.8 LAVATORIES

A. Lavatories:
 1. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include the following:
 a. American Standard Companies, Inc.
 b. Toto USA
 c. Crane Plumbing, L.L.C./Fiat Products.
 2. Description: See plumbing schedule.

2.9 SERVICE BASINS

A. Mop Service Basins:
 1. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include the following:
 a. American Standard Companies, Inc.
 b. Toto USA
 c. Crane Plumbing, L.L.C./Fiat Products.
 2. Description: See plumbing schedule.

B.
 a.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.

B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers’ written instructions.

B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.

C. Install back-outlet, wall-mounting fixtures onto waste fitting seals and attach to supports.

D. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.

E. Install wall-mounting fixtures with tubular waste piping attached to supports.
F. Install floor-mounting, back-outlet water closets attached to building floor substrate and wall bracket and onto waste fitting seals.

G. Install counter-mounting fixtures in and attached to casework.

H. Install fixtures level and plumb according to roughing-in drawings.

I. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
 1. Exception: Use ball, gate, or globe valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

J. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.

K. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.

L. Install flushometer valves for accessible water closets with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.

M. Install tanks for accessible, tank-type water closets with lever handle mounted on wide side of compartment.

N. Install toilet seats on water closets.

O. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

P. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

Q. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

R. Install traps on fixture outlets.
 1. Exception: Omit trap on fixtures with integral traps.
 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.

S. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Escutcheons for Plumbing Piping."

T. Set service basins in leveling bed of cement grout. Grout is specified in Division 22 Section "Common Work Results for Plumbing."

U. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.

C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.

D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

E. Install fresh batteries in sensor-operated mechanisms.

3.5 ADJUSTING

A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

B. Operate and adjust controls. Replace damaged and malfunctioning units and controls.

C. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.

D. Replace washers and seals of leaking and dripping faucets and stops.

E. Install fresh batteries in sensor-operated mechanisms.

3.6 CLEANING

A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 2. Remove sediment and debris from drains.

B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.7 PROTECTION

A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224000
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 23 Specification Sections, apply to this Section.

1.2 WORK COVERED BY CONTRACT DOCUMENTS

A. The following Summary of Work is intended as an aid to achieve an understanding of the various elements of work included in the project, and is not intended to be all-inclusive. Detailed descriptions of work and requirements are given in drawings and specifications.

B. Mechanical Contract Documents were prepared for the Project by:
Ethos Engineering,
119 West Van Buren, Suite 101
Harlingen, Texas 78550
Phone Number: (956) 230-3435

C. Scope of Work: Refer to drawings for a detailed Scope of Work.
1. Provide all materials and labor associated with new fully-operational mechanical and controls systems for the project “Reese Building Renovations, Phase 2”, including but not limited to the following:
 a. Hydronic Systems:
 1) Water Source Heat Pump (WSHP) condenser water piping connections to existing distribution piping.
 2) Hydronic piping in building, valves, piping specialties, hot dipped and painted piping supports, etc. as indicated on piping plans and schematics.
 3) Insulation for water piping exposed and concealed, valves, fittings and hot surfaces. Aluminum jacketing for all insulated piping.
 4) Water conditioning for the new systems. Retain services of Owner’s water treatment contractor.
 b. Space conditioning WSHP units with integral controls.
 c. Building exhaust fans and associated louveres.
 d. Ductwork, dampers, diffusers, grilles, and accessories.
 e. Dynamic fire dampers, control dampers, and OA intake louveres.
 f. Testing, Adjusting, & Balancing (TAB).
 g. Commissioning of HVAC and HVAC Controls, Lighting and Lighting Control systems to meet IECC 2012 code requirements.
 h. Expansion of the existing Building Automation System (BAS). Controls contractor is responsible for all controls relays, contactors, power to DDC panels, valves, dampers, and other controls equipment. Although contractor may coordinate with other trades to provide miscellaneous electrical and mechanical work, the final responsibility for achievement of control sequences lies with controls contractor.
 i. Shop drawing submittals for all mechanical systems including but not limited to equipment, ductwork and piping. These include coordination drawings for placing of mechanical systems in relation to work by other disciplines.
 j. Coordinate electrical work with Div. 26 as required.
 k. Coordinate fire alarm related work with Fire Alarm Contractor. Provide smoke detectors, wiring and controls for units, 2000 cfm and larger, where none exist.
2. Painting: See Division 9 specifications. Paint all exposed piping, ductwork, insulation, hangers, accessories in interior exposed areas. Paint exterior pipe supports. Coordinate paint type, color and scope of work with Architect.
1.3 ALLOWANCES
 A. Allowances are included in the Division 1 specifications.

1.4 COORDINATION
 A. All mechanical work shall be done under sub-contract to a General Contractor. Mechanical Contractor shall coordinate all work through General Contractor, who is ultimately responsible for the entire project.
 B. Prior to bidding, Mechanical Contractor shall coordinate all work in Division-23 for integration with plumbing, electrical, controls work and general construction. A detailed list of inclusion and exclusions shall be provided to General Contractors at least three days prior to the end of the period set aside to request clarifications so that coordination of any missing items may be addressed and clarified by Architect/Engineer as needed.
 C. All electrical work required for operation of mechanical systems shall be coordinated through the General Contractor prior to bidding to ensure that all starters, disconnects, VFD’s, conduit and wiring are provided as part of the project. All components needed for a full operational installation of systems shall be provided.
 D. All controls required for operation of mechanical systems shall be coordinated prior to bidding, to ensure that all equipment, materials, sensors, devices and labor are provided as part of the project. All components needed for a full operational installation of systems shall be provided. Mechanical Contractor shall coordinate and supervise installation of all controls systems.
 E. All questions, requests for information, submittals, and correspondence from the Div. 23 Contractor shall be submitted via the General Contractor, who will forward to the Architect, who will then forward to the Engineer.
 F. Div. 23 Contractor shall not make any changes to design without written authorization from the Engineer. If changes are requested by the Owner, Architect, General Contractor, Suppliers, Manufacturers, or any others, Contractor should issue a written RFI for response by the Engineer.
 G. Div. 23 Contractor shall issue seven days written notice prior to any activities that require the presence of the Engineer at the job-site. This applies to all inspections required by specifications, and particularly to those where work will be covered.
 H. Cooperate fully with other contractors so that work under those contracts may be carried out smoothly, without interfering with or delaying work under this Contract. Ensure that systems are ready for controls and electrical connections when needed so as to not delay construction.
 I. Contractor shall coordinate with other divisions for power and control of mechanical systems. It is not the intent of this specification to dictate who will conduct work, only to state the requirements of conducting the work.
 J. Coordinate with Div. 1 for work sequence and optimization of construction schedule.
 K. Coordinate with Div. 21 for Fire Suppression System.
 L. Coordinate with Div. 22 for Plumbing System.
 M. Coordinate with Div. 26 electrical contractor for providing power to mechanical equipment, and for Fire Alarm Systems interface with mechanical systems.
 N. Coordinate TAB activities with TAB Contractor.
 O. Coordinate Commissioning with Commissioning Agent.
P. Issue written notification of the following tasks and allow five (5) days for Engineer to respond and schedule an inspection as required. Failure to issue written notification may result in work having to be redone to allow for proper inspection. It is contractor's responsibility to make sure Engineer receives notification.
1. Upon completion of underground piping installation and prior to testing or covering up.
2. Upon completion of all water piping installation and prior to insulation and/or testing.
3. Upon completion of ductwork and prior to testing and insulating.
4. Metal duct leakage testing.
5. Above ceiling inspections prior to ceiling tile installation.
6. When ready to request manufacturer's start-up of each piece of equipment.
7. When ready for an inspection by TAB contractor prior to developing detailed TAB Plan.
8. When ready to conduct complete Automation System software demonstration.
9. When ready for Substantial Completion Inspection.
10. When ready for Final Inspection.

Q. General
1. The Contractor shall execute all work hereinafter specified or indicated on accompanying Drawings. Contractor shall provide all equipment necessary and usually furnished in connection with such work and systems whether or not mentioned specifically herein or on the Drawings.
2. The Contractor shall be responsible for fitting his material and apparatus into the building and shall carefully lay out his work at the site to conform to the structural conditions, to avoid all obstructions, to conform to the details of the installation and thereby to provide an integrated satisfactory operating installation.
3. The Mechanical, Electrical, Plumbing, and associated Drawings are necessarily diagrammatic by their nature, and are not intended to show every connection in detail or every pipe or conduit in its exact location. These details are subject to the requirements of standards referenced elsewhere in these specifications, and structural and architectural conditions. The Contractor shall carefully investigate structural and finish conditions and shall coordinate the separate trades in order to avoid interference between the various phases of work. Work shall be organized and laid out so that it will be concealed in furred chases and suspended ceilings, etc., in finished portions of the building, unless specifically noted to be exposed. All exposed work shall be installed parallel or perpendicular to the lines of the building unless otherwise noted.
4. When the mechanical, electrical and plumbing drawings do not give exact details as to the elevation of pipe, conduit and ducts, the Contractor shall physically arrange the systems to fit in the space available at the elevations intended with proper grades for the functioning of the system involved. Piping, exposed conduit and the duct systems are generally intended to be installed true and square to the building construction, and located as high as possible against the structure in a neat and workmanlike manner. The Drawings do not show all required offsets, control lines, pilot lines and other location details. Work shall be concealed in all finished areas.

1.5 WORK SEQUENCE

A. Locate Utilities:
1. Coordinate with power, water, sewer, telephone, communications, and other utilities as well as designated Owner's personnel to locate all utilities prior to digging in any area.
2. Obtain any approvals required from utilities to relocate utilities.
3. Cost of relocating or bypassing utilities indicated on drawings shall be included in Base Bid.
4. Where several new utilities must share a common area or path, coordinate with other trades so that the proper clearances are maintained and utilities may be installed in compliance with all requirements.
5. Refer to Civil Plans for coordination of connection points from site utilities to buildings.

B. Coordinate with Division 1 requirements to optimize construction schedule.

C. Provide equipment and material submittals, coordination drawings and shop drawings as required by specifications.

D. Submit detailed mechanical Schedule of Values with Submittals. Mechanical Submittals will not be accepted without a detailed Schedule of Values.
E. Sequence construction in coordination with work by other disciplines.

F. Work that requires hydronic and electrical system shutdown must be scheduled in close coordination with the Owner. **Extended plant shut-downs must take place only during unoccupied periods.** Supply a complete and comprehensive construction schedule for the work affecting shutdown of utilities. This schedule shall include durations for the specific tasks required, and shall demonstrate a construction process chain of events, organized to create minimum disruption and minimum inconvenience to building function.

1.6 CONTRACTOR USE OF PREMISES

A. Use of the Site: Limit use of the premises to work in areas indicated. Confine operations to areas within contract limits indicated. Do not disturb portions of the site beyond the areas in which the Work is indicated.
 1. Driveways and Entrances: Keep driveways and entrances to construction site clear and available to other Contractors, Owner, and A/E personnel at all times. Do not use these areas for parking or storage of materials. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.

B. Site Safety: Take every precaution to ensure the site does not present a threat to the safety of occupants and/or workers. Minimal safety requirements include, but are not limited to the following:
 1. Temporary fencing around construction areas.
 2. Yellow caution tape and construction barricades along open trenches during the day. Trenches shall be covered at night and warning lights provided on construction barricades.
 3. Temporary fencing around equipment while site work is in progress.

1.7 SUBMITTALS

A. Manufacturer's standard dimensioned drawings, performance and product data shall be edited to delete reference to equipment, features, or information which is not applicable to the equipment being supplied for this project.

B. Provide all mechanical submittals at the same time in one or multiple bound volumes. Include originals from manufacturer or high-quality copies. Faxes and copies of faxes are not acceptable.

C. Provide sufficient copies of approved data, with the engineer's approved stamp, for inclusion in the operations and maintenance manuals.

D. Provide detailed coordination drawings showing how mechanical system components will be installed in coordination with work by others. Engineer’s drawing files will be made available to Contractor for producing coordination and as-built drawings upon request.

1.8 SCHEDULE OF VALUES -Special Requirements

A. Mechanical Contractor shall submit a Schedule of Values reflecting the total value of Mechanical Work in the Contract, and broken down into the following items as a minimum, with a line-item for Materials/Equipment and another for Labor:

MECHANICAL

1. HVAC equipment
2. HVAC materials (ductwork, piping, dampers)
3. HVAC labor
4. Controls equipment
5. Controls labor
6. Controls engineering and programming
7. Controls commissioning and closeout
8. TAB
10. Miscellaneous
11. Administrative and project management.

B. Schedule of Values shall be included with bound submittals. Submittals without a Schedule of Values shall not be reviewed.

1.9 EQUIPMENT MANUFACTURERS

A. Mechanical design is based on equipment and materials scheduled and specified. These are used as the basis for performance characteristics, quality, and physical dimensions/weight.

B. Equipment and materials by other APPROVED manufacturers may be provided by Contractor. In doing so, Contractor assumes responsibility for the performance, quality, and physical dimensions of the proposed units.

C. Any costs associated with modifications to the design due to submittal of equipment and/or materials other than those used as the basis of design are the Contractor's responsibility. This includes any design time, production of drawings, and time delays.

D. Where use of equipment and/or materials other than those used as the basis of design impact other disciplines, Contractor shall assume responsibility for all costs associated with any APPROVED modifications. This may include resizing of electrical circuits, modifying openings in the structure, relocating floor drains, etc.

1.10 OPERATIONS AND MAINTENANCE MANUALS & TRAINING

A. Submit Operations and Maintenance Manuals two weeks prior to Substantial Completion Inspection. Engineer will not conduct a Substantial Completion Inspection without having reviewed Operations and Maintenance Manuals.

B. Use Operations and Maintenance Manuals as a guide for conducting training of Owner's personnel.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 230010
SECTION 230513
COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
B. Comply with NEMA MG 1 unless otherwise indicated.
C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS
A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Energy efficient, as defined in NEMA MG 1.
C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque. Unless otherwise noted, windings shall be:
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer’s standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 HP shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513
SECTION 230516
EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Flexible, ball-joint packed expansion joints.
 2. Rubber union connector packless expansion joints.
 3. Flexible-hose packless expansion joints.
 4. Metal-bellows packless expansion joints.
 5. Rubber packless expansion joints.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS
 A. Welding certificates.

1.5 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For expansion joints to include in maintenance manuals.

1.6 QUALITY ASSURANCE
 A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 B. Pipe and Pressure-Vessel Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.
 B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.
2.2 PACKLESS EXPANSION JOINTS

A. Flexible-Hose Packless Expansion Joints:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Flex-Hose Co., Inc.
 b. Mason Industries, Inc.
 c. Metraflex Company (The).

2. **Description:** Manufactured assembly with inlet and outlet elbow fittings and two flexible-metal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose.

3. **Flexible Hose:** Corrugated-metal inner hoses and braided outer sheaths.

4. **Expansion Joints for Copper Tubing NPS 2 and Smaller:** Copper-alloy fittings with threaded end connections.
 a. Bronze hoses and double-braid bronze sheaths with 700 psig at 70 deg F and 500 psig at 450 deg F ratings.

5. **Expansion Joints for Copper Tubing NPS 2-1/2 to NPS 4:** Copper-alloy fittings with threaded end connections.
 a. Stainless-steel hoses and double-braid, stainless-steel sheaths with 420 psig at 70 deg F and 315 psig at 450 deg F ratings.

6. **Expansion Joints for Steel Piping NPS 2 and Smaller:** Carbon-steel fittings with threaded end connections.
 a. Stainless-steel hoses and double-braid, stainless-steel sheaths with 700 psig at 70 deg F and 515 psig at 600 deg F ratings.

7. **Expansion Joints for Steel Piping NPS 2-1/2 to NPS 6:** Carbon-steel fittings with flanged end connections.
 a. Stainless-steel hoses and double-braid, stainless-steel sheaths with 275 psig at 70 deg F and 200 psig at 600 deg F ratings.

8. **Expansion Joints for Steel Piping NPS 8 to NPS 12:** Carbon-steel fittings with flanged end connections.
 a. Stainless-steel hoses and double-braid, stainless-steel sheaths with 165 psig at 70 deg F and 120 psig at 600 deg F ratings.

B. Metal-Bellows Packless Expansion Joints:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Flex-Hose Co., Inc.
 b. Hyspan Precision Products, Inc.
 c. Mason Industries, Inc.
 d. Metraflex Company (The).

2. **Standards:** ASTM F 1120 and EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."

3. **Type:** Circular, corrugated bellows with external tie rods.

4. **Minimum Pressure Rating:** 150 psig, unless otherwise indicated.

5. **Expansion Joints for Copper Tubing:** multi-ply phosphor-bronze bellows, copper pipe ends, and brass shrouds.
 a. End Connections for Copper Tubing NPS 2 and Smaller: threaded.
 b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: threaded.
 c. End Connections for Copper Tubing NPS 5 and Larger: Flanged.
 a. End Connections for Steel Pipe NPS 2 and Smaller: Threaded.
 b. End Connections for Steel Pipe NPS 2-1/2 and Larger: Welded.

PART 3 - EXECUTION

3.1 EXPANSION JOINT INSTALLATION

A. Install expansion joints of sizes matching sizes of piping in which they are installed.

B. Install metal-bellows expansion joints according to EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."

C. Install rubber packless expansion joints according to FSA-PSJ-703.

D. Install grooved-joint expansion joints to grooved-end steel piping.

END OF SECTION 230516
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 STACK-SLEEVE FITTINGS

A. Manufacturers:
 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.

B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.
2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).
 4. Pipeline Seal and Insulator, Inc.
 5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers:
 1. Presealed Systems.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.
3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
1. Exterior Concrete Walls above Grade: Cast-iron wall sleeves.
2. Exterior Concrete Walls below Grade: Cast-iron wall sleeves with sleeve-seal system. Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
3. Concrete Slabs-on-Grade: Cast-iron wall sleeves with sleeve-seal system. Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
4. Concrete Slabs above Grade: Galvanized-steel-pipe sleeves.
5. Interior Partitions: Galvanized-steel-pipe sleeves.

END OF SECTION 230517
SECTION 230518
ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
 A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
 B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
 C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
 D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.

2.2 FLOOR PLATES
 A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
 B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION
 A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Insulated Piping: One-piece, stamped-steel type.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 d. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 f. Bare Piping in Equipment Rooms: One-piece, cast-brass type with rough-brass finish.

2. Escutcheons for Existing Piping:
 a. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
 b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 f. Bare Piping in Unfinished Service Spaces: Split-casting brass type with rough-brass finish.
 g. Bare Piping in Equipment Rooms: Split-casting brass type with rough-brass finish.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. New Piping: One-piece, floor-plate type.
 2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 230518
SECTION 230519
METERS AND GAUGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Liquid-in-glass thermometers.
 2. Thermowells.
 3. Dial-type pressure gauges.
 4. Gage attachments.
 5. Test plugs.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
 A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For meters and gauges to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS
 A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Trerice, H. O. Co.
 b. Weiss Instruments, Inc.
 c. Weksler Glass Thermometer Corp.
 3. Case: Cast aluminum; 9-inch nominal size unless otherwise indicated.
 4. Case Form: Adjustable angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue or red organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass.
8. Stem: Aluminum and of length to suit installation.
 b. Design for Thermowell Installation: Bare stem.
10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 DUCT-THERMOMETER MOUNTING BRACKETS
A. Description: Flanged bracket with screw holes, for attachment to air duct and made to hold thermometer stem.

2.3 THERMOWELLS
A. Manufacturers: Same as manufacturer of thermometer being used.
B. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: brass.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. Bore: Diameter required to match thermometer bulb or stem.
 7. Insertion Length: Length required to match thermometer bulb or stem.
 8. Lagging Extension: Include on thermowells for insulated piping and tubing.
 9. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
C. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.4 PRESSURE GAGES
A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Trerice, H. O. Co.
 b. Weiss Instruments, Inc.
 c. Weksler Glass Thermometer Corp.
 3. Case: Liquid-filled type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 6. Movement: Mechanical, with link to pressure element and connection to pointer.
 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.5 GAGE ATTACHMENTS
A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and surge-dampening device. Include extension for use on insulated piping.
B. Siphons: Loop-shaped section of stainless-steel pipe with NPS 1/4 or NPS 1/2 pipe threads.
C. Valves: Brass or stainless-steel needle, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.6 TEST PLUGS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Trerice, H. O. Co.
2. Weiss Instruments, Inc.
3. Weksler Glass Thermometer Corp.
B. Description: Test-station fitting made for insertion into piping tee fitting.
C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
D. Thread Size: NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe thread.
E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
F. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

2.7 TEST-PLUG KITS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Trerice, H. O. Co.
2. Weiss Instruments, Inc.
B. Furnish one test-plug kit(s) containing two thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.
C. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.
D. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F.
E. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be at least 0 to 200 psig.
F. Carrying Case: Metal or plastic, with formed instrument padding.
2.8 SIGHT FLOW INDICATORS

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 1. Dwyer Instruments, Inc.
 2. Emerson Process Management; Rosemount Division.
 3. KOBOLD Instruments, Inc. - USA.

B. **Description:** Piping inline-installation device for visual verification of flow.

C. **Construction:** Bronze or stainless-steel body, with sight glass and ball, flapper, or paddle wheel indicator, and threaded or flanged ends.

D. **Minimum Pressure Rating:** 150 psig.

E. **Minimum Temperature Rating:** 200 deg F.

F. **End Connections for NPS 2 and Smaller:** Threaded.

G. **End Connections for NPS 2-1/2 and Larger:** Flanged.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending one-third of pipe diameter and in vertical position in piping tees.

B. Install thermowells with extension on insulated piping.

C. Fill thermowells with heat-transfer medium.

D. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

E. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.

F. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

G. Install valve and snubber in piping for each pressure gage for fluids (except steam).

H. Install test plugs in piping tees.

I. Install flow indicators in piping systems in accessible positions for easy viewing.

J. Install thermometers in the following locations:

1. Inlet and outlet of each hydronic zone.
2. Inlet and outlet of each hydronic boiler.
3. Two inlets and two outlets of each chiller.
4. Inlet and outlet of each hydronic coil in air-handling units.
5. Two inlets and two outlets of each hydronic heat exchanger.
6. Inlet and outlet of each thermal-storage tank.
7. Outside-, return-, supply-, and mixed-air ducts.

K. Install pressure gages in the following locations:
1. Discharge of each pressure-reducing valve.
2. Inlet and outlet of each chiller chilled-water and condenser-water connection.
3. Suction and discharge of each pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. After installation, calibrate meters according to manufacturer's written instructions.
B. Adjust faces of meters and gages to proper angle for best visibility.
C. Thermometer stems shall be of length to match thermowell insertion length.

3.4 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Chilled-Water Piping: 0 to 100 deg F.
B. Scale Range for Condenser-Water Piping: 0 to 100 deg F.
C. Scale Range for Heating, Hot-Water Piping: 0 to 250 deg F.
D. Scale Range for Air Ducts: Minus 40 to plus 110 deg F.

END OF SECTION 230519
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Bronze angle valves.
2. Brass ball valves.
3. Bronze ball valves.
4. Iron ball valves.
5. Iron, single-flange butterfly valves.
8. Bronze lift check valves.
10. Iron swing check valves.
11. Iron swing check valves with closure control.
15. Bronze gate valves.
17. Bronze globe valves.

B. Related Sections:

1. Division 23 HVAC piping Sections for specialty valves applicable to those Sections only.
2. Division 23 Section "Identification for HVAC Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

B. EPDM: Ethylene propylene copolymer rubber.

C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

D. NRS: Nonrising stem.

E. OS&Y: Outside screw and yoke.

F. RS: Rising stem.
1.4 SUBMITTALS
 A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE
 A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
 B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.
 B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
 C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 VALVES, GENERAL
 A. Refer to Part 3 "Valve Applications" Article for applications of valves.
 B. Bronze Valves: NPS 2 and smaller with threaded ends, unless otherwise indicated.
 C. Ferrous Valves: NPS 2-1/2 and larger with flanged ends, unless otherwise indicated.
 D. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
E. Valve Sizes: Same as upstream pipe, unless otherwise indicated.

F. Valve Actuators:
 1. Chainwheel: For attachment to valves, of size and mounting height, as indicated in the "Valve Installation" Article in Part 3.
 2. Gear Drive: For quarter-turn valves NPS 8 and larger.
 3. Handwheel: For valves other than quarter-turn types.
 4. Lever Handle: For quarter-turn valves NPS 6 and smaller, except plug valves.
 5. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 10 plug valves, for each size square plug head.

G. Extended Valve Stems: On insulated valves.

I. Valve Grooved Ends: AWWA C606.
 1. Threaded: With threads according to ASME B1.20.1.

J. Valve Bypass and Drain Connections: MSS SP-45.

2.3 COPPER-ALLOY BALL VALVES

A. Manufacturers:
 1. Copper-Alloy Ball Valves:
 a. Crane Co.; Crane Valve Group; Stockham Div.
 b. Grinnell Corporation.
 c. NIBCO INC.
 e. Kitz Corporation

B. Copper-Alloy Ball Valves, General: MSS SP-110.

C. Two-Piece, Copper-Alloy Ball Valves: bronze body with full-port, chrome-plated bronze ball; PTFE or TFE seats; and 600-psig minimum CWP rating and blowout-proof stem.

D. Copper-Alloy Ball Valves: Two-piece bronze body with exhaust vent opening, chrome-plated ball with vent, blowout-proof stem, locking handle, and working pressure rating 600-psigCWP.

2.4 PLUG VALVES

A. Plug Valves: MSS SP-78, 175-psi CWP, ASTM A 126 cast-iron body and bonnet, cast-iron plug, Buna N, Viton, or teflon packing, flanged or grooved end connections:
 1. Operator: Lever.

2.5 FERROUS-ALLOY BALL VALVES

A. Manufacturers:
 1. Crane Co.; Crane Valve Group; Stockham Div.
 2. NIBCO INC.
 3. Kitz Corporation
B. Ferrous-Alloy Ball Valves, General: MSS SP-72, with flanged ends.

C. Ferrous-Alloy Ball Valves: Class 150, full port.

2.6 FERROUS-ALLOY BUTTERFLY VALVES

A. Manufacturers:

1. Ferrous-Alloy Butterfly Valves:
 a. Keystone
 b. Kitz Corporation

B. Butterfly Valves: MSS SP-67, 200-psi CWP, for tight shutoff, 150-psi maximum pressure differential, ASTM A 126 cast-iron body and bonnet, extended neck, stainless-steel stem, field-replaceable EPDM or Buna N sleeve and stem seals, fully flanged style:

 1. Disc Type: Elastomer-coated ductile iron.
 2. Gear Drive: For quarter-turn valves NPS 8 and larger.
 3. Operator for Sizes 2 Inches to 6 Inches: Standard lever handle with memory stop.

2.7 BRONZE CHECK VALVES

A. Manufacturers:

1. Type 4, Bronze, Swing Check Valves with Nonmetallic Disc:
 a. Crane Co.; Crane Valve Group; Stockham Div.
 b. Grinnell Corporation.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Red-White Valve Corp.
 g. Kitz Corporation

B. Bronze Check Valves, General: MSS SP-80.

C. Type 4, Class 125, Bronze, Swing Check Valves: Bronze body with nonmetallic disc and bronze seat.

2.8 FERROUS-ALLOY WAFER CHECK VALVES

A. Manufacturers:

1. Dual-Plate, Ferrous-Alloy, Wafer Check Valves:
 a. Crane Co.; Crane Valve Group; Stockham Div.
 b. Grinnell Corporation.
 c. NIBCO INC.
 d. Red-White Valve Corp.
 e. Watts Industries, Inc.; Water Products Div.
 f. Kitz Corporation

B. Ferrous-Alloy Wafer Check Valves, General: API 594, spring loaded.

C. Dual-Plate, Class 125 or 150, Ferrous-Alloy, Wafer Check Valves: Flangeless body.
2.9 CAST-IRON GLOBE VALVES

A. Manufacturers:

1. Type I, Cast-Iron Globe Valves with Metal Seats:
 a. Crane Co.; Crane Valve Group; Stockham Div.
 b. Grinnell Corporation.
 c. NIBCO INC.
 d. Red-White Valve Corp.
 e. Kitz Corporation

C. Type I, Class 125, Cast-Iron Globe Valves: Gray-iron body with bronze seats.

2.10 BRONZE GATE VALVES

A. Manufacturers:

1. Bronze, Gate Valves:
 a. Crane Co.; Crane Valve Group; Stockham Div.
 b. Grinnell Corporation.
 c. NIBCO INC.
 d. Powell, Wm. Co.
 e. Red-White Valve Corp.
 g. Kitz Corporation

B. Bronze Gate Valves, General: MSS SP-80, with ferrous-alloy handwheel.

C. Type 1, Class 125, Bronze Gate Valves: Bronze body with nonrising stem and bronze solid wedge and union-ring bonnet.

2.11 BRONZE GLOBE VALVES

A. Manufacturers:

1. Type 2, Bronze Globe Valves with Nonmetallic Disc:
 a. Crane Co.; Crane Valve Group; Stockham Div.
 b. Grinnell Corporation.
 c. NIBCO INC.
 d. Red-White Valve Corp.
 e. Kitz Corporation

B. Bronze Globe Valves, General: MSS SP-80, with ferrous-alloy handwheel.

C. Type 2, Class 125, Bronze Globe Valves: Bronze body with PTFE or TFE disc and union-ring bonnet.

2.12 CHAINWHEELS

A. Manufacturers:

1. Babbitt Steam Specialty Co.
2. Roto Hammer Industries.
3. Trumbull Industries.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine piping system for compliance with requirements for installation tolerances and other conditions affecting performance.
 1. Proceed with installation only after unsatisfactory conditions have been corrected.

B. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

C. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

D. Examine threads on valve and mating pipe for form and cleanliness.

E. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

F. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install chainwheels on operators for valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.

F. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Plate-Type Check Valves: In horizontal or vertical position, between flanges.
 3. Lift Check Valves: With stem upright and plumb.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
1. Shutoff Service: Ball, butterfly or plug valves.
3. Throttling Service: Globe, angle or ball valves.
4. Pump-Discharge Check Valves: Spring-loaded, lift-disc check valves

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
3. For Steel Piping, NPS 2 and Smaller: Threaded ends.
4. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
5. For Steel Piping, NPS 5 and Larger: Flanged ends.
6. For Grooved-End Steel Piping: Valve ends may be grooved.

3.4 CHILLED-WATER AND HEATING-WATER VALVE SCHEDULE

A. Chilled-Water Systems: Use the following valve types:

1. Gate Valves: Class 150, bronze body; or Class 125, cast-iron body.
2. Ball Valves: Class 150, 600-psi CWP, with stem extension and memory stop.
4. Globe Valves: Class 125, bronze body with bronze or teflon disc; or Class 125, cast-iron body.
5. Butterfly Valves: Nickel-plated ductile iron, aluminum bronze, or elastomer-coated ductile iron disc; EPDM sleeve and stem seals.
6. Check Valves: Dual-plate, wafer, Class 150 ferrous alloy.

3.5 JOINT CONSTRUCTION

A. Refer to Division 23 Sections for basic piping joint construction.

B. Grooved Joints: Assemble joints with keyed coupling housing, gasket, lubricant, and bolts according to coupling and fitting manufacturer’s written instructions.

C. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-free-alloy solder; and ASTM B 828 procedure, unless otherwise indicated.

3.6 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

END OF SECTION 230523
SECTION 230529
HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Pipe stands.
 7. Equipment supports.

B. Related Sections:
 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 2. Section 230516 "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
 3. Section 230548.13 "Vibration Controls for HVAC" for vibration isolation devices.
 4. Section 233113 "Metal Ducts" and Section 233116 "Nonmetal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Metal framing systems.
3. Pipe stands.
4. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of trapeze hangers.
2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

1. Manufacturers:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.
 c. Flex-Strut Inc.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut Corporation; Tyco International, Ltd.
2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
4. Channels: Continuous slotted steel channel with inturned lips.
5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers:
1. Carpenter & Paterson, Inc.
2. ERICO/Michigan Hanger Co.
3. PHS Industries, Inc.
4. Pipe Shields, Inc.
5. Rilco Manufacturing Company, Inc.
6. Value Engineered Products, Inc.

B. Insulation-Insert Material for Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:

1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.
E. High-Type, Multiple-Pipe Stand:

1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
2. Bases: One or more; plastic.
3. Vertical Members: Two or more protective-coated-steel channels.
4. Horizontal Member: Protective-coated-steel channel.
5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.8 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:

1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:

1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

N. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.
3.2 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
 B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
 C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS
 A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
 C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING
 A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
 B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING
 A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
 B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 Sections.
 C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE
 A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
 B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and attachments for general service applications.

F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 2. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 3. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 4. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
 5. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
 6. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
 7. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joint construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

Q. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Elastomeric isolation pads.
2. Elastomeric isolation mounts.
3. Restrained elastomeric isolation mounts.
5. Elastomeric hangers.
7. Vibration isolation equipment bases.

B. Related Requirements:

1. Section 210548.13 "Vibration Controls for Fire Suppression" for devices for fire-suppression equipment and systems.
2. Section 220548.13 "Vibration Controls for Plumbing" for devices for plumbing equipment and systems.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device type required.

B. Shop Drawings:

1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For each vibration isolation device.

1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.

D. Wind-Restraint Details:

1. Basic Wind Speed: Refer to Arch.
2. Building Classification Category: Refer to Arch.
3. Code recommended wind pressure multiplied by the maximum area of the HVAC component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.
4. Design Analysis: To support selection and arrangement of wind restraints. Include calculations of combined tensile and shear loads.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of vibration isolation device installation for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.
B. Qualification Data: For testing agency.
C. Welding certificates.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: Provide operation and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ace Mountings Co., Inc.
2. Amber/Booth Company, Inc.
4. Isolation Technology, Inc.
7. Vibration Eliminator Co., Inc.
8. Vibration Isolation.

B. Elastomeric Isolation Pads:

1. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
2. Size: Factory or field cut to match requirements of supported equipment.
3. Pad Material: Oil and water resistant with elastomeric properties.
4. Surface Pattern: Ribbed or Waffle pattern.
5. Infused nonwoven cotton or synthetic fibers.
7. Sandwich-Core Material: Resilient and elastomeric.
 a. Surface Pattern: Ribbed or Waffle pattern.
 b. Infused nonwoven cotton or synthetic fibers.
C. Double-Deflection, Elastomeric Isolation Mounts:
 1. Mounting Plates:
 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.

 2. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

D. Restrained Elastomeric Isolation Mounts
 1. Description: All-directional isolator with restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 a. Housing: Cast-ductile iron or welded steel.
 b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

E. Freestanding, Laterally Stable, Open-Spring Isolators:
 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 5. Baseplates: Factory-drilled steel plate for bolting to structure with an elastomeric isolator pad attached to the underside. Baseplates shall limit floor load to 500 psig.
 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

F. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:
 1. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top plate with threaded mounting holes elastomeric pad.
 c. Internal leveling bolt that acts as blocking during installation.
 2. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

G. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
 1. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 2. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

H. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. **Overload Capacity:** Support 200 percent of rated load, fully compressed, without deformation or failure.
6. **Elastomeric Element:** Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
7. **Adjustable Vertical Stop:** Steel washer with neoprene washer "up-stop" on lower threaded rod.
8. **Self-centering hanger rod cap:** to ensure concentricity between hanger rod and support spring coil.

I. **Steel Rails:** Factory-fabricated, welded, structural-steel rails.

1. **Design Requirements:** Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide rails.

 a. Include supports for suction and discharge elbows for pumps.

2. **Structural Steel:** Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Rails shall have shape to accommodate supported equipment.
3. **Support Brackets:** Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

J. **Steel Bases:** Factory-fabricated, welded, structural-steel bases and rails.

1. **Design Requirements:** Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.

 a. Include supports for suction and discharge elbows for pumps.

2. **Structural Steel:** Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
3. **Support Brackets:** Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

2.2 **VIBRATION ISOLATION EQUIPMENT BASES**

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

 1. Amber/Booth Company, Inc.
 2. California Dynamics Corporation.
 3. Isolation Technology, Inc.
 5. Mason Industries.
 7. Vibration Isolation.
 8. Vibration Mountings & Controls, Inc.

B. **Inertia Base:** Factory-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.

 1. **Design Requirements:** Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.

 a. Include supports for suction and discharge elbows for pumps.

 2. **Structural Steel:** Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 3. **Support Brackets:** Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
 4. **Fabrication:** Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

3.3 VIBRATION ISOLATION EQUIPMENT BASES INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Division 03 Sections.

3.4 VIBRATION-CONTROL AND WIND-RESTRAINT DEVICE INSTALLATION

A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

B. Install cables so they do not bend across edges of adjacent equipment or building structure.

C. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

D. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

F. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.
3.5 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust active height of spring isolators.

END OF SECTION 230548.13
SECTION 230553
IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Duct labels.
 5. Stencils.
 6. Valve tags.
 7. Warning tags.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
D. Valve numbering scheme.
E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION
A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS
A. Plastic Labels for Equipment:
1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
2. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
3. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
4. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
5. Fasteners: Stainless-steel rivets or self-tapping screws.
6. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment’s Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
B. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
C. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
D. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
E. Fasteners: Stainless-steel rivets or self-tapping screws.
F. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
G. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction according to ASME A13.1.
B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: At least 1-1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.
2.4 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

B. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

C. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

D. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

E. Fasteners: Stainless-steel rivets or self-tapping screws.

F. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

G. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.5 VALVE TAGS

A. Description: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass beaded chain.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

A. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.
 1. Size: 3 by 5-1/4 inches minimum.
 2. Fasteners: Brass grommet and wire.
 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping Color Coding: Painting of piping is specified in Division 09 Sections.

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.

 1. Identification Paint: Use for contrasting background.

C. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

E. Pipe Label Color Schedule: Coordinate with Owner.
3.5 DUCT LABEL INSTALLATION

A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes: Coordinate with Owner.

B. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.6 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

3.7 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

3.8 PAINTING

A. Clarification: In exposed areas (with no acoustic ceiling tiles), piping and piping insulation shall be painted. Although Division 9 may not specifically call for painting of MEP items, it states paint type and requirements for different materials. To extent possible coordinate painting with Division 9 and with Architect. Where adequate specifications are not available, use the following general guidelines:

 a. Primer: Quick-drying, rust-inhibitive, alkyd-based or epoxy-metal primer, as recommended by the manufacturer for this substrate, applied at spreading rate recommended by the manufacturer to achieve a total dry film thickness of not less than 1.5 mils. S-W: Kem Kromik Universal Metal Primer B50NZ6/B50WZ1.
 b. Undercoat: Alkyd, interior enamel undercoat or semi-gloss, interior, alkyd-enamel finish coat, as recommended by the manufacturer for this substrate, applied at spreading rate recommended by the manufacturer to achieve a total dry film thickness of not less than 1.2 mils. S-W: Pro-mar 200 Interior Alkyd Enamel B34W200 Series.
 c. Finish Coat: Same as undercoat. Semi-gloss, alkyd, interior enamel applied at spreading rate recommended by the manufacturer to achieve a total dry film thickness of not less than 1.2 mils.

 b. Finish Coat: Same as undercoat. Semi-gloss, acrylic latex enamel applied at spreading rate recommended by the manufacturer to achieve a total dry film thickness of not less than 1.2 mils.

B. Final colors shall be coordinated with Owner and Architect during construction.

END OF SECTION 230553
SECTION 230593
TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. All Contractors shall coordinate activities and assist TAB Contractor as needed.
B. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems (water source heat pump units with ECM fan motors)
 2. Balancing Hydronic Piping Systems:
 a. Constant-flow hydronic systems (hot water primary loop).
 b. Variable-flow hydronic systems (water source heat pump system)
 3. Testing, Adjusting, and Balancing Equipment:
 a. Motors.
 b. Water source heat pump units.
 c. Hot water heater/boiler and pump
 d. Heat-transfer coils.
 4. Testing, adjusting, and balancing existing systems and equipment.
 5. Sound tests.
 6. Vibration tests.
 7. Duct leakage tests.
 8. Control system verification.
 9. Other tests as specified.

1.3 DEFINITIONS
B. BAS: Building automation systems.
C. TAB: Testing, adjusting, and balancing.
D. TABB: Testing, Adjusting, and Balancing Bureau.
E. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
F. TDH: Total dynamic head.
1.4 PREINSTALLATION MEETINGS

A. TAB Conference: If requested by the Owner, conduct a TAB conference at Project site after approval of
the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a
minimum of 14 days' advance notice of scheduled meeting time and location.

 1. Minimum Agenda Items:

 b. The TAB plan.
 c. Needs for coordination and cooperation of trades and subcontractors.
 d. Proposed procedures for documentation and communication flow.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB
specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance"
Article.

B. Contract Documents Examination Report: Within 60 days of Contractor's Notice to Proceed, submit the
Contract Documents review report as specified in Part 3.

C. Strategies and Procedures Plan: Within 60 days of Contractor's Notice to Proceed, submit TAB strategies

D. System Readiness Checklists: Within 7 days of Contractor's Notice, submit system readiness checklists as
specified in "Preparation" Article.

E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.

F. Certified TAB reports.

G. Sample report forms.

H. Instrument calibration reports, to include the following:

 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

1.6 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by AABC.

 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC.
 2. TAB Technician: Employee of the TAB specialist and certified by AABC as a TAB technician.

B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111,
Section 4, "Instrumentation."

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System
Balancing."
1.7 FIELD CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, “Fans and Systems,” or in SMACNA’s “HVAC Systems - Duct Design.” Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

K. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.

L. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.

M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
N. Examine system pumps to ensure absence of entrained air in the suction piping.

O. Examine operating safety interlocks and controls on HVAC equipment.

P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes the following:
 1. Equipment and systems to be tested.
 3. Instrumentation to be used.
 4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with terminals installed.
 c. Volume, smoke, and fire dampers are open and functional.
 d. Clean filters are installed.
 e. Fans are operating, free of vibration, and rotating in correct direction.
 f. Variable-frequency controllers’ startup is complete and safeties are verified.
 g. Automatic temperature-control systems are operational.
 h. Ceilings are installed.
 i. Windows and doors are installed.
 j. Suitable access to balancing devices and equipment is provided.
 2. Hydronics:
 a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
 b. Piping is complete with terminals installed.
 c. Water treatment is complete.
 d. Systems are flushed, filled, and air purged.
 e. Strainers are pulled and cleaned.
 f. Control valves are functioning per the sequence of operation.
 g. Shutoff and balance valves have been verified to be 100 percent open.
 h. Pumps are started and proper rotation is verified.
 i. Pump gage connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
 j. Variable-frequency controllers’ startup is complete and safeties are verified.
 k. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC’s "National Standards for Total System Balance" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to
construct ducts.
2. After testing and balancing, install test ports and duct access doors that comply with requirements
in Section 233300 "Air Duct Accessories."
3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor
barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC
Equipment Insulation," and Section 230719 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-
speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification
material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS
A. Prepare test reports for both fans and outlets. Obtain manufacturer’s outlet factors and recommended
testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems’ "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers
through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS
A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan
manufacturer.

1. Measure total airflow.
 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum
 outdoor-air conditions.
 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform
 multiple Pitot-tube traverses to obtain total airflow.
 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse
 may be acceptable.
 d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals
 and calculate the total airflow.
2. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 1. Measure airflow of submain and branch ducts.
 2. Adjust submain and branch duct volume dampers for specified airflow.
 3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets for each space to indicated airflows.
 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 2. Measure inlets and outlets airflow.
 3. Adjust each inlet and outlet for specified airflow.
 4. Re-measure each inlet and outlet after they have been adjusted.

D. Verify final system conditions.
 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 2. Re-measure and confirm that total airflow is within design.
 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
 4. Mark all final settings.
 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 6. Measure and record all operating data.
 7. Record final fan-performance data.

3.6 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports for pumps, coils, and heat exchangers. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required coil and heat exchanger flow rates with pump design flow rate.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. In addition to requirements in "Preparation" Article, prepare hydronic systems for testing and balancing as follows:
 1. Check liquid level in expansion tank.
 2. Check highest vent for adequate pressure.
 3. Check flow-control valves for proper position.
 4. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
 5. Verify that motor starters are equipped with properly sized thermal protection.
 6. Check that air has been purged from the system.
3.7 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals, and proceed as specified above for hydronic systems.

B. Adjust the variable-flow hydronic system as follows:
 1. Verify that the differential-pressure sensor is located as indicated.
 2. Determine whether there is diversity in the system.

3.8 PROCEDURES FOR PRIMARY-SECONDARY HYDRONIC SYSTEMS

A. Balance the primary circuit flow first.

B. Balance the secondary circuits after the primary circuits are complete.

C. Adjust pumps to deliver total design gpm.
 1. Measure total water flow.
 a. Position valves for full flow through coils.
 b. Measure flow by main flow meter, if installed.
 c. If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.

 2. Measure pump TDH as follows:
 a. Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 b. Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 c. Convert pressure to head and correct for differences in gage heights.
 d. Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 e. With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.

D. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 1. Measure flow at terminals.
 2. Adjust each terminal to design flow.
 3. Re-measure each terminal after it is adjusted.
 4. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
 5. Perform temperature tests after flows have been balanced.

E. For systems with pressure-independent valves at terminals:
 1. Measure differential pressure and verify that it is within manufacturer's specified range.
 2. Perform temperature tests after flows have been verified.

F. Verify final system conditions as follows:
 1. Re-measure and confirm that total water flow is within design.
 2. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
3. Mark final settings.

G. Verify that memory stops have been set.

3.9 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 1. Manufacturer's name, model number, and serial number.
 4. Phase and hertz.
 5. Nameplate and measured voltage, each phase.
 6. Nameplate and measured amperage, each phase.
 7. Starter size and thermal-protection-element rating.
 8. Service factor and frame size.

B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.10 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

B. Measure entering- and leaving-air temperatures.

C. Record fan and motor operating data.

3.11 PROCEDURES FOR BOILERS

A. Hydronic Boilers:
 1. Measure and record entering- and leaving-water temperatures.
 2. Measure and record water flow.
 3. Record relief valve pressure setting.

3.12 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each water coil:
 1. Entering- and leaving-water temperature.
 2. Water flow rate.
 3. Water pressure drop for major (more than 20 gpm) equipment coils, excluding unitary equipment such as reheat coils, unit heaters, and fan-coil units.
 4. Dry-bulb temperature of entering and leaving air.
 5. Wet-bulb temperature of entering and leaving air for cooling coils.
 6. Airflow.

B. Measure, adjust, and record the following data for each electric heating coil:
 1. Nameplate data.
 2. Airflow.
 3. Entering- and leaving-air temperature at full load.
 4. Voltage and amperage input of each phase at full load.
 5. Calculated kilowatt at full load.
6. Fuse or circuit-breaker rating for overload protection.

C. Measure, adjust, and record the following data for each steam coil:
 1. Dry-bulb temperature of entering and leaving air.
 2. Airflow.

D. Measure, adjust, and record the following data for each refrigerant coil:
 1. Dry-bulb temperature of entering and leaving air.
 2. Wet-bulb temperature of entering and leaving air.
 3. Airflow.

3.13 TEMPERATURE TESTING

A. During testing, adjusting, and balancing, report need for adjustment in temperature regulation within the automatic temperature-control system.

B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of 2 successive 8-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.

C. Measure outside-air, wet- and dry-bulb temperatures.

3.14 PROCEDURES FOR SPACE PRESSURIZATION MEASUREMENTS AND ADJUSTMENTS

A. Before testing for space pressurization, observe the space to verify the integrity of the space boundaries. Verify that windows and doors are closed and applicable safing, gaskets, and sealants are installed. Report deficiencies and postpone testing until after the reported deficiencies are corrected.

B. Measure, adjust, and record the pressurization of each room, each zone, and each building by adjusting the supply, return, and exhaust airflows to achieve the indicated conditions.

C. Measure space pressure differential where pressure is used as the design criteria, and measure airflow differential where differential airflow is used as the design criteria for space pressurization.
 1. For pressure measurements, measure and record the pressure difference between the intended spaces at the door with all doors in the space closed. Record the high-pressure side, low-pressure side, and pressure difference between each adjacent space.
 2. For applications with cascading levels of space pressurization, begin in the most critical space and work to the least critical space.
 3. Test room pressurization first, then zones, and finish with building pressurization.

D. To achieve indicated pressurization, set the supply airflow to the indicated conditions and adjust the exhaust and return airflow to achieve the indicated pressure or airflow difference.

E. For spaces with pressurization being monitored and controlled automatically, observe and adjust the controls to achieve the desired set point.
 1. Compare the values of the measurements taken to the measured values of the control system instruments and report findings.
 2. Check the repeatability of the controls by successive tests designed to temporarily alter the ability to achieve space pressurization. Test overpressurization and underpressurization, and observe and report on the system's ability to revert to the set point.
 3. For spaces served by variable-air-volume supply and exhaust systems, measure space pressurization at indicated airflow and minimum airflow conditions.

F. In spaces that employ multiple modes of operation, such as normal mode and emergency mode or occupied mode and unoccupied mode, measure, adjust, and record data for each operating mode.
G. Record indicated conditions and corresponding initial and final measurements. Report deficiencies.

3.15 PROCEDURES FOR INDOOR-AIR QUALITY MEASUREMENTS

A. After air balancing is complete and with HVAC systems operating at indicated conditions, perform indoor-air quality testing.

B. Observe and record the following conditions for each HVAC system:
 1. The distance between the outside-air intake and the closest exhaust fan discharge, flue termination, or vent termination.
 2. Specified filters are installed. Check for leakage around filters.
 3. Cooling coil drain pans have a positive slope to drain.
 4. Cooling coil condensate drain trap maintains an air seal.
 5. Evidence of water damage.
 6. Insulation in contact with the supply, return, and outside air is dry and clean.

C. Measure and record indoor conditions served by each HVAC system. Make measurements at multiple locations served by the system if required to satisfy the following:
 1. Most remote area.
 2. One location per floor.
 3. One location for every 5000 sq. ft..

D. Measure and record the following indoor conditions for each location two times at two-hour intervals, and in accordance with ASHRAE 113:
 1. Temperature.
 2. Relative humidity.
 3. Air velocity.

3.16 VIBRATION TESTS

A. After systems are balanced and construction is Substantially Complete, measure and record vibration levels on equipment having motor horsepower equal to or greater than 10.

B. Instrumentation:
 1. Use portable, battery-operated, and microprocessor-controlled vibration meter with or without a built-in printer.
 2. The meter shall automatically identify engineering units, filter bandwidth, amplitude, and frequency scale values.
 3. The meter shall be able to measure machine vibration displacement in mils of deflection, velocity in inches per second, and acceleration in inches per second squared.
 4. Verify calibration date is current for vibration meter before taking readings.

C. Test Procedures:
 1. To ensure accurate readings, verify that accelerometer has a clean, flat surface and is mounted properly.
 2. With the unit running, set up vibration meter in a safe, secure location. Connect transducer to meter with proper cables. Hold magnetic tip of transducer on top of the bearing, and measure unit in mils of deflection. Record measurement, then move transducer to the side of the bearing and record in mils of deflection. Record an axial reading in mils of deflection by holding nonmagnetic, pointed transducer tip on end of shaft.
 3. Change vibration meter to velocity (inches per second) measurements. Repeat and record above measurements.
 4. Record CPM or rpm.
 5. Read each bearing on motor, fan, and pump as required. Track and record vibration levels from rotating component through casing to base.
D. Reporting:

1. Report shall record location and the system tested.
2. Include horizontal-vertical-axial measurements for tests.
3. Verify that vibration limits follow Specifications, or, if not specified, follow the General Machinery Vibration Severity Chart or Vibration Acceleration General Severity Chart from the AABC National Standards. Acceptable levels of vibration are normally “smooth” to “good.”
4. Include in report General Machinery Vibration Severity Chart, with conditions plotted.

3.17 DUCT LEAKAGE TESTS

A. Witness the duct pressure testing performed by Installer.
B. Verify that proper test methods are used and that leakage rates are within specified tolerances.
C. Report deficiencies observed.

3.18 CONTROLS VERIFICATION

A. In conjunction with system balancing, perform the following:

1. Verify temperature control system is operating within the design limitations.
2. Confirm that the sequences of operation are in compliance with Contract Documents.
3. Verify that controllers are calibrated and function as intended.
4. Verify that controller set points are as indicated.
5. Verify the operation of lockout or interlock systems.
6. Verify the operation of valve and damper actuators.
7. Verify that controlled devices are properly installed and connected to correct controller.
8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.
10. Verify controls sequences for other MEP items as specified.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.19 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
2. Air Outlets and Inlets: Plus or minus 10 percent.
3. Cooling-Water Flow Rate: Plus or minus 5 percent.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.20 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
B. Status Reports: Prepare progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.21 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report’s binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Pump curves.
2. Fan curves.
3. Manufacturers' test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.

12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. VFD settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Cooling-coil static-pressure differential in inches wg.
 g. Heating-coil static-pressure differential in inches wg.
 h. Outdoor airflow in cfm.
 i. Return airflow in cfm.
 j. Outdoor-air damper position.
 k. Return-air damper position.
 l. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
 g. Face area in sq. ft.
 h. Tube size in NPS.
 i. Tube and fin materials.
2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 e. Return-air, wet- and dry-bulb temperatures in deg F.
 f. Entering-air, wet- and dry-bulb temperatures in deg F.
 g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 h. Water flow rate in gpm.
 i. Water pressure differential in feet of head or psig.
 j. Entering-water temperature in deg F.
 k. Leaving-water temperature in deg F.
 l. Refrigerant expansion valve and refrigerant types.
 m. Refrigerant suction pressure in psig.
 n. Refrigerant suction temperature in deg F.

G. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

H. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
f. Duct area in sq. ft.
g. Indicated airflow rate in cfm.
h. Indicated velocity in fpm.
i. Actual airflow rate in cfm.
j. Actual average velocity in fpm.
k. Barometric pressure in psig.

I. Compressor and Condenser Reports: For refrigerant side of unitary systems, stand-alone refrigerant compressors, water-cooled condensing units, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Unit make and model number.
 d. Compressor make.
 e. Compressor model and serial numbers.
 f. Refrigerant weight in lb.
 g. Low ambient temperature cutoff in deg F.

2. Test Data (Indicated and Actual Values):
 a. Control settings.
 b. Unloader set points.
 c. Low-pressure-cutout set point in psig.
 d. High-pressure-cutout set point in psig.
 e. Suction pressure in psig.
 f. Suction temperature in deg F.
 g. Condenser refrigerant pressure in psig.
 h. Condenser refrigerant temperature in deg F.
 i. Oil pressure in psig.
 j. Oil temperature in deg F.
 k. Voltage at each connection.
 l. Amperage for each phase.
 m. Kilowatt input.
 n. Crankcase heater kilowatt.
 o. Number of fans.
 p. Condenser fan rpm.
 q. Condenser water flow rate.
 r. Entering-water temperature in deg F.
 s. Leaving-water temperature in deg F.
 t. Water pressure drop in feet of head or psig.
 u. Entering-air temperature in deg F.
 v. Leaving-air temperature in deg F.

J. Indoor-Air Quality Measurement Reports for Each HVAC System:

1. HVAC system designation.
2. Date and time of test.
3. Outdoor temperature, relative humidity, wind speed, and wind direction at start of test.
4. Room number or similar description for each location.
5. Measurements at each location.
6. Observed deficiencies.

K. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.
3.22 VERIFICATION OF TAB REPORT

A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of Architect.

B. Architect shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

E. If TAB work fails, proceed as follows:
 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
 3. If the second verification also fails, design professional may contact AABC Headquarters regarding the AABC National Performance Guaranty.

F. Prepare test and inspection reports.

3.23 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593
SECTION 230713
DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulating the following duct services:
 1. Indoor, exposed and concealed supply and outdoor air.
 2. Indoor, concealed return located in unconditioned space.
B. Related Sections:
 1. Section 230719 "HVAC Piping Insulation."
 2. Section 233113 "Metal Ducts" for duct liners.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 3. Detail application of field-applied jackets.
 4. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified Installer.
B. Field quality-control reports.

1.5 QUALITY ASSURANCE
A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, and are limited to, the following:

1. Mineral-Fiber Insulation:
 a. CertainTeed
 b. Manson.
 c. Knauf FiberGlass GmbH.
 d. Owens-Corning Fiberglas Corp.
 e. Schuller International, Inc.

2.2 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type II for sheet materials.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
 3. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
6. Sealants shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

2.9 TAPES

A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Width: 4 inches.
 2. Thickness: 6.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.10 SECUREMENTS

A. Bands:
 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 3/4 inch wide.

B. Insulation Pins and Hangers:
 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated.
 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

D. Wire: 0.062-inch soft-annealed, stainless steel.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."
3.5 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.6 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.7 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 9.

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint aluminum or stainless-steel jackets.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
7. Outdoor, concealed supply and return.
8. Outdoor, exposed supply and return.

B. Items Not Insulated:
1. Fibrous-glass ducts.
2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
3. Factory-insulated flexible ducts.
5. Flexible connectors.
7. Factory-insulated access panels and doors.

3.10 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Service: Round & rectangular, supply-air ducts concealed, and twenty feet of supply air ducts closest to AHU or FCU, and where noted on plans.
 2. Thickness: 3 inches (R-8 min).
 3. Number of Layers: One.
 5. Vapor Retarder Required: Yes.

B. Service: Round & rectangular, outside-air.
 2. Thickness: 2 inches (R-6 min).
 3. Number of Layers: One.
 5. Vapor Retarder Required: Yes.

C. Service: Ten feet of supply and return air ducts closest to AHU or FCU.
 1. Material: In addition to exterior wrap, provide internal liner for sound attenuation purposes.
 2. Thickness: 1 inches.

D. Service: Ten feet of exhaust air duct closest to where duct penetrates the exterior envelope.
 2. Thickness: 2 inches.

E. Where ductwork is not completely concealed, paint all ductwork and/or insulation. Coordinate color and finish with Architect.

END OF SECTION 230713
SECTION 230719
HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following HVAC piping systems:
 1. Condensate drain piping, indoors.
 2. Hot-water and hydronic piping in mechanical rooms, indoors.

B. Related Sections:
 1. Section 230713 "Duct Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail insulation application at pipe expansion joints for each type of insulation.
 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Detail removable insulation at piping specialties.
 6. Detail application of field-applied jackets.
 7. Detail application at linkages of control devices.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Cellular-Glass Insulation:
 a. Pittsburgh-Corning Corp.
 b. Cell-U-Foam Corporation; Ultra-CUF.

2. Flexible Elastomeric Thermal Insulation:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armadex.
 c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.

3. Closed-Cell Phenolic-Foam Insulation:
 a. Kooltherm Insulation Products, Ltd.

2.2 INSULATION MATERIALS

A. Mineral-fiber insulation will NOT be allowed for use on any cold piping systems.

B. Mineral-fiber wrap is NOT approved for use on piping insulation.

D. Products shall not contain asbestos, lead, mercury, or mercury compounds.

E. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

F. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

G. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

H. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Block Insulation: ASTM C 552, Type I.
 2. Special-Shaped Insulation: ASTM C 552, Type III.
 4. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

I. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

J. Phenolic:
 1. Preformed pipe insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type III, Grade 1.
 2. Block insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type II, Grade 1.
 3. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
 a. Preformed Pipe Insulation: ASJ.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
 1. Products:
 a. Childers Products, Division of ITW; CP-96.
 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Phenolic Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.
 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
D. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Products:
 a. Aeroflex USA Inc.; Aeroseal.
 b. Armacell LCC; 520 Adhesive.
 c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 d. RBX Corporation; Rubatex Contact Adhesive.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

1. Products:
 a. Childers Products, Division of ITW; CP-82.
 c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 d. Marathon Industries, Inc.; 225.
 e. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.

3. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. Joint Sealants:
1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Permanently flexible, elastomeric sealant.
3. Service Temperature Range: Minus 100 to plus 300 deg F.
5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. FSK and Metal Jacket Flashing Sealants:
1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. ASJ Flashing Sealants, Jacket Flashing Sealants:
1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.

2.9 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd..

2.10 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

C. Metal Jacket:
 a. Factory cut and rolled to size.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 d. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

D. Underground Direct-Buried Jacket: 125-mil-thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.

2.11 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 6.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 1. Width: 2 inches.
 2. Thickness: 3.7 mils.
 3. Adhesion: 100 ounces force/inch in width.
 4. Elongation: 5 percent.
 5. Tensile Strength: 34 lbf/inch in width.

2.12 SECUREMENTS

A. Bands:
 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 3/4 inch wide.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.
C. Wire: 0.062-inch soft-annealed, stainless steel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

1. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range. NO EXCEPTION: PIPES SHALL BE PAINTED.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.
J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer’s written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.
B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.

4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of cellular-glass insulation to valve body.
 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION
A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 INSTALLATION OF PHENOLIC INSULATION
A. General Installation Requirements:
 1. Secure single-layer insulation with stainless-steel bands at 12-inch intervals and tighten bands without deforming insulation materials.
 2. Install 2-layer insulation with joints tightly butted and staggered at least 3 inches. Secure inner layer with 0.062-inch wire spaced at 12-inch intervals. Secure outer layer with stainless-steel bands at 12-inch intervals.

B. Insulation Installation on Straight Pipes and Tubes:
1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets with vapor retarders on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

C. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.

D. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.

E. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.9 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.10 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.11 FINISHES

A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 9 Sections.

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.12 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of fittings, two locations of strainers, three locations of valves, for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.13 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.
3.14 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 3/4 inch thick.
 2. Vapor Retarder Required: Yes.
 3. Aluminum jacket.

B. WSHP piping:
 1. Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.
 b. Cellular Glass: 1 inch thick.
 c. Phenolic: 1 inch thick.
 2. Vapor Retarder Required: Yes.
 3. Aluminum jacket.

C. Where piping is exposed to view or not completely concealed above wall-to-wall suspended ceiling tiles, piping and/or insulation shall be painted. Coordinate color and finish with Architect.

3.15 FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
 1. Aluminum, Smooth with Z-Shaped Locking Seam: 0.020 inch thick.

END OF SECTION 230719
SECTION 230800
COMMISSIONING OF HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes commissioning process requirements for the following MEP systems, assemblies, and equipment:
 1. HVAC equipment.
 2. Controls and instrumentation, including BAS energy monitoring and control system.
B. Related Requirements:
 1. Section 019113 "General Commissioning Requirements" for general commissioning process requirements and Commissioning Coordinator responsibilities.

1.3 DEFINITIONS
A. Refer to Section 019113 "General Commissioning Requirements" for additional definitions and assignment of responsibilities.
B. BAS: Building automation system.
C. DDC: Direct digital controls.
D. "Systems," "Subsystems," "Equipment," and "Components": Where these terms are used together or separately, they shall mean "as-built" systems, subsystems, equipment, and components.
E. TAB: Testing, adjusting, and balancing.
F. Commissioning Authority (CxA): Independent agent hired by Owner and not associated with General Contractor or its subcontractors, Architect or its sub-consultants, or Construction Administrator or its staff or consultants. Under Owner’s direction, and not General Contractor’s direction, CA will direct and coordinate day-to-day commissioning activities without assuming oversight responsibilities.

1.4 CONTRACTOR’S RESPONSIBILITIES
A. Refer to Section 019113 "General Commissioning Requirements".
B. Perform commissioning tests at the direction of the CxA.
C. Attend construction phase controls coordination meeting.
D. Attend testing, adjusting, and balancing review and coordination meeting.
E. Participate in mechanical systems, assemblies, equipment, and component maintenance orientation and inspection.
F. Provide information requested by the CxA for final commissioning documentation.

G. Provide measuring instruments and logging devices to record test data, and provide data acquisition equipment to record data for the complete range of testing for the required test period.

H. Provide Project-specific construction checklists and commissioning process test procedures for actual mechanical systems, assemblies, equipment, and components to be furnished and installed as part of the construction contract.

I. Direct and coordinate commissioning testing among subcontractors, suppliers, and vendors.

J. Verify testing, adjusting, and balancing of Work are complete.

1.5 COMMISSIONING DOCUMENTATION

A. Provide the following information to the CxA for inclusion in the commissioning plan:

1. Plan for delivery and review of systems manuals, and other documents and reports.
2. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase.
3. Process and schedule for completing construction checklists and manufacturer’s pre-start and startup checklists for mechanical systems, assemblies, equipment, and components to be verified and tested.
4. Certificate of completion certifying that installation, pre-start checks, and startup procedures have been completed.
5. Certificate of readiness certifying that mechanical systems, subsystems, equipment, and associated controls are ready for testing.
6. Test and inspection reports and certificates.
7. Corrective action documents.
8. Verification of testing, adjusting, and balancing reports.

1.6 INFORMATIONAL SUBMITTALS

A. Construction Checklists: See related Sections for technical requirements, and generate construction checklists for the following:

1. Instrumentation and control for MEP systems.
2. Cooling-water piping and accessories.
3. Condensate piping and accessories.
4. Metal ducts and accessories.
5. Fans.
6. Air conditioning units
8. Pumps.

B. Certificates of readiness.

C. Certificates of completion of installation, pre-start, and startup activities.
PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS
 A. Refer to Section 019113 "General Commissioning Requirements".

3.2 SYSTEMS READINESS CHECKLISTS
 A. Construction Checklists: Assist CxA in the preparation of detailed Systems Readiness checklists for
 systems, subsystems, equipment, and components.
 1. Contributors to the development of checklists shall include, but are not limited to, the following:
 a. Systems and equipment installers.
 b. TAB technicians.
 c. Instrumentation and controls installers.
 B. Contractor shall conduct Systems Readiness Testing to document compliance with installation and
 Systems Readiness checklists prepared by Commissioning Authority for Division-23 items.
 C. Refer to Section 019113 "General Commissioning Requirements" for issues relating to Systems
 Readiness checklists and testing, description of process, details on non-conformance issues relating to
 pre-functional checklists and test.

3.3 SYSTEM START-UP
 A. Contractor is solely responsible for system start-up. CxA may, at his discretion, witness start up
 procedures, but will not perform any Functional Testing of systems until Contractor has completed start-up
 and resolved all operating deficiencies.

3.4 TESTING PREPARATION
 A. Certify that systems, subsystems, and equipment have been installed, calibrated, and started and are
 operating according to the Contract Documents.
 B. Certify that instrumentation and control systems have been completed and calibrated, that they are
 operating according to the Contract Documents and approved Shop Drawings and submittals, and that
 pretest set points have been recorded.
 C. Certify that TAB procedures have been completed and that TAB reports have been submitted,
 discrepancies corrected, and corrective work approved.
 D. Set systems, subsystems, and equipment into operating mode to be tested according to approved test
 procedures (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle,
 emergency power, and alarm conditions).

3.5 TESTING AND BALANCING VERIFICATION
 A. Prior to performance of testing and balancing Work, provide copies of reports, sample forms, checklists,
 and certificates to the CxA.
B. Provide technicians, instrumentation, and tools to verify testing and balancing of mechanical systems at the direction of the CxA.

1. The CxA will notify Contractor 4 days in advance of the date of field verification. Notice will not include data points to be verified.
2. The testing and balancing Subcontractor shall use the same instruments (by model and serial number) that were used when original data were collected.
3. Failure of an item includes, other than sound, a deviation of more than 10 percent. Failure of more than 10 percent of selected items shall result in rejection of final testing, adjusting, and balancing report. For sound pressure readings, a deviation of 3 dB shall result in rejection of final testing. Variations in background noise must be considered.
4. Remedy the deficiency and notify the CxA so verification of failed portions can be performed.

3.6 GENERAL TESTING REQUIREMENTS

A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.

B. Scope of mechanical testing shall include entire HVAC installation, from central equipment for heat generation and refrigeration through distribution systems to each space served. Testing shall include measuring capacities and effectiveness of operational and control functions.

C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.

D. Tests will be performed using design conditions whenever possible.

E. Simulated conditions may need to be imposed using an artificial load when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the Contracting Officer and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.

F. The CxA may direct that set points be altered when simulating conditions is not practical.

G. The CxA may direct that sensor values be altered with a signal generator when design or simulating conditions and altering set points are not practical.

H. If tests cannot be completed because of a deficiency outside the scope of the mechanical system, document the deficiency and report it to the Owner. After deficiencies are resolved, reschedule tests.

I. If the testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.

3.7 GENERAL TESTING PROCEDURES FOR HVAC SYSTEMS, SUBSYSTEMS, AND EQUIPMENT

A. HVAC Instrumentation and Control System Testing: Contractor shall fully test operation of controls system prior to requesting Functional Testing with CxA. Point-to-point check out sheets and as-built control diagrams shall be provided to CxA so he may develop testing procedures.

B. Mechanical Subcontractor shall prepare a pipe system cleaning, flushing, and hydrostatic testing plan for piping systems. Provide cleaning, flushing, testing, and treating plan and final reports to the CxA.

C. HVAC Distribution System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of air distribution systems; special exhaust; and other distribution systems, including HVAC terminal equipment and unitary equipment.
3.8 FUNCTIONAL TEST PROCEDURES FOR SYSTEMS TO BE COMMISSIONED

A. General
1. The following paragraphs outline the functional test procedures for the various Div. 23 items to be commissioned. Functional testing will take place only after System Readiness checklists have been completed, equipment has been started-up, TAB has been verified, and Contractor has certified that systems are ready for functional testing.
2. All systems controlled via the Building Automation System shall have all control points and sequences tested by Controls Contractor prior to requesting testing by Commissioning Authority.
3. Functional testing of HVAC systems shall include testing of the Building Automation System.

B. All Equipment:
1. Verify nameplate information (serial numbers, model numbers, etc.); verify that equipment capacity is in accordance with requirements of construction documents.
2. Verify unit runs smoothly and quietly.
3. Verify operation of safeties.
4. Verify electrical wiring and grounding is correct.
5. Verify maintenance and NEC clearances are maintained.
6. Verify Systems Readiness Checklists have been completed.

3.9 COMMISSIONING TESTS

A. Functional testing will be performed on all HVAC equipment, including but limited to the following:
1. Air conditioning units
2. Exhaust fans
3. Hydronic water distribution system
4. Air distribution system
5. Building automation system

B. Sample requirements are as follows:
1. Record temperatures, pressures.
2. Record programmed setpoints (unocc/occ temperature, RH, CO2, runtime, safeties, alarms).
3. Record programmed schedules and interlocks.
4. Verify equipment installation
5. Verify equipment operation.
6. Verify electrical voltage and amperages are within tolerance.
7. Verify unit data in TAB report.
8. Verify alarms and safeties.
9. Verify all sequences.
10. Verify setpoint resets, adaptive controls for energy conservation.

C. Customized system readiness checklists and function testing requirements will be released after the submittal review phase.

3.10 TRAINING AND O&M MANUALS

A. Refer to Div. 23 specifications.

END OF SECTION 230800
SECTION 230900
INSTRUMENTATION AND CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes hardware and control sequence requirements for new HVAC systems.

1. Provide a new fully-integrated DDC system which operates in stand-alone mode.

2. Controls shall be fully accessible via the World Wide Web.

3. Integrate with unitary controllers at equipment via BACnet interface cards, and other hardware and software necessary to meet specifications.

4. Reuse existing Central and/or Portable Operator Stations.

B. Scope of Work under this section includes, but is not limited to the following principal aspects:

1. It is the Contractor's responsibility to verify that the system proposed is fully compatible with the existing versions of hardware and software currently in use at the Facility. Include in proposal any costs associated with upgrades or revisions required to ensure compatibility. Include costs associated with gateways, LON or BACnet interface cards, and other software and hardware requirements that are required to integrate unitary controls with the BAS.

2. The new Building Automation System shall include the creation of custom 3D Thermographic floor plans and 3D equipment graphics. All graphic displays will reside on the new Web Server and be modified accordingly. Failure to mention any specific item or device does not relieve the Contractor of the responsibility for installing or integrating such device/peripheral in order to comply with the intent of the Drawings or this Specification.

3. BAS shall be fully accessible from the existing Central Operator's Station (COS). All hardware and software necessary to ensure compatibility and accessibility shall be provided as part of the proposal.

4. Microprocessor Direct Digital Control (DDC), Process Control Units (PCUs) dedicated to achieve control sequences specified for MEP equipment such as air handlers, Water Source Heat Pump systems, and exhaust fans. System will operate in standalone mode - i.e. independently of communications with any other systems.

5. DDC system and associated temperature sensors to achieve space temperature control and communicate space conditions throughout the BAS.

6. Additional controller(s), hardware and software required to achieve operational sequences as specified for all other HVAC system components

7. Communications wiring and hardware to allow all new controllers to communicate amongst themselves and to existing Central Operator's Workstation via Owner's communications network. Provide Web server, communications wiring, and access to the buildings existing Ethernet or Local Area Network for access to/from the World Wide Web.

8. The BAS shall be available via the World Wide Web, including the ability to change setpoints, perform overrides, view and change schedules, view and acknowledge alarms, and view historical information using a Web browser on any PC. Industry standard security protocols shall be implemented to provide adequate security and restrict access to authorized users only. Provide Web server, communications wiring, and access to the buildings Ethernet or Local Area Network for access to/from the World Wide Web.

9. Provide the following elements which may not be specifically referenced elsewhere but are required for a complete functional installation:

 a. Control and signal wiring.

 b. Transducers required to interface field devices with electronic logic elements, including damper actuators not provided by AHU supplier.

10. Electrical requirements associated with work of this section. This includes the following:

 a. Power supply wiring to control panels, field-devices, motor starters and other devices requiring power at 120 volts and higher.
b. Provide power for all damper-actuators including VAV boxes, and valve-actuators.
c. Interlock wiring where required to achieve sequences.
11. Connect all safeties, alarms, and other control wiring which may have been disconnected during the course of construction.
12. UL listed plenum rated cable may be used above ceilings. Control wiring in exposed locations shall be in EMT conduit.
13. With equipment suppliers, coordinate factory-installation of any DDC related items, valves, dampers, actuators, communication cards, etc.
14. Provide all programming and user-friendly graphical interface to achieve specified sequences. All graphics pages must have units listed beside parameter values (e.g. sf, ppm, %, % of full speed, % open or % closed, etc.).

C. Controls Contractor is responsible for all aspects of work related to the complete operational installation of systems. Coordinate with Mechanical and Electrical Contractors prior to bid to coordinate responsibilities for providing and installing components required for Controls System. This includes but is not limited to:
1. Sensors and devices in distribution systems.
2. Electrical hardware and components to include 24V and 120V power for all control devices.
3. Dampers and duct devices.
4. End devices provided by equipment manufacturer.
5. Interface devices as required to interface with equipment control panels such as WSHP systems, etc.

1.3 GENERAL SYSTEM DESCRIPTION

A. The system shall be of modular design consisting of:
1. Process Control Units (PCU’s) and field devices including all necessary sensors, relays, actuators, controllers, etc. to achieve individual air handler sequences in standalone mode.
 a. Each AHU shall have one or more dedicated PCUs installed in close physical proximity, which will control AHU and all associated space temperatures, dampers, outside air units, and exhaust fans.
2. Terminal Unit Controllers (TUC’s) to control operation of individual air terminal devices.
3. Unit Control Modules (UCM’s) to control operation of zone variable volume dampers to meet operational sequences. Each variable volume damper shown on mechanical drawings shall have an associated UCM.
4. Interface controllers as needed to coordinate communication between UCMs and PCUs.
5. Zone thermostats to have adjustable thumbwheel setpoint, on and cancel buttons, and communication jack.
6. All sensors and devices required to achieve specified sequences.
7. A Local Area Network to allow information to be transmitted “globally” between all nodes of the network.
8. Integration with the Owner’s router to allow for remote access of all points in the system via internet connections. Integration with Existing Central Operator’s Station hardware and software.

B. The system shall permit expansion by installing additional control modules.

C. The system shall be provided with all software, hardware and devices required to achieve all control sequences specified as a minimum, and any special requirements to access data, change setpoints and perform functions specified.

1.4 CODE REQUIREMENTS

A. All equipment and material and its installation shall conform to the current requirements of the following authorities, and local amendments:
1. Occupational Safety and Health Act (OSHA)
2. International Electric Code (IEC)
3. International Fire Code
4. International Building Code
5. International Mechanical Code
6. International Plumbing Code
7. UL 916

B. Where two or more codes conflict, the most restrictive shall apply. Nothing in these specifications shall be construed to permit work not conforming to applicable codes.

1.5 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing the products specified in this section, with a minimum of five years of documented recent experience.

B. Installer: Shall be a direct factory owned office of the manufacturer, for the brand or make of control equipment to be supplied. The contractor shall have a local office within a 150-mile radius of the jobsite, with engineers capable of providing instructions, routine maintenance, design services, programming, and emergency system service on staff. Installer shall have an effective response time of not more than 24 hours.

C. Installer shall have a minimum of five (5) years recent experience in the design and installation of comparable automation systems in the general area of this project, and make available evidence of this history.

D. System software design shall be under direct supervision of a Professional Engineer experienced in design of this work and licensed in the State of Texas.

E. Controls work shall be performed by programmers / technicians with a minimum of five years experience in similar projects. Project managers, programmers, and technicians performing work on this contract shall have a minimum of two years experience working with the contracting company.

F. Owner reserves the right to reject the assignment of project managers, programmers and technicians with inadequate experience, and to request assignment of other staff / personnel.

1.6 SUBMITTALS, DOCUMENTATION AND ACCEPTANCE

A. Submittals
 1. A minimum of five (5) copies of shop drawings shall be submitted and shall consist of a complete list of equipment and materials, including manufacturer's descriptive and technical literature, catalog cuts, and installation instructions. Shop drawings shall also include complete wiring, routing, schematic diagrams, tag number of devices, software descriptions, calculations, Input/Output Summaries, and any other details required to demonstrate how system will be installed. Drawings shall show proposed layout and installation of components and the relationship to equipment being controlled.
 2. Contractor shall provide a graphic flow diagram for each software program proposed.
 3. No equipment shall be installed prior to approval of submittals. Shop drawings must be submitted in advance to allow 15 days for Owner's review without negatively impacting proposed schedule.
 4. Submittals which simply restate control sequences as written in specifications are not acceptable. Submittals must include a restatement of sequences as they will actually be programmed.

B. As-Built Drawings and Documentation
 1. Contractor shall maintain a set of working drawings at the job-site at all times during construction. This set of working drawings shall be updated to reflect any changes needed to accommodate field conditions.
 2. Upon completion of work and prior to final inspection, drawings shall be updated and corrected to reflect true As-Built conditions. Contractor shall provide three sets of as-builts and shall keep one at the office.
 3. Before final configuration, the contractor shall provide Input/Output summary forms to Owner that include:
 a. Description of all points.
 b. Listing of binary and analog hardware required to interface to the equipment for each function.
 c. Listing of all application programs associated with each piece of equipment.
d. Failure modes for control functions to be performed in case of failure.

C. Reference Manuals
1. **Users Manual**: shall contain as a minimum, an overview of the system, its organization, the concepts of networking and central site/field hardware relationships as well as the following:
 a. Establishing setpoints and schedules
 b. Uploading and downloading software, setpoints, schedules, operating parameters and status.
 c. Enabling alarms and messages
 d. Report generation
 e. Backing up software and data files

2. **Engineering Manual**: shall include detailed information on the following:
 a. Hardware: cut sheets and product descriptions
 b. Engineering: design requirements for initial installations and/or additions to existing systems
 c. Installation: mounting and connection details for field hardware, accessories and central site equipment
 d. Field hardware set-up, check-out and calibration routines
 e. Listing of basic terminology, standard alarms and messages, error messages and frequently used commands

3. **Software Manual**: shall include, as a minimum, descriptions of the control software programs used in the system. Descriptions shall include:
 a. Diagrams and listings showing maximum input/output point configurations for controlled equipment
 b. A description of the control elements and sequences available for equipment
 c. A listing of information which is displayed to the operator for each piece of controlled equipment
 d. A listing of the alarm and message conditions which may be detected for each piece of controlled equipment and standard alarm and message texts which can be displayed when those conditions exist
 e. A graphic flow diagram for each software application program provided as part of the project

D. Commissioning and Acceptance Test
1. **Commissioning**: Upon completion of hardware and software installation, contractor shall start-up the system and perform all necessary calibration, testing, and debugging operations. Contractor shall submit a written statement (and back-up data if requested) that all hardware and software has been fully tested and is ready for acceptance test.

2. An acceptance test shall be scheduled with Owner and Engineer upon submittal of Commissioning letter. During the Acceptance Test Temperature Controls Contractor shall demonstrate complete operation of the systems to Owner and Engineer.

1.7 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilation Systems."

1.8 COORDINATION
A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.

B. Coordinate supply of conditioned electrical circuits for control units.

C. Coordinate equipment with Division 16 Section "Panelboards".

1.9 TRAINING
A. Training shall be scheduled with Owner upon completion of all items required under Paragraphs above.
B. No training shall take place prior to completion of As-Built Documentation, User / Reference Manuals, and completion of Commissioning and Acceptance Test. “Unofficial” training during installation does not count towards the Contractor’s responsibilities for training.

C. Training requirements are identified in Part 3 of this specifications.

D. Contractor will be in charge of maintaining the controls system until training is satisfactorily completed.

E. The project will not be considered Substantially Complete until DDC training is completed.

1.10 MAINTENANCE

A. Manufacturer shall furnish a one-year maintenance contract consisting of 1 inspection on the DCC Control System. The total time for all visits shall be a minimum of 2 hours.

B. Written reports will be provided at the conclusion of every visit. These reports will include the purpose, activities, and results of the visit, plus any recommendations of possible Energy Management System improvements.

C. Provide on-line support throughout the 1st year warranty to include:
 1. Receive regular emails with tips and suggestions for optimizing the EMS including up-to-the-minute software changes and a free software upgrade.
 2. Provide direct email support to the factory technical support staff with rapid follow-up within 2 days.
 3. Provide a Frequently Asked Questions (FAQ) section to find the answers that EMS users need.

1.11 WARRANTY

A. Contractor shall warrant that all systems, subsystems, component parts, and software are fully free from defective design, materials, and workmanship.

B. Work shall be guaranteed against defects and workmanship for a period of two (2) years from the date of CONTROLS FINAL ACCEPTANCE. Expressed warranties are conditionally based on the acceptance and on the requirement that the items covered within the guarantee are used and maintained in accordance with the manufacturer’s recommendations. Replacement of defective or malfunctioning units shall include all necessary parts and labor.

C. The date of CONTROLS FINAL ACCEPTANCE commences 45 days after project final acceptance, provided controls systems have operated without failure during the 45 day period. If the control system failure occurs during the 45 day period (or successive one), the date of Controls Final Acceptance shall be reset to the date when the control system is fully / properly operational. This reset process shall perpetuate until the system properly operates without failure for 45 consecutive days.
 1. The following procedures shall govern the guaranty period. Within thirty (30) days after the Owner accepts the system, the Contractor shall initiate the guaranty period by formally transmitting to the Owner commencement notification of the period for the system(s), sub-system(s) and devices previously accepted. Guaranty notification will be formally transmitted in like manner for subsequent phases or portions thereof which remain incomplete at the time of initial notification.

1.12 CONTRACTOR RESPONSIBILITY

A. All control items, services, and work shown in specifications and drawings shall be provided by Controls Contractor either directly or by subcontract. These shall include, but are not necessarily limited to, the following:
 1. Install control equipment incorporating DDC for energy management, equipment monitoring and control, software, programming, including color graphic workstations.
 2. Provide control relays and devices, air flow monitoring devices, pressure and temperature sensing devices, dampers and actuators, etc. Controls contractor to supply and install following:
 a. thermostats and humidity sensors
 b. CO2 sensors
3. Unless otherwise noted, coordinate following items with Mechanical Contractor:
 a. dampers and actuators
4. Provide 120V power for direct digital control systems PCU's, and LCU's, as defined later in these specifications, and make final panel hook-up and all final electrical connections to each controller. Provide power for all damper-actuators including VAV boxes.
 a. Power circuit to PCU/LCU shall serve PCU/LCU and no other equipment.
 b. Use spares or provide new circuit breaker.
5. Provide all wiring and conduit for all DDC temperature controls, monitoring devices including DDC signal wiring.
6. Provide electrical work associated with control system and as called for on Drawings.
 a. Perform all wiring in accordance with all local and national codes. Provide all line voltage wiring, concealed or exposed, in accordance with Div. 26.
 b. Provide all control relays.
 c. Install surge transient protection shall be incorporated in design of system to protect electrical components in all DDC Controllers, Terminal Equipment Controllers and operator's workstations.
 d. All low voltage electrical control wiring throughout the building when exposed shall be run in conduit in accordance with Division 26. All low voltage wiring run in concealed accessible areas shall be run using plenum rated wire only.
7. Provide all warranty related work, products, materials, and labor.
8. Provide all software programming.
9. Provide consulting services to Owner and Installing Contractor as required to resolve operating problems after system installation.
10. Provide shop drawings indicating equipment locations, points allocation, and schematic wiring.
 Submittals shall indicate all information pertinent to PCU locations, PCU capacity and spare points, input/output module configuration within PCUs, communication trunks, sensors, valves, pneumatic interface, wiring, and other pertinent equipment information requiring approval prior to field installation. Provide a DDC system riser diagram showing buildings, controller or device within each building, and listing equipment controlled or monitored by each.
11. Provide graphics programming, showing floor plans of all buildings, equipment locations, and operating parameters.
12. Provide commissioning of system.
 a. Users Manual: shall contain as a minimum, an overview of the system, its organization, and the concepts of networking and central site/field hardware relationships.
 b. Engineering Manual: shall include detailed information on the following:
 1) As-built wiring diagrams
 2) Hardware cutsheets and product descriptions
 3) Engineering design requirements for initial installations and/or additions to existing systems
 4) Installation mounting and connection details for field hardware, accessories and central site equipment
 5) Field hardware set-up, check-out and calibration routines
 6) COS set-up, software loading and check-out techniques
 7) Listing of basic terminology, standard alarms and messages, error messages and frequently used commands
 c. Program Manual: shall include, as a minimum, descriptions of the control software programs used in the system.
14. Provide Owner training.
15. DDC warranty work.

B. The following equipment and services shall be coordinated with the Owner:
1. Network connections.

C. Coordinate with Mechanical Contractor. Mechanical Contractor provides:
1. Installation of control dampers, actuators and all manual dampers.
2. Temporary 24V thermostat for new equipment, if required.
3. WSHP units with factory-installed controllers, valves and accessories.

1.13 EQUIPMENT AND SOFTWARE UPDATES / UPGRADES / REVISIONS
A. Equipment: All equipment, components, parts, materials, etc. provided shall be fully compatible with all other equipment provided at any other time throughout the warranty period. Should updated versions be provided that are not fully compatible with earlier equipment provided (e.g.: a requirement to add hardware or software “interfacing” between an earlier and later generation results in the system not being fully compatible), Controls contractor shall replace earlier equipment with the later version at no cost to Owner.

B. Software: If acceptable to the Owner, all software upgrades applicable to the system and offered by the manufacturer / contractor for this system shall be provided at no cost to the Owner throughout the warranty period. This no cost upgrade shall include installation, programming, modification to field equipment, data base revisions, etc. all as appropriate.

C. Revisions: Hardware / software revisions made related to refining sequences of control, adding/monitoring control points, or other similar operations shall be made with all “burn-in” performed at the contractor’s expense, throughout the warranty period.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Following Manufacturer’s are allowed to bid on this project:
 1. Basis of Design: Carrier, Automated Logic Controls.
 2. Other manufacturers shall obtain written authorization to bid from Owner.

2.2 SYSTEM OVERVIEW

A. The term AHU is intended to include AHUs, RTUs and FCUs scheduled and specified unless a clear distinction is made indicating reference to one or the other only.

B. This specification defines the minimum requirements for implementation of a Direct Digital Control (DDC) system to include control of HVAC systems serving Rooftop Units, individual space temperature, humidity and ventilation control.

C. System Concept
 1. Provide a system consisting of standalone controllers which will achieve control sequences specified for new Air Handlers, condensing units, exhaust fans, and associated systems as required by sequences.
 2. Provide local area network to allow peer-to-peer communication among all controllers installed as part of this project.
 3. Provide interface to Central Operator’s Station to allow for remote access to all points in the system under the same platform used to access controllers in other buildings via phone lines or Ethernet / world wide web.

D. General Product Description
 1. Provide new control system components as follows:
 a. Stand-alone DDC Controllers (PCUs).
 b. Unitary Control Modules (UCMs).
 c. Zone Temperature Sensors.
 d. Transducers.
 e. Sensors and Field Devices.
 f. Control Dampers and Actuators.
 2. The system shall be modular in nature and shall permit expansion of both capacity and functionality through the addition of sensors, actuators, DDC Controllers, Application Specific Controllers and operator devices.
3. System architecture shall eliminate dependence upon any single device for alarm reporting and control execution. Each DDC Controller shall operate independently by performing its own specified control, alarm management, operator I/O and data collection. The failure of any single component or network connection shall not interrupt the execution of control strategies at other operational devices.

4. DDC Controllers shall be able to access any data from, or send control commands and alarm reports directly to, any other DDC Controller or combination of controllers on the network without dependence upon a central processing device. DDC Controllers shall also be able to send alarm reports to multiple operator workstations without dependence upon a central processing device.

2.3 LOCAL AREA NETWORKS (LAN)

A. Controller LAN: Local Area Network (LAN) shall be installed to provide communication between the PCU's. The Controller LAN shall be based on a peer-to-peer, token passing technique with a data speed of not less than 19,200 baud. Systems which require a "master" communications controller or network manager for the Controller LAN are not acceptable. A break in the communication path shall be announced as an alarm and shall automatically initiate a LAN reconfiguration such that the remaining portions continue to function. No loss of control shall result from a break in the LAN.

B. Communications Techniques: The Controller LAN shall support node interface devices for access from workstation(s), which shall function as a "gateway" to convert, buffer, and filter the Controller LAN data for communications via Owner's LAN. The gateways shall allow PC workstations to interface to the Controller LAN at any point on the network, without need to be connected to a PCU in order to communicate with the system.

C. Network Support: The "turnaround time" for a global point to be received by any node, including operator stations, shall be less than 3 seconds. The Controller LAN shall provide for automatic reconfiguration if any station is added or lost. Should the transmission cable be cut, the two sections shall reconfigure with no disruption to the system's operation and without need for operator intervention.

D. Network Trees and Summaries: Provide automatic, on-line configuration summaries listing each device or node on each tier of the multi-tiered system architecture. Separate summaries shall be provided for: Controller LAN, Commercial LAN, UCM LAN. Each summary shall list the point address/name, the device type, the device name, the revision level, and the revision date.

2.4 BUILDING CONTROL UNIT(S)

A. General Description: The Building Control Module or Operator's Panel provides monitoring and control of the DDC system from a central location. Central Control Panels are connected to the Building Control Module via a twisted pair of wires. Provide portable terminal if architecture does not require BCUs.

B. Building Control Module provides a 2-line by 40 character screen to display operator information, and a 16-button keypad for system interaction.

C. Building Control Module provides the following functions:
 1. Setpoint Control: Allows operator to control setpoints for each sensor in the building, including Occupied and Unoccupied heating and cooling setpoints.
 2. Group Scheduling: Allowing zones to be scheduled in the occupied/unoccupied mode according to space needs.
 3. Daylight Savings Time: Automatic feature, also including leap year changes.
 4. Holidays: Allows up to 24 holidays to be defined.
 5. Timed Override: Temporarily place a group of zones in occupied mode for two hours.
 6. Optimal Start: Optimally adjusts start times to ensure comfort by scheduled occupancy time.
 7. Alarms: Displays temperature and system failure alarms and keeps a log of last 32 alarms.
 8. Password Access: Panel guarded by a password to prevent access by unauthorized personnel.
 9. Auto log-off: Panel automatically logs off if left inactive for over 5 minutes.
2.5 PROCESS CONTROL UNITS (PCU)

A. Install new controller(s) as required to accommodate new points and sequences, as per specifications below.

B. All points in the system shall be monitored and/or controlled through "intelligent" distributed Process Control Units (PCU). Each PCU in the system shall contain its own microprocessor and memory with a minimum 30 day battery backup. Each PCU in the system shall be a completely independent stand-alone "master" with its own hardware clock calendar and all firmware and software to maintain complete control on an independent basis. Each PCU shall include the following capabilities:

1. Acquire, process, and transfer information to the PC operator work stations or other PCU's on the network.
2. Accept, process, and execute commands from the other PCU's or other input devices, or multiple PC work stations.
3. Allow access to both data base and control functions by multiple work stations at the same time.
4. Record, evaluate, and report the changes of state and/or value that occur among points associated with the PCU. If any operator work station or transmission network fails, but the power to the PCU does not, the PCU shall continue to perform all control functions associated with the points to which the PCU remains connected.

5. Specifically, a PCU shall contain memory and processing capability to perform in a stand-alone mode:
 a. Scheduled start/stop
 b. Adaptive optimized start/stop
 c. Duty cycling
 d. Automatic temperature Control
 e. Demand control via a sliding window, predictive algorithm
 f. Event initiated control
 g. Calculated point
 h. Scanning and alarm processing
 i. Full Direct Digital Control
 j. Trend logging
 k. Global communications
 l. Maintenance scheduling
 m. Automatic and Adaptive tuning of PID loops

C. PCU Global Communications: Each PCU shall have the ability to transmit any or all I/O points as global points onto the network for use by other PCU's and to utilize data from other panels as part of its data base.

D. PCU Field Input/Output Capability: The following point types must be supported by the PCU's.
 1. Discrete/digital input (contact status).
 2. Discrete/digital output (maintained, momentary, dual momentary, floating).
 3. Analog input (4-20 mA or 1-5 VDC with 12-bit A/D conversion resolution minimum).
 4. Analog output (4-20mA and 0-10 VDC with 8-bit D/A resolution minimum).
 5. Pulse input capable of accepting 10 pulses/second and accumulating total.
 6. Pulse Width Modulation (PWM) output capable of producing a pulse anywhere between 0-655 seconds in duration with 0.01 second resolution.
 7. Every digital output and analog output shall have an HOA switch inside the PCU initially set to Auto. When manually set to the Hand position, the digital output will be kept "on" or the analog output shall be driven to one end of its throttling range. The opposite position will occur when manually set to "off". Each Hand, Off, or Auto manual setting will be indicated at the central workstation for all outputs.

E. Each PCU shall have the ability to monitor, control or address not less than 300 data points.

F. PCU Point Scanning: It shall be possible to independently set the scan or execution speed for each point in the PCU to an operator selected time from 1 to 254 seconds.

G. PCU Upload/Download Capability: Each PCU shall be able to download from or upload to any PC operators work station. All point data shall be modifiable from any authorized PC operators work station and downloaded to the PCU over the Controller LAN. It shall not be necessary to enter parameters locally at the PCU for control programs to take effect. This upload/download shall be readily performed on a
regular basis without interrupting the control functions in the PCU. All upload/downloads shall be performed without the operator workstation being taken "off-line", and shall be completed in no more than 15 seconds.

H. PCU Diagnostics: provide diagnostics which support the following dynamic (one second refresh) parameters:
 * Processor loading
 * LAN Loading
 * Memory data

I. PCU Test Mode Operation: Each PCU shall have the ability to place input/output points in a test mode. The test mode shall allow control algorithms to be tested and developed on line without disrupting the field hardware and controlled environment. The treatment of all I/O points in the test mode shall be as follows:
 1. Scanning and calculation of all input points in test mode shall be inhibited. Manual control of input points in test mode will allow setting the analog or digital input point to an operator determined test value, which can be issued from any fixed or portable operator console.
 2. It shall be possible to control all output points, but only the data base state/value shall be changed - the external field hardware is left unchanged. Failure to provide test mode capability will preclude acceptance.

J. PCU Local Operator Console (Handheld controller): Furnish at each PCU location provisions for connection of a local operator's console. If the console is not of the portable type, a permanent door mount type with display shall be provided at each PCU. If it is portable, then furnish one console for this project. The console shall be capable of full global communications with all PCU's on the Controller LAN when connected to any PCU on the Controller LAN. Systems not offering this global communication capability shall be unacceptable under this specification. It shall be possible to perform as a minimum the following functions through the local operator console:
 1. Set/display date.
 2. Set/display time.
 3. Display the status or value of all points connected to the PCU or any other PCU on the Controller LAN.
 4. Control the outputs connected to the PCU or any other PCU on the Controller LAN.
 5. Enable/disable any or all automatic control outputs.
 6. Perform PCU diagnostic testing.
 7. Place any or all points in "Test" mode.
 8. Display PCU CPU "percentage processing time" so that system and PCU processor loading may be determined. Also, display the amount of PCU programming memory available and the amount currently used.
 9. Where a portable, laptop, or notebook PC is provided as the local operator console, the operator interface shall be identical to the primary PC work station, and require no additional training to operate.

2.6 UNIT CONTROL MODULES (UCMs)

A. General Description:
 1. The Unit Control Module is the individual zone controller for the Variable Volume air dampers. A unit control module shall be mounted on each individual zone damper.
 2. Unit Control Module communicates with the AHU PCU to share current space requirements and system modes.
 3. Provide interface devices required to allow all UCMs and points associated with a given AHU, to be directly connected to the particular PCU serving that AHU.
 4. UCMs shall function standalone for the local loop functions of the variable volume dampers. Complete PID algorithms shall reside and be executed at the UCM level.
 5. UCM shall support, as a minimum, the following point types:
 a. Digital input.
 b. Digital output.
 c. Analog input.
 d. Pulse input capable of accepting 5 pulses/second and accumulating total.
 e. Pulse Width Modulation (PWM) output capable of producing a pulse anywhere between 0 - 655 seconds in duration with 0.01 second modulation.
6. UCM communicates with a matched Intelligent Thermostat (I/STAT) for space temperature sensing.
7. UCM receives 24 VAC power, to be provided by Controls Contractor.

B. Function:
1. Microprocessor-based terminal unit controller provides pressure dependent flow control. Airflow is controlled through direct digital control to maintain zone temperature setpoint.
2. UCM transmits the following information to Central Control Panel:
 a. Active cooling temperature setpoint.
 b. Active heating temperature setpoint.
 c. Current air damper position.
 d. Current zone temperature.
 e. Unit heat status (On/Off).
3. UCM shall have a local integral 7-day start/stop schedule to be used as default if communications are lost with PCU/Interface.

C. WSHP Dehumidification Control: Space RH sensors will communicate with UCMs and command unit ECM motor to operate as required to maintain space conditions.

D. UCMs shall communicate with VAV PCMs as needed in order to achieve the following:
1. Scheduled occupied/unoccupied set points.
2. High and low limit alarms.
3. Unoccupied override.
4. Adjustable max/min damper positions.

2.7 TRANSDUCERS

A. Where analog outputs are required, they may be either direct outputs or may utilize Pulse Width Modulation transducers. In either case provide a gauge and analog feedback for pneumatic outputs. PWM to pneumatic, voltage, current, or resistance transducers may be used as long as they are of the same manufacturer as the control system. These transducers shall receive their PWM signal from the controller as a "setpoint" and retain the last "setpoint" until receiving another such signal from the controller, even if the controller is inoperative. Provide for local manual override of the transducer, if the controller is inoperative.

2.8 SENSORS & FIELD DEVICES

A. General: All sensors and field devices shall be of commercial grade quality and shall be installed according to the manufacturer's recommendations. Outdoor damper actuators shall be rated for exterior service and provided in weatherproof UV-inhibited housing.

B. Temperature Sensors (General)
1. All temperature inputs for the automation system shall be derived directly from analog inputs from electronic temperature sensors. Transducing of pneumatic sensor signals shall not be acceptable.
2. Temperature sensing elements shall be RTD type, thermistor type, or solid state sensors, as specified in drawings or points list. All sensors of a particular type shall be from the same manufacturer.
3. Characteristics for temperature sensors:
 a. Interchangeability of +/- 0.2% at the reference temperature.
 b. Time constant response to temperature change shall be less than three seconds per degree F.
 c. Sensors shall be linear, drift free, and require only one time calibration. Sensing elements shall be factory calibrated.
 d. The sensing elements shall be hermetically sealed.
 e. Additional linearizing, ranging, and lead length compensation may be accomplished in software if required to meet the accuracies specified within.
4. Expected temperature sensor operating range and end to end accuracy, including errors associated with sensor, transmitter (if applicable), leadwire and A/D conversion shall be as follows:

<table>
<thead>
<tr>
<th>Sensed Element</th>
<th>Expected Oper. Range</th>
<th>Sensor Accuracy</th>
</tr>
</thead>
</table>

INSTRUMENTATION AND CONTROLS 230900- 11
Ethos Engineering
a. Return air 40 to 140 0.5˚F
b. Indoor space temperature 40 to 90˚F 0.5˚F
c. Outside air 0 to 125˚F 0.5˚F

C. Adjustable Limited Range Wall Temperature Sensors (Thermostats)
 1. General: All wall sensors installed as part of this project shall have adjustable limited range setpoint adjustment function. Following areas shall have sensors with override option in addition to adjustable setpoint range function: all sensors.
 2. 10K-2-R-SOD (10K, DA, Cool / Warm, OVR). Override option shall be provided.
 3. Setpoint limits shall be adjustable via the COS and password protected.
 4. Unit shall have a built in processor and shall communicate with local controller.
 5. Unit shall have an LCD display for space temperature and on / off state.
 6. Unit shall have a password protection function to restrict access to service mode.
 7. Provide extra thermostats: 5 of each type.

D. Humidity Sensors: Bulk polymer sensor element.
 1. Shall be installed in the space and not in ductwork unless specifically noted. Coordinate locations of duct mounted sensors with Engineer.
 2. Accuracy: 5 percent full range with linear output.
 3. Room Sensors: With locking cover matching room thermostats, span of 25 to 90 percent relative humidity.

E. CO2 sensor shall monitor indoor carbon dioxide (CO2) levels in accordance with ASHRAE standard 62-2004, equivalent to Venostat Model 1071 with aspiration box Venostat 1501 or equal.
 1. Sensor shall have a 4 - 20 mA linear output over a range of 0 - 5000 ppm of CO2. A SPDT shall be provided for local control or alarm output.
 2. Complete kit shall include optional aspiration box for mounting sensor inside return air duct.
 3. Other features shall be as follows:
 - Power: 24VAC or DC at 400mA max.
 - Measuring range: 0-2000 ppm
 - Accuracy: +/-5% of reading or +/- 100 ppm
 - Analog output: 4-20 mA
 - Control relay: N.O. SPST, 0.75 amp at 24VAC/VDC
 - Operating temperature: 32° - 122°F
 - Operating humidity: 5-95% non condensing
 - Calibration adjustment: zero to span
 - Min. req. calibration: One year
 - Unit enclosure: UL fire rated
 - Aspiration box: High impact styrene

F. Equipment operation sensors as follows:
 1. Status Inputs for Electric Motors: Current-sensing relay with current transformers, adjustable and set to 175 percent of rated motor current.
 2. Electronic Valve/Damper Position Indication: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

G. Pressure Sensors: Pressure sensors and differential pressure sensors shall be piezo-resistive strain-gauge with temperature compensation. Sensors shall be selected to provide linear indication with an adequate span for the application. Sensor shall be 0 - 10 V or 4 - 20 mA. Insure sensors are rated to operate at temperature of sensed media. Sensors shall have an accuracy of 1% of full scale. Sensors shall accept overpressures of at least 120 psig, at any port, without damaging the sensor.

H. Motor On/Off Status: Unless otherwise specified, status shall be proven using current sensing relays connected at VFDs and calibrated for minimal operating speed.

I. Equipment on/off control shall use either momentary pulsed relays or magnetically latched relays, as appropriate for the equipment's control starter. Interfacing controls shall be configured such that in its last commanded state. All equipment safeties and interlocks shall remain active, and will not be bypassed by new EMS controls. For motors with VFDs provide On/Off Control as appropriate VFD terminals.
J. Watthour Transducers: Shall have an accuracy of +/- 2.5% at 0.5 power factor to 2.0% at 1 power factor for KW and KWH outputs. Output signals for KW and KWH shall be internally selectable without requiring the changing of current or potential transformers. Current and potential transformers shall be in accordance with ANSI C57.13.

K. Voltage Outputs: Variable voltage outputs shall provide a voltage signal from 0 to 20 volts. All voltage outputs shall be fuse protected against shorts to 120 volts AC and capable of withstanding a short ground indefinitely. All voltage outputs shall be protected against + or - 1500 volts, 50 microsecond transients. Voltage outputs shall have a resolution of 0.1 volts.

L. Current Outputs: Variable current outputs shall be a sinking type and shall provide 0 to 20 milliamps with a resolution of 0.1 mA and a compliance of 20 volts minimum. All current outputs shall be fuse protected to 120 volts AC and protected against + or - 1500 volts, 50 microsecond transients.

M. Hardware Overrides: A three position manual override switch shall allow selection of the ON, OFF, or AUTO outputs state for each output point. In addition, all analog output points shall be equipped with an override potentiometer to allow manual adjustment of the analog output signal over its full range, when the 3 position manual override switch is placed in the ON position.

N. Damper Actuators
1. Electronic direct-coupled actuation shall be provided.
2. The actuator shall be direct-coupled over the shaft, enabling it to be mounted directly to the damper shaft without the need for connecting linkage. The fastening clamp assembly shall be of a V' bolt design with associated V' shaped toothed cradle attaching to the shaft for maximum strength and eliminating slippage. Spring return actuators shall have a V' clamp assembly of sufficient size to be directly mounted to an integral jackshaft of up to 1.05 inches when the damper is constructed in this manner. Single bolt or screw type fasteners are not acceptable.
3. The actuator shall have electronic overload or digital rotation sensing circuitry to prevent damage to the actuator throughout the entire rotation of the actuator. Mechanical end switches or magnetic clutch to deactivate the actuator at the end of rotation are not acceptable.
4. For power failure/safety applications, an internal mechanical spring return mechanism shall be built into the actuator housing. Non-mechanical forms of fail-safe operation are not acceptable.
5. All spring return actuators shall be capable of both clockwise or counterclockwise spring return operation by simply changing the mounting orientation.
6. Proportional actuators shall accept a 0 to 10VDC or 0 to 20mA control input and provide a 2 to 10VDC or 4 to 20mA operating range. An actuator capable of accepting a pulse width modulating control signal and providing full proportional operation of the damper is acceptable. All actuators shall provide a 2 to 10VDC position feedback signal.
7. All 24VAC/DC actuators shall operate on Class 2 wiring and shall not require more than 10VA for AC or more than 8 watts for DC applications. Actuators operating on 120VAC power shall not require more than 10VA. Actuators operating on 230VAC shall not require more than 11VA.
8. All non-spring return actuators shall have an external manual gear release to allow manual positioning of the damper when the actuator is not powered. Spring return actuators with more than 60 in-lb torque shall have a manual crank for this purpose.
9. All modulating actuators shall have an external, built-in switch to allow reversing direction of rotation.
10. Actuators shall be provided with a conduit fitting and a minimum 3ft electrical cable and shall be pre wired to eliminate the necessity of opening the actuator housing to make electrical connections.
11. Actuators shall be Underwriters Laboratories Standard 873 listed and Canadian Standards Association Class 481302 certified as meeting correct safety requirements and recognized industry standards.
12. Actuators shall be designed for a minimum of 60,000 full stroke cycles at the actuator's rated torque and shall have a 2-year manufacturer's warranty, starting from the date of installation. Manufacturer shall be ISO9001 certified.

O. Control Valves
1. Control Valves: Factory fabricated, of type, body material, and pressure class based on maximum pressure and temperature rating of piping system, unless otherwise indicated.
2. Globe or Characterized Ball Valves NPS 2 and Smaller: Bronze body, bronze trim, rising stem, renewable composition disc, and screwed ends with backseating capacity repackable under pressure.
3. Globe or Characterized Ball Valves NPS 2-1/2 and Larger: Iron body, bronze trim, rising stem, plug-type disc, flanged ends, and renewable seat and disc.
4. Hydronic system globe valves shall have the following characteristics:
 a. Rating: Class 125 for service at 125 psig and 250 deg F operating conditions.
 b. Internal Construction: Replaceable plugs and seats of stainless steel or brass.
 c. Select one or both valve seating arrangements below.
 d. Single-Seated Valves: Cage trim provides seating and guiding surfaces for plug on top and bottom of guided plugs.
 e. Maximum pressure drops of up to 5 psig (35 kPa) are usually acceptable.
 f. Sizing: See Schedule.
 g. Flow Characteristics: three-way valves shall have linear characteristics. Operators shall close valves against pump shutoff head.
 h. Butterfly Valves: 175-psi CWP, ASTM A 126 cast-iron body and bonnet, extended neck, stainless-steel stem, field-replaceable Buna N sleeve and stem seals, lug style, rated for end-of-service applications
 i. Select one of the following subparagraphs.
 j. Disc Type: ductile iron.

P. Valve Actuators
 1. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 2. Small Valve Actuators: Equivalent to Johnson VA-715, except for exterior valves which must be weatherproof.
 3. Electronic Large-Valve Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 a. Valves: Size for torque required for valve close-off at maximum pump differential pressure.
 b. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
 c. Position indicator: Provide a visual position indicator for field inspection.
 d. Temperature Rating: Minus 22 to plus 122 deg F.
 e. Run Time: 30 seconds
 4. Electronic two–position Large-Valve Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 a. Valves: Size for torque required for valve close-off at maximum pump differential pressure.
 b. Manual Operator: Provide with a handwheel operator connected to the valve shaft through a gear drive. The gear drive shall be independent of the motor drive.
 c. Local Control Switch: provide with switch on actuator for “local/remote” control.
 d. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
 e. Position indicator: Provide 100% open and 100% closed limit switches for position indication to DDC system and a visual position indicator for field inspection.
 f. Temperature Rating: Minus 22 to plus 122 deg F.
 g. Run Time: 30 seconds
 h. Enclosure: weather-proof, non-ferrous.

Q. Field Testing and Programming Equipment: A portable laptop or notebook computer shall interface via standard push-in connection at an asynchronous serial port located at the Control modules and at selected enhanced zone temperature sensors as indicated on project plans. This portable unit shall be capable of full global communications with all Control modules connected within the respective network and shall provide functionally identical user interface to the Workstation, in non-graphic format. Units shall be able to interrogate all points and alter all programming.

2.9 SURGE PROTECTION

A. Zener diodes, silicone avalanche diode, optical isolation, varistors, or combination thereof.

B. Transient protection
 1. Communications LAN:
 a. Provide surge protection equipment sized specifically for expected operating current of LAN.
 b. Exceeds severity level 4 of IEC 801-4.
 c. Operating voltage: 12 volts.
 d. Maximum operating current: 200 mA
 e. Clamping action turn-on: 14.3 volts
 f. Maximum clamping at 2 kW (8 x 20 microsecond wave): 22 volts
 g. Maximum surge voltage: 20 kV
h. Maximum surge current (8 x 20 microsecond wave): 2.5 kA
i. Current leakage at operating voltage: 5 microamps
j. As manufactured by Surge Control Limited, SPR series, or approved equal.

2. Power supply:
 a. Provide surge protection equipment sized specifically for expected operating current of DDC controller.
 c. Design such that suppressor does not "wear out" with repeated surges.
 d. CSA certified and UL recognized.
 e. EMI / RFI filtering.
 f. Differential and common mode suppression and filtering.
 g. Less than 5 nanosecond response time.
 h. Maximum transient voltage 6 kV.
 i. Maximum transient current 3 kA.
 j. Minimum clamping turn-on, 210 volts.
 k. Maximum clamping voltage, (I-test):
 1) line to neutral — 245 volts.
 2) line to ground — 245 volts.
 3) neutral to ground — 245 volts.
 l. Maximum clamping voltage @ 3 kA:
 1) line to neutral — 325 volts.
 2) line to ground — 430 volts.
 3) neutral to ground — 430 volts.
 m. As manufactured by Surge Control Limited, SPP-1200 series, or approved equal.

C. Protective devices shall be continuous duty, automatic and self restoring.

2.10 PERSONAL COMPUTER OPERATOR WORKSTATION HARDWARE

A. Reuse existing.

2.11 PORTABLE OPERATOR'S TERMINAL

A. Reuse existing.

2.12 WEB SERVER OPERATOR INTERFACE

A. Furnish a Web Server to allow daily operations functions, using real-time system data, to be accomplished from any network connected web browser, from within the facility or in remote locations throughout the world.

B. Operators shall be able to utilize any commercially available browser such as Microsoft Internet Explorer or Netscape Navigator. No additional software shall have to be installed on the client PC for normal operation of the system.

C. All communications between the web browser and web server shall be encrypted using 128 bit SSL encryption.

D. Web server shall be able to be located on the Owner's Intranet or on the Internet.

E. Web server shall have the ability to automatically obtain an IP (Internet Protocol) address using DHCP. Use of static IP addressing shall also be supported.

F. Web server will have adequate capacity to store and serve 500 user defined graphics.

G. Any unlimited number of users shall be able to access the web server. A minimum of 30 users shall be able to utilize this device at the same time.
H. BACnet. The Web Server shall support the BACnet Interoperable Building Blocks (BIBBS) for Read (Initiate) and Write (Execute) Services. These are the Data Sharing BIBBS as follows:

```
DS-RP-A,B  
DS-RPM-A   
DS-WP-A    
DS-WPM-A   
```

I. The Web browser client shall support Sun Microsystems Java 2 (JRE 1.4.0 or higher) plug-in.

J. Functionality:
1. Operators with proper security shall be able to:
 a. View graphical information about a facility, change setpoints, and perform overrides.
 b. View and change schedules.
 c. View and acknowledge alarms.
 d. View historical information.
2. Operators shall be required to enter in a valid user name and password to access the system. The view of the system provided for the user will be customized based on user identity.
3. Operator security: Each operator shall be able to be assigned a unique user name and password. Users shall be assigned to view, view and edit or administrative capability. The Web server shall include industry standard security protocols to prohibit access by unauthorized users over the World Wide Web.
4. The web server shall display the same graphics that have been created for the Operators Workstation. Graphics shall be able to contain both static information such as floor-plans, equipment schematics, etc. as well as dynamic information including space temperatures, setpoints, equipment status etc.
5. All dynamic values shall be automatically refreshed every 10 seconds. The refresh of dynamic data shall not require a refresh of the static information on the graphic.
6. Operators with proper access shall be able to configure the web server using their web browser.

K. Web Server Hardware.
1. Provide a solid state web server. This device may not contain any moving parts including but not limited to cooling fans, disk drives, CD Rom drives etc.
2. Web server hardware shall be wall mounted as shown on system drawings.
3. All user entered information (web pages, security, etc.) shall be stored in non-volatile memory. System operational information and clock functions shall be backed up by battery or other device for a minimum of 72 hours.

PART 3 - EMS SOFTWARE

3.1 GENERAL

A. The existing Owner's Central Operator's Station shall be modified/upgraded/replaced as required to meet system functions specified herein.

B. Existing software includes a General Purpose Operating system, as well as Facility Management System Application software. All operational features of the existing Graphics User Interface shall remain operational and expanded to include new equipment, controllers, and sequences. It is not the intent of this specification to request a new Central Operator's Station or Operating System, unless required to comply with performance requirements.

C. Contractor shall provide all software required for efficient operation of all the automatic system functions required by this specification. Software shall be modular in design for flexibility in expansion or revision of the system. It is the intent of this specification to require provisions of a system which can be fully utilized by individuals with no, or limited, previous exposure to PC's and programming techniques and languages. If the system to be provided requires the use of any modified BASIC, "C", PASCAL, or DRUM Language program, or writing "line" programming statements to modify operation or strategy in the system, the vendor shall provide unlimited, no charge, software modification and support for the duration of the warranty period specified elsewhere. Systems which are factory programmed are unacceptable.
D. The software in the system shall consist of both "firmware" resident in the PCU's and "software" resident in the operator work stations. The architecture of the system, and the application software/firmware shall be distributed with no single system component responsible for a control function for the entire Controller LAN. Each PCU shall contain the necessary firmware and I/O capability to function independently in case of a network failure. No active energy management or environmental control sequences shall be resident in the PC work stations. All PC work stations shall be removable from the system without loss of control function - only alarm monitoring, long term history collection, and operator monitor/command/edit functions would be lost.

3.2 MINIMUM SOFTWARE PROGRAM REQUIREMENTS

A. General:

1. Control shall be performed by field programmable digital system controllers, microprocessor based, which incorporate Direct Digital Control of all necessary automation functions, and provide for digital display and local adjustment of desired variables at the controllers. The digital system controllers shall perform full control automation functions regardless of the condition of communications with the Central Operator's Station.

2. Control Functions: Control algorithms shall be available and resident in digital system controllers to permit Proportional, Integral, and Derivative control modes in any combination required. Other control modes such as incremental, floating, or two position must also be available to fit the needs of the job. All control shall be performed in a digital manner using digital signals from the microprocessor based controllers converted through electronic circuitry for modulation of electric actuators. The controllers shall contain all necessary mathematical, logic, utility functions and all standard energy calculations and controls functions in ROM to be available in any combination for field programming the unit. These routines shall include but not be limited to:
 a. Math Routines
 b. Basic Arithmetic
 c. Binary Logic
 d. Relational Logic
 e. Fixed Formulae for Psychrometric Calculations
 f. Utility Routines for: process entry and exit, keyboard functions, variable adjustments, and output alarm indication restart.
 g. Control routines for: signal compensation, loop control, energy conservation, timed programming.

3. HVAC System Automation: The digital control system shall perform all the automation functions necessary to operate HVAC system at optimal efficiency, and to allow operator to monitor its operation. These will include but not be limited to the functions listed below and described in following subsections.
 a. Historical Data Storage
 b. Variable Trending
 c. Interlock Program
 d. Custom Programming Language
 e. Calculated Points
 f. Automatic Time Schedule Operation
 g. Optimal Start/Stop
 h. Customized HVAC System Control

B. Historical Data Storage (HDS):

1. Provide the capability to allow the User to create Historical Data files. The Historical Data files shall automatically store operator selected data such as, change-of-states, operator acknowledgments, operator commands, logs and summaries.

2. The User shall size the Historical files at the time they are created. An advisory shall be automatically output when a file becomes 90% filled and data collection shall be suspended until the file is re-initialized.

3. The system as-provided shall have the capability for creating Historical Data Files for all the systems controlled.

C. Variable Trending

1. The system as-provided shall have the capability to sample, store and display point trend data. The User shall have the ability to define a minimum of 100 individual points to be analyzed. These points may be physical hardware points and/or calculation resultants. The system as-provided shall have the capability of storing a minimum of 999 data samples for each trend point.
D. Interlock Program:
1. The system as-provided shall be capable of automatically issuing start and stop commands upon the occurrence of change-of-state events. Each interlock program shall be triggered by one or more master points. The condition of the master points which trigger an interlock program (e.g. on, off, alarm, normal, etc.) shall be specified by the operator. Logical arrangements of multiple masters which trigger an interlock program, such as Boolean AND and OR functions, shall be provided. Slave points in an interlock program shall receive start or stop commands.
2. Provide the capability for a minimum of 100 interlock programs with capacity to support a minimum of 20 total slave points.

E. Custom Programming Language:
1. The EMS shall include a high level programming language which allows the User to write programs (processes) for unique applications. The User shall have the capability to define, modify and delete processes on-line.

F. Calculated Point:
1. The system as-provided shall be capable of calculating analog values based on inputs from monitored points, operator constants, or the results of previous calculations. The calculations will be performed continuously at an operator selected time interval. This feature will be used to provide such data as BTU rates, pressure/temperature compensated steam flow, equipment efficiency, etc. Provide the capability for a minimum of 100 calculated points.
2. The results of each calculation will appear as a standard analog point and have all the characteristics and capabilities of a standard analog point, including limits, assignment as inputs to other programs, etc. It shall be possible to group calculated points together with real points for system displays.
3. The system shall allow the following math functions to be used in calculations: + - * / > < square root
4. The system shall allow a minimum of 20 levels of parenthesis to be used in each calculation.

G. Automatic Time Schedule Operation (ATSO):
1. The system as-provided shall have the capability to automatically execute commands on a time-of-day, day-of-week basis. There shall be eight (8) separate day types, Sunday through Saturday plus Holiday.
2. The system shall accept holiday schedules one (1) year in advance.
3. Each time program shall specify the time-of-day in one minute resolution, the days of the week, plus the function to be executed.
4. Time-of-day schedules will be used to turn equipment on/off.

H. Optimal Start/Stop (OSS):
1. Provide a program which delays or advances the morning change-of-state of the HVAC system to optimize system performance. In addition, the feature will advance or delay the evening change-of-state to the earliest possible moment without causing occupant discomfort.
2. The function shall use an adaptive modeling algorithm such that it automatically adjusts the change-of-state time of the HVAC system based on monitored rate-of-change of system thermal and electrical loads as well as outside air temperature and humidity conditions.
3. Initial times used to begin the Optimal Start/Stop routine shall be coordinated with Owner.

I. Customized HVAC System Control

J. See Section 230993 for specific control sequences applicable to each system component.

3.3 CENTRAL OPERATOR' STATION GRAPHICS SOFTWARE

A. Provide Central Operator's Station with software and hardware as needed to meet requirements specified herein.

B. Create custom 3D Thermographic floor plans and 3D equipment graphics. All graphic displays will reside on the new Web Server and be modified accordingly.

C. Under this project the controls contractor shall make modifications to include ALL existing features, plus the following additional graphics:
1. Floor Plan showing:
 a. CO2, Temperature and humidity sensors and associated value.
 b. Setpoints for CO2, Temperature and humidity sensors and associated value.
 c. Location of each AHU/FCU with an indication of on/off status, mode of operation.
 d. Color graphic showing of space conditions are within or out of range.

D. Basic Interface Description
1. Operator workstation interface software shall minimize operator training through the use of English language prompting, English language point identification and industry standard PC application software. The software shall provide, as a minimum, the following functionality:
 a. Graphical viewing and control of environment
 b. Scheduling and override of building operations
 c. Collection and analysis of historical data
 d. Definition and construction of dynamic color graphic displays
 e. Editing, programming, storage and downloading of controller databases

2. Provide a graphical user interface which shall minimize the use of a typewriter style keyboard through the use of a mouse or similar pointing device and “point and click” approach to menu selection. Users shall be able to start and stop equipment or change setpoints from graphical displays through the use of a mouse or similar pointing device.
 a. Provide functionality such that all operations can also be performed using the keyboard as a backup interface device.
 b. Provide additional capability that allows at least 10 special function keys to perform often used operations.

3. The software shall provide a multi-tasking type environment that allows the user to run several applications simultaneously. The mouse shall be used to quickly select and switch between multiple applications. This shall be accomplished through the use of Microsoft Windows or similar industry standard software that supports concurrent viewing and controlling of systems operations.
 a. Provide functionality such that any of the following may be performed simultaneously, and in any combination, via user-sized windows:
 1) Dynamic color graphics and graphic control
 2) Alarm management coordinated with section 2.04.E.
 3) Time-of-day scheduling
 4) Trend data definition and presentation
 5) Graphic definition
 6) Graphic construction
 b. If the software is unable to display several different types of displays at the same time, the EMS contractor shall provide at least two operator workstations.

4. Multiple-level password access protection shall be provided to allow the user/manager to limit workstation control, display and data base manipulation capabilities as he deems appropriate for each user, based upon an assigned password.
 a. A minimum of five levels of access shall be supported:
 1) Level 1 = View all applications, but perform no database modifications
 2) Level 2 = Custodial privileges plus the ability to acknowledge alarms
 3) Level 3 = All privileges except system configuration
 4) Level 4 = All configuration privileges except passwords
 5) Level 5 = All privileges
 b. A minimum of 50 unique passwords, including user initials, shall be supported.
 c. Operators will be able to perform only those commands available for their respective passwords. Menu selections displayed shall be limited to only those items defined for the access level of the password used to log-on.
 d. The system shall automatically generate a report of log-on/log-off time and system activity for each user.
 e. User-definable, automatic log-off timers of from 5 to 60 minutes shall be provided to prevent operators from inadvertently leaving devices on-line.

5. Software shall allow the operator to perform commands including, but not limited to, the following:
 a. Start-up or shutdown selected equipment
 b. Adjust setpoints
 c. Add/modify/delete time programming
 d. Enable/disable process execution
 e. Lock/unlock alarm reporting for points
 f. Enable/disable totalization for points
 g. Enable/disable trending for points
h. Override PID loop setpoints
i. Enter temporary override schedules
j. Define holiday schedules
k. Change time/date
l. Automatic daylight savings time adjustments
m. Enter/modify analog alarm limits
n. Enter/modify analog warning limits
o. View limits
p. Enable/disable demand limiting for each meter
q. Enable/disable duty cycle for each load

6. Reports shall be generated and directed to either CRT displays, printers or disk. As a minimum, the system shall allow the user to easily obtain the following types of reports:
 a. A general listing of all points in the network
 b. List of all points currently in alarm
 c. List of all points currently in override status
 d. List of all disabled points
 e. List of all points currently locked out
 f. DDC Controller trend overflow warning
 g. List all weekly schedules
 h. List of holiday programming
 i. List of limits and deadbands
 j. Summaries shall be provided for specific points, for a logical point group, for a user-selected group or groups or for the entire facility without restriction due to the hardware configuration of the building automation system. Under no conditions shall the operator need to specify the address of the hardware controller to obtain system information.

E. Scheduling
1. Provide a graphical spreadsheet-type format for simplification of time-of-day scheduling and overrides of building operations. Provide the following spreadsheet graphic types as a minimum:
 a. Weekly schedules
 b. Zone schedules
 c. Monthly calendars
2. Weekly schedules shall be provided for each building zone or piece of equipment with a specific occupancy schedule. Each schedule shall include columns for each day of the week as well as holiday and special day columns for alternate scheduling on user-defined days. Equipment scheduling shall be accomplished by simply inserting occupancy and vacancy times into appropriate information blocks on the graphic. In addition, temporary overrides and associated times may be inserted into blocks for modified operating schedules. After overrides have been executed, the original schedule will automatically be restored.
3. Zone schedules shall be provided for each building zone as previously described. Each schedule shall include all commandable points residing within the zone. Each point may have a unique schedule of operation relative to the zone’s occupancy schedule, allowing for sequential starting and control of equipment within the zone. Scheduling and rescheduling of points may be accomplished easily via the zone schedule graphic.
4. Monthly calendars for a 24-month period shall be provided which allow for simplified scheduling of holidays and special days in advance. Holidays and special days shall be user-selected with the pointing device and shall automatically reschedule equipment operation as previously defined on the weekly schedules.

F. Collection and Analysis of Historical Data
1. Provide trending capabilities that allow the user to easily monitor and preserve records of system activity over an extended period of time. Any system point may be trended automatically at time-based intervals or changes of value, both of which shall be user definable. Trend data may be stored on hard disk for future diagnostics and reporting.
2. Trend data report graphics shall be provided to allow the user to view all trended point data. Reports may be customized to include individual points or pre-defined groups of at least 6 points. Provide additional functionality to allow any trended data to be transferred easily to an off-the-shelf spreadsheet package such as Lotus 1-2-3a. This shall allow the user to perform custom calculations such as energy usage, equipment efficiency and energy costs and shall allow for generation of these reports on high-quality plots, graphs and charts.

G. Color Graphics
1. System shall be provided with complete color graphics software package, such that graphics can be created by user from time of software installation, without need for additional hardware or software.

2. Training course (see paragraph 1.10 above) shall include training in graphics production so that Owner may create his own graphics.

3. Each operator work station shall support not less than 1,000 separate graphic pages. Contractor shall include developed graphics as approved by the Owner's representative for this project. The following graphic pages shall be provided as a minimum:
 a. Index page of all graphics, with direct selection.
 b. Floor plan of the building, with zone temperatures (as applicable) and location of equipment being controlled. Equipment that is ON will be in one color and OFF in another. DXF files shall be provided by Engineer.
 c. Central Plant Plan showing locations and status of equipment.
 d. Central Plant Piping Schematic showing at least the following information; (1) status of equipment; (2) speed of pumps; (3) water temperatures.

4. Graphics program shall be fully user interactive, full color, incorporating the following capabilities:
 a. up to 50 dynamic points of data per graphic page
 b. animated objects for discrete points to illustrate point status
 c. on-line 'draw' utility
 d. ability to import .PCX or .DXF file format graphics developed in third party programs
 e. The systems graphic software shall provide the following minimum features:
 1) **Page Linking** such that it is possible to "zoom" into a specific AHU or any other page through a sequence of graphics without using anything but the system mouse.
 2) Generate, store, and retrieve library symbols for use in generating graphic pages.
 3) Fifty (50) dynamic points of data per graphic page.
 4) Pixel level resolution. Graphics will be displayed on EGA monitors with a 640 X 350 resolution, and on VGA monitors with a 640 X 480 resolution, minimum. Color selections will be made from a color bar consisting of 16 colors, with adjacent text description.
 5) Animated objects for discrete points (i.e., when a pump starts, the pipe fills with water or when a damper shuts it goes closed on the screen).
 6) Analog bar graphs for analog points. The operator shall be able to locate up to 60 bar graphs per graphic page, with options as to bar graph color, dimensions, horizontal/vertical orientation, and limit values.
 7) The real time value of each input or output from the DCU's DDC control block modules shall be displayable on the color graphic.
 8) Provide for import of .PCX file format graphics developed in third party programs such as Paintbrush. Such imported graphics shall be used as a "backdrop", so that all other dynamic and animated system features may be superimposed on this graphic. Similarly, it shall be possible to import CAD type drawings, by first converting the CAD drawing from .DXF format to .PCX format.
 9) The EMS contractor shall provide libraries of pre-engineered screens and symbols depicting standard air handling unit components (e.g., fans, cooling coils, filters, dampers, etc.), complete mechanical systems (e.g., constant volume-terminal reheat, VAV, etc.) and electrical symbols, so that Owner may develop graphics.
 10) The graphic development package shall use a mouse or similar pointing device in conjunction with a drawing program to allow the user to perform the following:
 a) Define symbols
 b) Position and size symbols
 c) Define background screens
 d) Define connecting lines and curves
 e) Locate, orient and size descriptive text
 f) Define and display colors for all elements
 g) Establish correlation between symbols or text and associated system points or other displays.

11) System shall allow graphical displays to be created to represent any logical grouping of system points or calculated data based upon building function, mechanical system, building layout or any other logical grouping of points which aids the operator in the analysis of the facility. To accomplish this, the user shall be able to build graphic displays that include point data from multiple DCU Controllers including Terminal Equipment Controllers used or DDC equipment.

H. System Configuration and Definition
1. All temperature and equipment control strategies and energy management routines shall be definable by the operator. System definition and modification procedures shall not interfere with normal system operation and control.

2. The system shall be provided complete with all equipment and documentation necessary to allow an operator to independently perform the following functions:
 a. Add/delete/modify stand-alone DDC Controller panels
 b. Add/delete/modify operator workstations
 c. Add/delete/modify application specific controllers
 d. Add/delete/modify points of any type and all associated point parameters and tuning constants
 e. Add/delete/modify alarm reporting definition for points
 f. Add/delete/modify control loops
 g. Add/delete/modify energy management applications
 h. Add/delete/modify time and calendar-based programming
 i. Add/delete/modify totalization for points
 j. Add/delete/modify historical data trending for points
 k. Add/delete/modify custom control processes
 l. Add/delete/modify any and all graphic displays, symbols and cross-reference to point data
 m. Add/delete/modify dial-up telecommunication definition
 n. Add/delete/modify all operator passwords. Add/delete/modify alarm messages

3. Definition of operator device characteristics, DCU Controllers individual points, applications and control sequences shall be performed using instructive prompting software.
 a. Libraries of standard application modules such as temperature, humidity and static pressure control may be used as "building blocks" in defining or creating new control sequences. In addition, the user shall have the capability to easily create and archive new modules and control sequences as desired via a word processing type format. Provide a library of standard forms to facilitate definition of point characteristics. Forms shall be self prompting and incorporate a fill-in-the-blank approach for definition of all parameters. The system shall immediately detect an improper entry and automatically display an error message explaining the nature of the mistake.
 b. Inputs and outputs for any process shall not be restricted to a single DCU Controller, but shall be able to include data from any and all other network panels to allow the development of network-wide control strategies. Processes shall also allow the operator to use the results of one process as the input to any number of other processes (cascading).
 c. Provide the capability to backup and store all system databases on the workstation hard disk. In addition, all database changes shall be performed while the workstation is on-line without disrupting other system operations. Changes shall be automatically recorded and downloaded to the appropriate DCU Controller. Similarly, changes made at the DCU Controllers shall be automatically uploaded to the workstation, ensuring system continuity. The user shall also have the option to selectively download changes as desired.
 d. Provide context-sensitive help menus to provide instructions appropriate with operations and applications currently being performed.

I. Additional Workstation Software
 1. Owner will provide a secure ID to access control system from the world-wide-web.
 2. Provide automatic dial-up communications for buildings as specified. Automatic dial-up communications shall include the following features as a minimum:
 a. Dial-Out
 1) Manual dial-out from the workstation to remote networks shall be accomplishable using only a mouse to select and request the desire remote connection.
 b. Dial-In
 1) Alarms shall automatically dial into the workstation for display at the terminal and for hard copy printout at the associated event printer.
 2) Alarms shall, at the operator's option, dial into a stand-alone modem-printer to provide for real-time alarm printouts even when the workstation is off-line (such as when it is being used to run operator-selected 3rd party software).
 3) Trend data shall be scheduled for automatic updating to the workstation at operator-selected times. The operator shall also have the option of manually collecting trend data at any time.
4.1 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Controls Contractor is responsible for complete operational installation of system, including, but not limited to the following:
 1. Electrical power supply to all control system components, including but not limited to; controllers, actuators, sensors, from dedicated circuits in electrical panels.
 2. Complete installation of duct-mounted components, including but not limited to: temperature, relative humidity, pressure, and CO2 sensors, and dampers/actuators.
 3. Complete installation of pipe-mounted components, including but not limited to: control valves and actuators, temperature sensors, pressure sensors.

C. All electrical material and installation shall be in accordance with local applicable codes and requirements of Division 26. All automation system equipment supplied shall be provided with adequate grounding in accordance with the manufacturer's specifications and suggested engineering applications procedures. These requirements shall include, but not be limited to:
 1. A "clean earth ground" for all FCUs and central operator's station.
 2. No "ground mixing" between equipment components.
 3. Insulation of all panels from metal conduits.
 4. Equal-potential grounding for equipment where required.

D. Contractor shall be responsible for securing all permits required for this aspect of the project.

E. Provide all controls points, temperature sensors, relays, actuators, and devices necessary to achieve operational sequences, whether explicitly called for or not in this specification. Coordinate with mechanical and electrical contractor to ensure all items are provided and installed.

4.2 PROGRAMMING

A. New software shall be developed and tested prior to completion of HVAC systems installation.

B. A preliminary software demonstration shall be conducted with Engineer prior to system installation to ensure that sequences are programmed as intended.

4.3 COMMISSIONING AND ACCEPTANCE TEST

A. Upon completion of system installation and programming, contractor shall conduct detailed testing and commissioning of all hardware and software, to include:
 1. Cross-referencing every control point, sensor, controller, and devices to ensure they are properly identified in software and written documentation.
 2. Testing of alarm features to ensure that system responds to:
 a. Out-of range values.
 b. Failure of equipment to respond to commanded state.
 c. Loss of communications.
 d. Controller failure.
 3. Testing of control sequences using simulated values to verify proper operation under all possible conditions. Use simulated values as needed to explore “what-if” scenarios.

B. Upon completion of Commissioning, issue a letter to Owner and Engineer stating that the system is ready for a demonstration. Be prepared to demonstrate the following as a minimum:
 1. Response to alarm conditions as above.
 2. On/Off control sequences.
 3. Zone dampers response to temperature swings.
 4. AHU variable speed operation.
 5. AHU damper controls.

4.4 INSTRUCTION
A. After system Commissioning and Acceptance Test, and at such time as acceptable performance of the system software has been established, the Contractor shall arrange for operator instruction of Owner's designated personnel.

B. At a time mutually agreed upon during System commissioning, the Contractor shall arrange for 8 (EIGHT) hours of on-site instruction for up to four Owner's designated personnel on the operation of all control equipment installed. Operator orientation of the system shall include, but not be limited to, the overall operation program, equipment functions (both individually and as part of the total integrated system), commands, system generation, advisories, and appropriate operator intervention required in responding to the System's operation.

C. Reference Manuals prepared for this project by the Contractor according to requirements of Part 1 shall be used during the instruction. Six (6) copies of the Owner's Reference Manuals shall be provided.

D. Additional instruction time as deemed necessary by the Owner's authorized representative may be obtained from the Contractor on a negotiated basis with the Owner.

END OF SECTION 230900
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Related Sections include the following:
 1. Division 23 Section "Instrumentation and Control for HVAC" for control equipment and devices and for submittal requirements.
 2. Division 23 Section "Water Source Unitary Heat Pumps" for equipment controls requirements.

1.2 SUMMARY

A. This Section includes control sequences for HVAC systems, subsystems, and equipment. Integrate new equipment controls with the existing system. Provide controls and operating sequences for the following HVAC systems at Reese Building Renovations:
 a. WSHP controlled by solid state controller integral to units (Open Controller with BACnet interface, a unitary controller by unit manufacturer); See Div 23 specs.
 b. BAS shall provide the following: schedule Off/Enable control, optimal start/stop, reset of space temperature, relative humidity, and CO2 setpoints, trend parameters, provide graphics, etc.
 c. Once Enabled, WSHP unitary controller provides full control of unit.
 d. All parameters within integral unit controller shall be readable by BAS. Points include but are not limited to operating parameters such as heating, cooling and dehumidification modes, and stages of cooling and heating, position of HGR valve, fan and compressor speeds, and all adjustable setpoints.
 2. Exhaust Fan Sequences for all exhaust fans in building.

B. Prior to bidding, Controls contractor shall notify general, mechanical and electrical contractor of any work required for operational installation of controls devices that will not be conducted by Controls Contractor. This includes, but is not limited to: installation of controls devices and sensors, dampers, valves, actuators, as well as any needs for power wiring and/or conduit.

C. A list of the minimum number and type of control points required is given. Provide any additional points, sensors, gateways, interface cards, etc. as required to achieve sequences, whether specifically called for in Points List or not.

D. Provide all hardware, software, and labor required to achieve specified sequences.

E. Units or systems that are grouped together for purposes of sequence description are not meant to be controlled together. Each system shall have its own set of adjustable parameters and will respond only to values (space temperatures for example) associated with it. This means that one unit may be in heating mode while another with similar sequence may be in cooling mode.

1.3 GENERAL CONTROL SEQUENCES

A. All setpoints used in controls sequences shall be user adjustable with a minimum of keystrokes.

B. Points lists have been provided as a general guideline, and are not all inclusive. Provide all points required for achievement of operating sequences.
C. All delays shall be operator adjustable. Program for a minimum delay between on/off commands for HVAC equipment to prevent short cycling:
 1. Air Handlers Units: 5 minute delay.

D. System program shall incorporate individual Off/Enable or Start/Stop times for each output point for WSHPs, EFs, Outside Air (OA) dampers, scheduled as per Owner’s input. Equipment items having the same Off/Enable or Start/Stop times are not to be software interlinked such that one cannot be changed without changing the other. Each individual equipment item is to have its own individual programmable Off/Enable or Start/Stop scheduling capability.

E. Occupied hours, Off/Enable: Program Off/Enable times as per Owner’s input. Each system will have a dedicated time schedule available for programming by user. Each outside air damper and exhaust fan shall have an independent dedicated time schedule as well. In general, there are a minimum of two distinct time schedules for the building. Actual Occupied time schedule is when the buildings actually have occupancy (for instance 8AM to 5:30PM). This schedule is used for scheduling ventilation, OA, EFs, VAVs, etc. The second time schedule is used for the AHUs and plant equipment On/Off times and will include morning cool down and optimal start/stop times, etc. (for instance 5AM to 7PM).

F. Stagger AHU start times by a minimum of 20 seconds between starts.

G. Unoccupied hours, Off/Enable:
 1. Enable cooling if space air temperature rises above 90°F (adj.). Disable unit once temperature has fallen to 85°F (adj.) or below.
 2. Enable heating if space air temperature drops below 45°F (adj.). Disable unit once temperature has risen to 55°F (adj.).
 3. Enable cooling if relative humidity rises above 60% (adj.). Disable unit once relative humidity has fallen to 55% (adj.).
 4. Unit shall run for a minimum of 30 min. (adj.) or until specified conditions are satisfied.
 5. Issue Alarm if the unit has been in unoccupied mode for 4 hours (adj) and relative humidity rises above 60% (adj.). This time delay should allow false alarms immediately after units are disabled.
 6. Manual Override: Control may be manually overridden at the zone Thermostat, controller and the COS.
 7. Hardware Interlocks: Controls shall not bypass any safeties or interlocks associated with fire protection shutdown.

H. Overrides:
 1. Control may be automatically overridden by any of the following sequences:
 a. Optimal Start-Stop
 b. Unoccupied Temperature Reset
 2. Control may be manually overridden, and shall remain in “Override” position for a pre-programmed time period (1 hour, adj.), at any of the following locations:
 a. Zone temperature controller
 b. Air handler PCU
 c. Central Operator’s Station (COS)

I. Interlocks:
 1. Hardware: Controls shall not bypass any safeties or interlocks associated with fire protection shutdown.
 2. Provide all hardware necessary to achieve software interlocks required for proper system operation, including but not limited to control of dampers and exhaust fans. Coordinate with mechanical and electrical contractors.

J. Optimal Start/Stop:
 1. Control system shall automatically calculate the optimal start time for each air-handling unit so that comfort conditions will be achieved by the scheduled on time. Likewise, Control system shall determine the optimal time for equipment shutdown so that comfort conditions may be maintained until scheduled off time with minimal energy use.

K. Damper Actuators:
1. Provide independent actuators for outside air damper and return air damper. Do NOT provide linkage between each damper.

1.4 SPACE TEMPERATURE SETPOINTS

A. Cooling
 1. Mid-range setpoint = 75˚F.
 2. Program system to allow a setpoint range of 1.5˚F (adj) either side of mid-range setpoint.

B. Heating
 1. Mid-range setpoint = 70˚F.
 2. Program system to allow a setpoint range of 1.5˚F (adj) either side of mid-range setpoint.

C. Operator Station Display: Indicate the following on operator workstation display terminal, as applicable per points list:
 1. Building floor plan, indicating individual rooms, thermostat locations, and areas served by each air handler, fan coil unit and rooftop unit.
 2. Conditioned space air temperature, all zones.
 3. Conditioned space air Base temperature setpoint, all zones.
 4. Conditioned space air Actual temperature setpoint, all zones.
 5. Distinguish different area(s) served by individual HVAC equipment items by use of color variation or heavy lines on floor plans graphics page.
 6. When a control point is in “Test” mode, graphic shall indicate the status such as “test” or “manual”.

1.5 CONTROL SEQUENCES FOR WSHP SYSTEMS

A. Coordinated with sequences specified in Div. 23, Section 238146 Water Source Unitary Heat Pump Units. Control sequences shall be similar to existing provided by Carrier “Open Controller” for Carrier 50PT units.

B. Solenoid Valve: For all units, since this is a variable volume pumping application.

C. Hot Gas Reheat: Where noted.

D. Fan Control: System starts fan to run continuously during occupied periods. System cycles fan during unoccupied periods.
 1. Signal alarm if fan fails to start as commanded.
 2. Fan shall vary speed in coordination with compressor staging.
 3. Automatic-2 speed fan control
 4. Fan status Alarm

E. Unoccupied Mode Enable / Disable: During unoccupied hours, enable unit operation and control under the conditions listed below. Unit shall run for a minimum of 30 minutes or until space conditions are satisfied.

F. Start-Up Operation: In the order of priority, start-up operation shall be commanded as follows:
 1. System shall initiate unit and command to Cooling Mode if space temperature is above cooling setpoint.
 2. System shall initiate unit and command to Heating Mode, if space temperature is below heating setpoint.
 3. If temperature setpoint is satisfied at start-up, but humidity setpoint is not, System shall initiate unit in Dehumidification Mode.
 4. There shall be no exceptions to this.

G. Cooling Mode:
 1. System cycles compressor stages to maintain space air temperature setpoint (74F, adj.).
 2. Ensure that the Discharge Air Temperature (DAT) remains above the Low DAT limit.
 3. Should space RH surpass setpoint of 55% RH, activate dehumidification mode.
 4. If OA conditions are adequate use economizer mode.
H. Dehumidification Mode:
1. Provide RH sensors for all units.
2. Dehumidification mode applicable for units with HGRH coils.
3. If space temperature setpoint is satisfied, but space humidity level is above setpoint (55%, adj.),
 system shall cycle compressor stages, fan speed, and (if applicable) hot gas reheat valve to
 maintain space humidity setpoint.
4. Close outside air damper and disable cooling if space temperature drops 1.5°F (adjustable) below
 space temperature set point.
5. System shall terminate Mode when space humidity drops below setpoint by (5%, adj.), or if system
 is commanded to Cooling Mode.

I. Heating Mode (Reverse Cycle Heating):
1. System cycles compressor stages to maintain space air temperature setpoint.
2. Ensure that the Discharge Air Temperature (DAT) remains below the High DAT limit.

J. Outside-Air Control for all other units: Provide Indoor Air Quality Sensor. CO2 based DCV, RA and OA
 dampers are required for all units, unless noted otherwise on schedules. Damper position, CO2 setpoint
 shall be operator adjustable. Set the 4 setpoints for DCV: start setpoint, maximum setpoint, minimum
 damper position, and maximum damper position. Coordinate with TAB.
1. Unoccupied Periods:
 a. OA Damper Position: Closed.
2. Normal Operation: Provide standard CO2 based DCV programming or as follows:
 a. OA Damper Position: Modulate damper as follows:
 1) Minimum open position at 700 PPM or less.
 2) Maximum open position at 1000 PPM (OA not to exceed scheduled CFM).
 b. Initiate Alarm if CO2 levels exceed 1200 PPM
 c. Close OA Damper if OAT drops below 35°F or rises above 105°F (adj. Setpoints.), or if space
 humidity rises more than 10% above set point (adjustable).
 d. CO2 sensors: Shall be provided by equipment manufacturer.

K. Graphics Display: Via BACnet interface from Open Controller to BAS.
1. System graphic.
2. System occupied/unoccupied mode.
4. Fan status.
5. Fan speed.
7. System Dehumidification mode indication.
8. Cooling Stage 1 Compressor on-off indication.
9. Cooling Stage 2 Compressor on-off indication.
10. Compressor speed/staging.
11. Discharge air temperature indication.
15. Space relative humidity indication.
16. Space relative humidity setpoint.
17. CO2 level indication.
18. CO2 level setpoint.
22. Hot Gas Reheat Valve position.
23. Reversing valve position.
24. Alarms (IAQ, RH, T, Discharge air temperature, status of filter, fan, compressor, condenser water,
 etc.)
1.6 BUILDING EXHAUST FAN SCHEDULED CONTROL SEQUENCES

A. Sequence:
1. Enable/disable EFs according to occupancy schedule. Occupancy times will be initially set-up according to the Automatic Time Schedule for each fan and shall be completely operator adjustable for fans individually.
2. Exhaust fans shall have a dedicated time schedule (that is independent of AHU time schedule). Coordinate time schedules such that exhaust fans are operational only when associated outside air dampers are open. Under no circumstances should exhaust fans operate when outside air dampers are closed.

B. Manual Override: Control may be manually overridden at the controller and at the COS. Control will remain in “Override” position for a pre-programmed time period (1 hour, adj).

C. Interlocks:
1. Hardware Interlocks: Controls shall not bypass any safeties or interlocks associated with fire protection shutdown.
2. Software Interlocks: Provide all hardware necessary to achieve software interlocks required for proper system operation. Coordinate with mechanical and electrical contractors.

D. All other exhaust fans: Fans operate continuously via time schedules during occupied mode.
1. Restroom fans operate continuously during occupied mode.
2. Janitor room fan operates via light switch.
3. General purpose exhaust fans, etc.

E. Operator Workstation: Display the following data:
1. System graphic.
2. System occupied/unoccupied mode.
3. Fan on-off indication.
4. Fan status.
5. Associated AHU status.

1.7 OTHER SEQUENCES

A. Operator Overrides: System shall allow operator to enable / disable unit and / or control / adjust all setpoints from COS.

B. Alarms: System shall issue alarm at COS upon failure of fan or failure to achieve setpoint within specified time (15 min. adj.)

C. Graphics pages must have units listed beside parameter values (e.g. °F, ppm, % Open, psi, etc.)

D. When parameters are in manual or test modes, graphics shall indicate that they are in test mode.

E. Provide up to 8 hours of programming to account for additional control sequences and fine-tuning above sequences, during the course of the project.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230993
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes pipe and fitting materials and joining methods for the following:
 1. Water source heat pump (WSHP) water piping.
 2. Makeup-water piping.
 3. Condensate-drain piping.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of the following:
 1. Fittings.
 2. Piping.

B. Sustainability Submittals:

 1. Product Data: For solvent cements and adhesive primers, documentation including printed statement of VOC content.

C. Delegated-Design Submittal:

 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
 3. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
 4. Locations of and details for penetration and firestopping for fire- and smoke-rated wall and floor and ceiling assemblies.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Piping layout, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

 1. Suspended ceiling components.
 2. Other building services.
 3. Structural members.

B. Qualification Data: For Installer.

C. Welding certificates.

D. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Installer Qualifications:

B. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 1. WSHP-Water Piping: 175 psig at 200 deg F.
 2. Makeup-Water Piping: 80 psig at 150 deg F.
 3. Condensate-Drain Piping: 150 deg F.
 4. Air-Vent Piping: 200 deg F.

2.2 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.

B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.

C. DWV Copper Tubing: ASTM B 306, Type DWV.

D. Wrought-Copper Unions: ASME B16.22.

2.3 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.

C. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in "Piping Applications" Article.

D. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in "Piping Applications" Article.

E. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

F. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
2. End Connections: Butt welding.
3. Facings: Raised face.

G. Grooved Mechanical-Joint Fittings and Couplings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. Central Sprinkler Company.
 c. Victaulic Company.
2. Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated steel; or ASTM A 106/A 106M, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
3. Couplings: Ductile- or malleable-iron housing and EPDM gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.

H. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.4 JOINING MATERIALS
A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
 C. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
 D. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
 E. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.5 TRANSITION FITTINGS
A. Plastic-to-Metal Transition Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Viega LLC.
 2. One-piece fitting with one threaded brass or copper insert and one solvent-cement-joint end of material and wall thickness to match plastic pipe material.
B. Plastic-to-Metal Transition Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. NIBCO INC.

2. Brass or copper end, solvent-cement-joint end of material and wall thickness to match plastic pipe material, rubber gasket, and threaded union.

2.6 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Watts; a Watts Water Technologies company.
 b. Wilkins.
 c. Zum Industries, LLC.

2. Description:
 b. Pressure Rating: 250 psig.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Watts; a Watts Water Technologies company.
 b. Wilkins.
 c. Zum Industries, LLC.

2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 175 psig.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Central Plastics Company.
 c. Pipeline Seal and Insulator, Inc.

2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
d. Bolt Sleeves: Phenolic or polyethylene.
e. Washers: Phenolic with steel backing washers.

E. Dielectric Nipples:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

a. Grinnell Mechanical Products.
b. Victaulic Company.

2. **Description:**

b. Electroplated steel nipple, complying with ASTM F 1545.
c. Pressure Rating: 300 psig at 225 deg F.
d. End Connections: Male threaded or grooved.
e. Lining: Inert and noncorrosive, propylene.

2.7 **PAINTING OF UNINSULATED PIPING**

A. Manufacturers Names: The following manufacturers are referred to in the paint schedules by use of shortened versions of their names, which are shown in parentheses:

1. Glidden Co. (The) (Glidden)
2. Sherwin-Williams Co. (S-W).

2.8 **PAINT MATERIALS, GENERAL**

A. Material Compatibility: Provide primers, undercoats, and finish-coat materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.

B. Material Quality: Provide manufacturer's best-quality paint material of the various coating types specified. Paint-material containers not displaying manufacturer's product identification will not be acceptable.

C. Colors: Match colors indicated by reference to manufacturer's color designations.

1. Uninsulated WSHP piping: Color to be coordinated with Owner.

2.9 **PAINT SCHEDULE**

A. Ferrous Metal: Semi-Gloss, Alkyd-Enamel Finish: 2 finish coats over an enamel undercoat and primer.

1. Primer: Quick-drying, rust-inhibitive, alkyd-based or epoxy-metal primer, as recommended by the manufacturer for this substrate, applied at spreading rate recommended by the manufacturer to achieve a total dry film thickness of not less than 1.5 mils. S-W: Kem Kromik Universal Metal Primer B50NZ6/B50WZ1.

2. Undercoat: As recommended by the manufacturer for this substrate, applied at spreading rate recommended by the manufacturer to achieve a total dry film thickness of not less than 1.2 mils. S-W: High-Solids Poly-Urethane Semi-Gloss B65 350 Series, with Hardner: B60V30.

3. Finish Coat: Same as undercoat. Semi-gloss, applied at spreading rate recommended by the manufacturer to achieve a total dry film thickness of not less than 1.2 mils.
PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. WSHP-water piping, aboveground, NPS 2 and smaller, shall be any of the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 2. Schedule 40 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
 3. PP-R piping system (Aquatherm Blue Pipe): SDR 11. Drawings show pipe diameters for steel piping. Internal diameter of PP pipe shall match or exceed diameter of the steel pipe on drawings. Piping shall be installed and supported in strict accordance with manufacturer’s recommendations.

B. WSHP-water piping, aboveground, NPS 2-1/2 and larger, shall be the following:
 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 2. PP-R piping system (Aquatherm Blue Pipe): SDR 11. Drawings show pipe diameters for steel piping. Internal diameter of PP pipe shall match or exceed diameter of the steel pipe on drawings. Piping shall be installed and supported in strict accordance with manufacturer’s recommendations.

C. Makeup-water piping installed aboveground shall be the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

D. Condensate-Drain Piping: Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

E. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.

F. Air-Vent Piping:
 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer’s written instructions.
 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.

3.2 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.
H. Install fittings for changes in direction and branch connections.
I. Install piping to allow application of insulation.
J. Select system components with pressure rating equal to or greater than system operating pressure.
K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
O. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
P. Install valves according to Div. 23 sections.
Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
R. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
S. Install shutoff valve immediately upstream of each dielectric fitting.
T. Comply with requirements in Section 230516 "Expansion Fittings and Loops for HVAC Piping" for installation of expansion loops, expansion joints, anchors, and pipe alignment guides.
U. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for identifying piping.
V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.3 DIELECTRIC FITTING INSTALLATION
A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.
3.4 HANGERS AND SUPPORTS

A. Comply with requirements in Section 230529 “Hangers and Supports for HVAC Piping and Equipment” for hanger, support, and anchor devices. Comply with the following requirements for maximum spacing of supports.

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.
5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4: Maximum span, 7 feet.
2. NPS 1: Maximum span, 7 feet.
3. NPS 1-1/2: Maximum span, 9 feet.
4. NPS 2: Maximum span, 10 feet.
5. NPS 2-1/2: Maximum span, 11 feet.
6. NPS 3 and Larger: Maximum span, 12 feet.

D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
3. NPS 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
6. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
7. NPS 3 and Larger: Maximum span, 10 feet; minimum rod size, 3/8 inch.

E. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Brazed Joints: Construct joints according to AWS’s “Brazing Handbook,” “Pipe and Tube” Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

E. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to “Quality Assurance” Article.
F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

G. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.

3.6 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.

D. Install ports for pressure gauges and thermometers at coil inlet and outlet connections. Comply with requirements in Section 230519 "Meters and Gages for HVAC Piping."

3.7 PAINTING OF UNINSULATED PIPING

A. Examine substrates, areas, and conditions, with the Applicator present, under which painting will be performed for compliance with paint application requirements.

1. Do not begin to apply paint until unsatisfactory conditions have been corrected and surfaces receiving paint are thoroughly dry.

B. General: Remove hardware and hardware accessories, plates, machined surfaces, lighting fixtures, and similar items already installed that are not to be painted. If removal is impractical or impossible because of the size or weight of the item, provide surface-applied protection before surface preparation and painting.

1. After completing painting operations in each space or area, reinstall items removed using workers skilled in the trades involved.

C. Cleaning: Before applying paint or other surface treatments, clean the substrates of substances that could impair the bond of the various coatings. Remove oil and grease before cleaning.

1. Schedule cleaning and painting so dust and other contaminants from the cleaning process will not fall on wet, newly painted surfaces.

D. Surface Preparation: Clean and prepare surfaces to be painted according to manufacturer's written instructions for each particular substrate condition and as specified.

1. Provide barrier coats over incompatible primers or remove and reprime.

2. Ferrous Metals: Clean ungalvanized ferrous-metal surfaces that have not been shop coated; remove oil, grease, dirt, loose mill scale, and other foreign substances. Use solvent or mechanical cleaning methods that comply with the Steel Structures Painting Council's (SSPC) recommendations.

 a. Blast steel surfaces clean as recommended by paint system manufacturer and according to requirements of SSPC-SP 10.
 b. Treat bare and sandblasted or pickled clean metal with a metal treatment wash coat before priming.
 c. Touch up bare areas and shop-applied prime coats that have been damaged. Wire-brush, clean with solvents recommended by paint manufacturer, and touch up with the same primer as the shop coat.
3. Galvanized Surfaces: Clean galvanized surfaces with nonpetroleum-based solvents so surface is free of oil and surface contaminants. Remove pretreatment from galvanized sheet metal fabricated from coil stock by mechanical methods.

E. Materials Preparation: Mix and prepare paint materials according to manufacturer's written instructions.

1. Maintain containers used in mixing and applying paint in a clean condition, free of foreign materials and residue.
2. Stir material before application to produce a mixture of uniform density. Stir as required during application. Do not stir surface film into material. If necessary, remove surface film and strain material before using.
3. Use only thinners approved by paint manufacturer and only within recommended limits.

F. General: Apply paint according to manufacturer's written instructions. Use applicators and techniques best suited for substrate and type of material being applied.

1. Paint colors, surface treatments, and finishes are indicated in the schedules.
2. Do not paint over dirt, rust, scale, grease, moisture, scuffed surfaces, or conditions detrimental to formation of a durable paint film.
3. Provide finish coats that are compatible with primers used.
4. Paint surfaces behind movable equipment and furniture the same as similar exposed surfaces. Before the final installation of equipment, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
5. Sand lightly between each succeeding enamel or varnish coat.

G. Scheduling Painting: Apply first coat to surfaces that have been cleaned, pretreated, or otherwise prepared for painting as soon as practicable after preparation and before subsequent surface deterioration.

1. The number of coats and the film thickness required are the same regardless of application method. Do not apply succeeding coats until the previous coat has cured as recommended by the manufacturer. If sanding is required to produce a smooth, even surface according to manufacturer's written instructions, sand between applications.
2. Omit primer on metal surfaces that have been shop primed and touchup painted.
3. If undercoats, stains, or other conditions show through final coat of paint, apply additional coats until paint film is of uniform finish, color, and appearance. Give special attention to ensure edges, corners, crevices, welds, and exposed fasteners receive a dry film thickness equivalent to that of flat surfaces.
4. Allow sufficient time between successive coats to permit proper drying. Do not recoat surfaces until paint has dried to where it feels firm, does not deform or feel sticky under moderate thumb pressure, and where application of another coat of paint does not cause the undercoat to lift or lose adhesion.

H. Application Procedures: Apply paints and coatings by brush, roller, spray, or other applicators according to manufacturer's written instructions.

I. Minimum Coating Thickness: Apply paint materials no thinner than manufacturer's recommended spreading rate. Provide the total dry film thickness of the entire system as recommended by the manufacturer.

J. Mechanical and Electrical Work: Painting of mechanical and electrical work is limited to items exposed in equipment rooms and in occupied spaces.

K. Mechanical items to be painted include, but are not limited to, the following:

1. Piping, pipe hangers, and supports.

L. Prime Coats: Before applying finish coats, apply a prime coat of material, as recommended by the manufacturer, to material that is required to be painted or finished and that has not been prime coated by
others. Recruit primed and sealed surfaces where evidence of suction spots or unsealed areas in first coat appears, to ensure a finish coat with no burn through or other defects due to insufficient sealing.

M. Stipple Enamel Finish: Roll and redistribute paint to an even and fine texture. Leave no evidence of rolling, such as laps, irregularity in texture, skid marks, or other surface imperfections.

N. Completed Work: Match approved samples for color, texture, and coverage. Remove, refinish, or repaint work not complying with requirements.

O. Cleanup: At the end of each workday, remove empty cans, rags, rubbish, and other discarded paint materials from the site.

P. Protect work of other trades, whether being painted or not, against damage by painting. Correct damage by cleaning, repairing or replacing, and repainting, as approved by Architect.

Q. Provide "Wet Paint" signs to protect newly painted finishes. Remove temporary protective wrappings provided by others to protect their work after completing painting operations.

3.8 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:
 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:
 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 3. Isolate expansion tanks and determine that hydronic system is full of water.
 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 6. Prepare written report of testing.

C. Perform the following before operating the system:
 1. Open manual valves fully.
 2. Inspect pumps for proper rotation.
 3. Set makeup pressure-reducing valves for required system pressure.
 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 5. Set temperature controls so all coils are calling for full flow.
 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
7. Verify lubrication of motors and bearings.

END OF SECTION 232113
SECTION 232116
HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and
Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes special-duty valves and specialties for the following:
 1. WSHP-water piping.
 2. Makeup-water piping.
 3. Air-vent piping.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of the following:
 1. Valves: Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice
 balancing valves and automatic flow-control valves.
 2. Air-control devices.
 3. Hydronic specialties.

1.4 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For air-control devices, hydronic specialties, and special-duty valves to
 include in emergency, operation, and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include
 flowmeter, probes, hoses, flow charts, and carrying case.

1.6 QUALITY ASSURANCE
A. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code:
 Section IX.
 1. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air
 separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code:
 Section VIII, Division 1.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
1. WSHP-Water Piping: 175 psig at 200 deg F.
2. Makeup-Water Piping: 80 psig at 150 deg F.
3. Air-Vent Piping: 200 deg F.
4. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 VALVES

A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Division 23 Sections.

B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Section 230900.

C. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Armstrong Pumps, Inc.
 b. Bell & Gossett; a Xylem brand.
 c. Flow Design, Inc.
 d. Griswold Controls.
 e. Nexus Valve, Inc.
 f. Taco.

2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
5. Disc: Glass and carbon-filled PTFE.
6. Seat: PTFE.
7. End Connections: Flanged or grooved.
9. Handle Style: Lever, with memory stop to retain set position.
11. Maximum Operating Temperature: 250 deg F.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; a Xylem brand.
 d. Watts; a Watts Water Technologies company.

2. Body: Bronze or brass.
3. Disc: Glass and carbon-filled PTFE.
5. Stem Seals: EPDM O-rings.
6. Diaphragm: EPT.
7. Low inlet-pressure check valve.
8. Inlet Strainer: Stainless steel, removable without system shutdown.
10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with
 operating pressure and capacity factory set and field adjustable.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc
 b. Armstrong Pumps, Inc
 c. Bell & Gossett; a Xylem brand
 d. Watts; a Watts Water Technologies company
2. Body: Bronze or brass.
3. Disc: Glass and carbon-filled PTFE.
5. Stem Seals: EPDM O-rings.
6. Diaphragm: EPT.
8. Inlet Strainer: Stainless steel, removable without system shutdown.
10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel
 Code: Section IV, and selected to suit system in which installed, with operating pressure and
 capacity factory set and field adjustable.

F. Automatic Flow-Control Valves:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Flow Design, Inc
 b. Griswold Controls
 c. Nexus Valve, Inc
2. Body: Brass or ferrous metal.
3. Piston and Spring Assembly: Stainless steel, tamper proof, self-cleaning, and removable.
4. Combination Assemblies: Include bronze or brass-alloy ball valve.
5. Identification Tag: Marked with zone identification, valve number, and flow rate.
6. Size: Same as pipe in which installed.
7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
9. Maximum Operating Temperature: 200 deg F.

2.3 AIR-CONTROL DEVICES

A. Manual Air Vents:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc
 b. Armstrong Pumps, Inc
 c. Bell & Gossett; a Xylem brand
 d. Nexus Valve, Inc
 e. Taco, Inc
2. Body: Bronze.
3. Internal Parts: Nonferrous.
4. Operator: Screwdriver or thumbscrew.
5. Inlet Connection: NPS 1/2.
7. CWP Rating: 150 psig.
8. Maximum Operating Temperature: 225 deg F.

B. Automatic Air Vents:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; a Xylem brand.
 d. Nexus Valve, Inc.
 e. Taco, Inc.

2. Body: Bronze.
3. Internal Parts: Nonferrous.
5. Inlet Connection: NPS 1/2.
7. CWP Rating: 150 psig.
8. Maximum Operating Temperature: 240 deg F.

C. Bladder-Type Expansion Tanks: Existing

D. Tangential-Type Air Separators: Existing

E. In-Line Air Separators: Existing

F. Air Purgers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; a Xylem brand.
 d. Taco, Inc.

2. Body: Cast iron with internal baffles that slow the water velocity to separate the air from solution and divert it to the vent for quick removal.
4. Maximum Operating Temperature: 250 deg F.

2.4 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:

1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.

B. Basket Strainers:

1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
C. Stainless-Steel Bellow, Flexible Connectors:

1. **Body:** Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
2. **End Connections:** Threaded or flanged to match equipment connected.
3. **Performance:** Capable of 3/4-inch misalignment.
4. **CWP Rating:** 150 psig.
5. **Maximum Operating Temperature:** 250 deg F.

D. Spherical, Rubber, Flexible Connectors:

1. **Body:** Fiber-reinforced rubber body.
2. **End Connections:** Steel flanges drilled to align with Classes 150 and 300 steel flanges.
3. **Performance:** Capable of misalignment.
4. **CWP Rating:** 150 psig.
5. **Maximum Operating Temperature:** 250 deg F.

E. Expansion Fittings: Comply with requirements in Section 230516 "Expansion Fittings and Loops for HVAC Piping." Section 15124 "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

A. Install shutoff-duty valves at each branch connection to supply mains and at supply connection to each piece of equipment.

B. Install calibrated-orifice, balancing valves at each branch connection to return main.

C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.

D. Install check valves at each pump discharge and elsewhere as required to control flow direction.

E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.

F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.2 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Install manual vents at heat-transfer coils and elsewhere as required for air venting.

C. Install piping from air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.

D. Install in-line air separators in pump suction. Install drain valve on air separators NPS 2 and larger.

E. Install tangential air separator in pump suction. Install blowdown piping with gate or full-port ball valve; extend full size to nearest floor drain.

F. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure that tank is properly charged with air to suit system Project requirements.
END OF SECTION 232116
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the following water treatment for closed-loop hydronic systems.

B. Contractor shall contract with Owner’s water treatment Contractor. Contact Owner for details.

C. Chemical treatment contractor shall reuse existing chemical treatment equipment, and provide chemical treatment such that specified water conditioning is achieved. Provide a dye in the hydronic piping system.

1.3 DEFINITIONS

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

B. RO: Reverse osmosis.

C. TSS: Total suspended solids are solid materials, including organic and inorganic, that are suspended in the water. These solids may include silt, plankton, and industrial wastes.

1.4 ACTION SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, and furnished specialties and accessories for the following products:
 1. Bypass feeders.
 2. Chemical test equipment.
 3. Chemical material safety data sheets.

B. Shop Drawings: Pretreatment and chemical treatment equipment showing tanks, maintenance space required, and piping connections to hydronic systems.
 1. Include plans, elevations, sections, and attachment details.
 2. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Water Analysis Provider Qualifications: Verification of experience and capability of HVAC water-treatment service provider.

B. Field quality-control reports.

C. Other Informational Submittals:
 1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in "Performance Requirements" Article.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sensors, injection pumps, and controllers to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC water-treatment service provider capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.

B. Contractor shall have a local office within 75 miles of the project site.

1.8 MAINTENANCE SERVICE

A. Scope of Maintenance Service: Provide chemicals and service program to maintain water conditions required above to inhibit corrosion and scale formation for hydronic piping and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion and shall include the following:
 1. Initial water analysis and HVAC water-treatment recommendations.
 2. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
 3. Periodic field service and consultation.
 5. Laboratory technical analysis.
 6. Analyses and reports of all chemical items concerning safety and compliance with government regulations.

1.9 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Chemicals: Furnish quantity equal to 100 percent of amount initially installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Nalco; an Ecolab company.

2.2 PERFORMANCE REQUIREMENTS

A. Water quality for hydronic systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of hydronic equipment without creating a hazard to operating personnel or the environment.

B. Base HVAC water treatment on quality of water available at Project site, hydronic system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.
C. Closed hydronic systems, including chilled water, shall have the following water qualities:

1. Meet state and local pollution standards, codes and regulations.
2. pH: Maintain a value within 9.0 to 10.5.
3. TSS: Maintain a maximum value of 10 ppm.
4. Hardness: 0.0
5. Iron: 0.0
6. TDS: 1500 to 1700 PPM (as CaCO₃)
7. Silica: 60 PPM or less
8. Copper: Per manufacturer’s recommendations.
9. Total Algae: 0.00 growth.
10. Provide liquid biocide during initial fill.
11. Microbiological Limits:
 a. Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/mL.
 b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/mL.
 c. Nitrate Reducers: Maintain a maximum value of 100 organisms/mL.
 d. Sulfate Reducers: Maintain a maximum value of zero organisms/mL.
 e. Iron Bacteria: Maintain a maximum value of zero organisms/mL.

2.3 MANUAL CHEMICAL-FEED EQUIPMENT

A. Bypass Feeders: Reuse existing Steel, with corrosion-resistant exterior coating, minimum 3-1/2-inch fill opening in the top, and NPS 3/4 bottom inlet and top side outlet. Quarter turn cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.
 1. Capacity: 5 gal.

2.4 CHEMICALS

A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment and that can attain water quality specified in “Performance Requirements” Article.

B. System Cleaner: Liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products.

C. Biocide: Chlorine release agents or microbiocides.

D. Closed-Loop, Water Piping Chemicals: Sequestering agent to reduce deposits and adjust pH, corrosion inhibitors, and conductivity enhancers.

2.5 FILTRATION UNIT

A. Filtration Unit: Stainless-steel housing and polypropylene filter with polypropylene core.

B. Replaceable Filter Media: Compatible with antifreeze and water-treatment chemicals.

C. Filter Media for Sediment Removal Service: Rated at 98 percent efficiency for 20-micrometer particulate.

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.
3.2 INSTALLATION

A. Install chemical application equipment on concrete bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor chemical tanks and floor-mounting accessories to substrate.

B. Install water testing equipment on wall near water chemical application equipment.

C. Bypass Feeders: Install in closed hydronic systems, including chilled water, and equipped with the following:
 1. Install bypass feeder in a bypass circuit around circulating pumps unless otherwise indicated on Drawings.
 2. Install water meter in makeup-water supply.
 3. Install test-coupon assembly in bypass circuit around circulating pumps unless otherwise indicated on Drawings.
 4. Install a gate or full-port ball isolation valves on inlet, outlet, and drain below the feeder inlet.
 5. Install a swing check on the inlet after the isolation valve.

3.3 CONNECTIONS

A. Where installing piping adjacent to equipment, allow space for service and maintenance.

B. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Comply with requirements in Section 232116 "Hydronic Piping Specialties."

C. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Division 23 Sections.

D. Comply with requirements in Section 221119 "Domestic Water Piping Specialties" for backflow preventers required in makeup-water connections to potable-water systems.

E. Confirm applicable electrical requirements in electrical Sections for connecting electrical equipment.

F. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

G. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

 1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
 2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
 3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of hydronic systems' startup procedures.
 4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
 5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
7. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.
8. Repair leaks and defects with new materials and retest piping until no leaks exist.

B. Equipment will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

D. At eight-week interval following Substantial Completion, perform separate water analyses on hydronic systems to show that chemical-feed systems are maintaining water quality within performance requirements specified in this Section. Submit written reports of water analysis advising Owner of changes necessary to adhere to "Performance Requirements" Article.

E. Comply with ASTM D 3370 and with the following standards:

3.5 ADJUSTING

A. Occupancy Adjustments: Within 12 months of Substantial Completion, perform two separate water analyses to prove that systems are maintaining water quality within performance requirements specified in this Section. Perform analyses at least 60 days apart. Submit written reports of water analysis.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment.

END OF SECTION 232513
SECTION 233113
METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall, spiral-seam, round ducts and fittings.
 3. Double-wall, round and flat-oval spiral-seam ducts and formed fittings.
 4. Sheet metal materials.
 5. Duct liner.
 7. Hangers and supports.

B. Related Sections:
 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. Duct system design, as indicated, has been used to select size and type of air-moving and -distribution equipment and other air system components. Changes to layout or configuration of duct system must be specifically approved in writing by Architect. Accompany requests for layout modifications with calculations showing that proposed layout will provide original design results without increasing system total pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of the following products:
 1. Liners and adhesives.
 2. Sealants and gaskets.
B. Shop Drawings:
1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and joint construction.
8. Penetrations through fire-rated and other partitions.
9. Equipment installation based on equipment being used on Project.
10. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
11. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Delegated-Design Submittal:
1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

B. Welding certificates.

C. Field quality-control reports.

1.6 QUALITY ASSURANCE

B. Welding Qualifications: Qualify procedures and personnel according to the following:

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."
PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. Round, Spiral Lock-Seam Ducts.

B. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Manufacturers:
 a. Lindab Inc.
 b. McGill AirFlow LLC.
 c. SEMCO Incorporated.
 d. Sheet Metal Connectors, Inc.
 e. Spiral Manufacturing Co., Inc.

C. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

D. Duct Joints:
 1. Ducts up to 20 Inches in Diameter: Interior, center-beaded slip coupling, sealed before and after fastening, attached with sheet metal screws.
 2. Ducts 21 to 72 Inches in Diameter: Three-piece, gasketed, flanged joint consisting of two internal flanges with sealant and one external closure band with gasket.
 3. Round Ducts: Prefabricated connection system consisting of double-lipped, EPDM rubber gasket. Manufacture ducts according to connection system manufacturer's tolerances.
 a. Manufacturers:
 1) Ductmate Industries, Inc.
 2) Lindab Inc.

E. 90-Degree Tees and Laterals and Conical Tees: Fabricate to comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," with metal thicknesses specified for longitudinal-seam straight ducts.

F. Diverging-Flow Fittings: Fabricate with reduced entrance to branch taps and with no excess material projecting from fitting onto branch tap entrance.
G. Fabricate elbows using die-formed, gored, pleated, or mitered construction. Unless elbow construction type is indicated, fabricate elbows as follows:

1. Mitered-Elbow Radius and Number of Pieces: Welded construction complying with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," unless otherwise indicated.

2. Round Mitered Elbows with Aerofoil Vanes: Welded construction with the following metal thickness for pressure classes from minus 2- to plus 2-inch wg:
 a. Ducts 3 to 36 inches in Diameter: 0.034 inch.
 b. Ducts 37 to 50 inches in Diameter: 0.040 inch.

3. 90-Degree, 2-Piece, Mitered Elbows: Use only for supply systems or for material-handling Class A or B exhaust systems and only where space restrictions do not permit using radius elbows. Fabricate with single-thickness turning vanes.

4. Round Elbows 8 Inches and Less in Diameter: Fabricate die-formed elbows for 45- and 90-degree elbows and pleated elbows for 30, 45, 60, and 90 degrees only. Fabricate nonstandard bend-angle configurations or nonstandard diameter elbows with gored construction.

5. Round Elbows 9 through 14 Inches in Diameter: Fabricate gored or pleated elbows for 30, 45, 60, and 90 degrees unless space restrictions require mitered elbows. Fabricate nonstandard bend-angle configurations or nonstandard diameter elbows with gored construction.

6. Round Elbows Larger than 14 Inches in Diameter and All Flat-Oval Elbows: Fabricate gored elbows unless space restrictions require mitered elbows.

7. Die-Formed Elbows for Sizes through 8 Inches in Diameter and All Pressures 0.040 inch thick with 2-piece welded construction.

8. Round Gored-Elbow Metal Thickness: Same as non-elbow fittings specified above.

9. Pleated Elbows for Sizes through 14 Inches in Diameter and Pressures through 10-Inch wg: 0.022 inch.

H. Painted for indoor exposed application. Coordinate final finish with architect.

2.3 DOUBLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Lindab Inc.
 2. McGill AirFlow LLC.
 3. SEMCO Incorporated.

B. Ducts: Prefabricated double-wall (insulated) ducts with an outer shell and an inner duct. Dimensions indicated are for inner ducts.

C. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.

D. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.

 1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 a. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

 2. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
E. Inner Duct: Minimum 0.028-inch solid sheet steel.

F. Duct Joints:
 1. Ducts up to 20 Inches in Diameter: Interior, center-beaded slip coupling, sealed before and after fastening, attached with sheet metal screws.
 2. Ducts 21 to 72 Inches in Diameter: Three-piece, gasketed, flanged joint consisting of two internal flanges with sealant and one external closure band with gasket.
 3. Round Ducts: Prefabricated connection system consisting of double-lipped, EPDM rubber gasket. Manufacture ducts according to connection system manufacturer's tolerances.
 a. Manufacturers:
 1) Ductmate Industries, Inc.
 2) Lindab Inc.

G. Fittings: Fabricate double-wall (insulated) fittings with an outer shell and an inner duct.
 1. Solid Inner Ducts: Use the following sheet metal thicknesses:
 a. Ducts 3 to 34 Inches in Diameter: 0.028 inch.
 b. Ducts 35 to 58 Inches in Diameter: 0.034 inch.
 c. Ducts 60 to 88 Inches in Diameter: 0.040 inch.

H. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 1. Maximum Thermal Conductivity: 0.26 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 3. Terminate insulation where double-wall duct connects to single-wall externally insulated duct, and reduce outer shell diameter to inner duct diameter.
 4. Coat insulation with antimicrobial coating.
 5. Cover insulation with polyester film complying with UL 181, Class 1.

2.4 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

E. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.
2.5 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Manufacturers:
 a. Owens Corning’s Aeroflex Plus Duct Liner or Equal.

2. Materials: ASTM C 1071; surfaces exposed to airstream shall be coated to prevent erosion of glass fibers.
 a. Maximum Thermal Conductivity:
 b. Thickness: 1 inch for sound attenuation, and R8 for thermal insulation.
 c. Thermal Conductivity (k-Value): 0.26 at 75 deg F mean temperature.
 d. Fire-Hazard Classification: Maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E84.
 e. Water-Based Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 f. Mechanical Fasteners: Galvanized steel suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in duct.
 1) Tensile Strength: Indefinitely sustain a 50-lb-tensile, dead-load test perpendicular to duct wall.
 2) Fastener Pin Length: As required for thickness of insulation and without projecting more than 1/8 inch into airstream.
 3) Adhesive for Attaching Mechanical Fasteners: Comply with fire-hazard classification of duct liner system.

3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

2.6 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:
 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 2. Tape Width: 4 inches.
 5. Mold and mildew resistant.
 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 7. Service: Indoor and outdoor.
 8. Service Temperature: Minus 40 to plus 200 deg F.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 11. Sealant shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Water-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.
2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

F. Round Duct Joint O-Ring Seals:
1. Seal shall provide maximum 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.7 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.
2.8 FIRE-STOPPING

A. Fire-Resistant Sealant: Provide two-part, foamed-in-place, fire-stopping silicone sealant, one-part elastomeric sealant, formulated for use in a through-penetration fire-stop system for filling openings around duct penetrations through walls and floors, having fire-resistance ratings indicated as established by testing identical assemblies per ASTM E 814 by Underwriters Laboratory, Inc. or other testing and inspecting agency acceptable to authorities having jurisdiction.

B. Products: Subject to compliance with requirements, products that may be incorporated in the Work are limited to, the following:
 1. "Dow Coming Fire Stop Foam"; Dow Corning Corp.
 2. "Dow Coming Fire Stop Sealant"; Dow Corning Corp.
 3. "3M Fire Barrier Caulk CP-25"; Electrical Products Div./3M.

C. Seams and laps arranged on top of duct.

2.9 EXECUTION

2.9 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round and flat-oval ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

2.10 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

2.11 APPLICATION OF LINER IN RECTANGULAR DUCTS

A. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.

B. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.

C. Butt transverse joints without gaps and coat joint with adhesive.

D. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.

E. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and standard liner product dimensions make longitudinal joints necessary.

F. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.

G. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.

H. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 1. Fan discharges.
 2. Intervals of lined duct preceding unlined duct.
 3. Upstream edges of transverse joints in ducts where air velocities are greater than 2500 fpm or where indicated.

I. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.12 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", and as defined below.
 1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 2. All Ducts U.N.O: Seal Class A.
 3. Unconditioned Space, Return-Air Ducts: Seal Class B.
 4. Conditioned Space, Return-Air Ducts: Seal Class C.
2.13 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.14 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

2.15 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 9 Sections.

2.16 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:
 2. Test the following systems:
 a. Supply, Return, Exhaust, Outdoor Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 b. Engineer will randomly designate two supply duct systems for testing in accordance with Section 4 of SMACNA HVAC Air Duct Leakage Test Manual, current edition. If leakage test results exceed SMACNA allowable leakage rates, then additional two systems shall be tested. Supply duct test section shall include main trunk line from the mechanical room to the farthest VAV box. For systems without VAV boxes, main trunk shall be determined on site.
3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
4. Test for leaks before applying external insulation.
5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
6. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:
1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

2.17 DUCT CLEANING

A. Clean new and existing duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.
1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:
1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:
1. Air outlets and inlets (registers, grilles, and diffusers).
2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:
1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

2.18 START UP
A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

2.19 DUCT SCHEDULE
A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

A. Supply Ducts:
1. Ducts Connected to Fan Coil Units, and Terminal Units:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: A
2. Ducts Connected to Constant-Volume Air-Handling Units
 a. Pressure Class: Positive 3-inch wg
 b. Minimum SMACNA Seal Class: A
3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive 4-inch wg.
 b. Minimum SMACNA Seal Class: A

B. Return Ducts:
1. Ducts Connected to Fan Coil Units, and Terminal Units
 a. Pressure Class: Positive or negative 2-inch wg
 b. Minimum SMACNA Seal Class: B.

C. Exhaust Ducts:
1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg
 b. Minimum SMACNA Seal Class: A

D. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
1. Ducts Connected to AHUs, Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units
 a. Pressure Class: Positive or negative 2-inch wg
 b. Minimum SMACNA Seal Class: A

E. Double-Wall Duct Interstitial Insulation:
1. Supply Air Ducts within the first 20 feet of the unit: 2 inches thick, unless noted otherwise on drawings.

F. Elbow Configuration:
1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 a. Double Skin vaned elbows. See drawings.
2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-3, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Radius-to Diameter Ratio: 1.5.
b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

G. Branch Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.
 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113
SECTION 233300
AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Backdraft and pressure relief dampers.
2. Barometric relief dampers.
4. Control dampers.
5. Fire dampers.
6. Flange connectors.
7. Turning vanes.
8. Remote damper operators.
9. Duct-mounted access doors.
10. Flexible connectors.
11. Flexible ducts.
12. Duct accessory hardware.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.

1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

 a. Special fittings.
 c. Control-damper installations.
 d. Fire-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 e. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

B. Source quality-control reports.
1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

1.7 QUALITY ASSURANCE
B. Comply with AMCA 500-D testing for damper rating.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION
B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS
A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Exposed-Surface Finish: Mill phosphatized.
B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304.
C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.
2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 2. Nailor Industries Inc.
 3. Pottorff.
 4. Ruskin Company.

B. **Description:** Gravity balanced. Blades of maximum 6-inch width, with sealed edges, assembled in rattle-free manner, steel ball bearings, and axles.

C. **Frame:** Hat-shaped, 0.05-inch-thick, galvanized sheet steel, with welded corners and mounting flange.

D. **Blades:** Multiple single-piece blades, 0.050-inch-thick aluminum sheet with sealed edges.

E. **Blade Action:** Parallel.

F. **Blade Seals:** Neoprene, mechanically locked.

G. **Blade Axles:**
 1. Material: Galvanized steel.

H. **Tie Bars and Brackets:** Galvanized steel.

I. **Return Spring:** Adjustable tension.

J. **Accessories:**
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits for vertical airflow installations.
 3. Electric actuators, where noted.
 4. Chain pulls.
 5. Screen Mounting: Front mounted in sleeve.
 a. Sleeve Thickness: 20 gage minimum.
 b. Sleeve Length: 6 inches minimum.
 6. Screen Mounting: Rear mounted.
 7. Screen Material: Stainless steel.
 8. Screen Type: Bird.
 9. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS

A. **Standard, Steel, Manual Volume Dampers:**
 1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Flexmaster U.S.A., Inc.
 b. McGill AirFlow LLC.
 c. Nailor Industries Inc.
 d. Pottorff.
 e. Ruskin Company.
 2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.
5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick.
7. Tie Bars and Brackets: Galvanized steel.

B. Standard, Aluminum, Manual Volume Dampers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. McGill AirFlow LLC.
 b. Nailor Industries Inc.
 c. Pottorff.
 d. Ruskin Company.
2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames: Hat-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
 e. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.
7. Tie Bars and Brackets: Aluminum.

C. Low-Leakage, Steel, Manual Volume Dampers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Pottorff.
 b. Ruskin Company.
2. Comply with AMCA 500-D testing for damper rating.
3. Low-leakage rating, with linkage outside airstream, and bearing AMCA’s Certified Ratings Seal for both air performance and air leakage.
4. Suitable for horizontal or vertical applications.
5. Frames:
 a. Hat shaped.
 b. 0.094-inch-thick, galvanized sheet steel.
6. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized, roll-formed steel, 0.064 inch thick.

10. Accessories:
 a. Include locking device to hold single-blade dampers in a fixed position without vibration.

D. Low-Leakage, Aluminum, Manual Volume Dampers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Pottorff.
 b. Ruskin Company.

2. Comply with AMCA 500-D testing for damper rating.

3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

4. Suitable for horizontal or vertical applications.

5. Frames: Hat-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.

6. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
 d. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.

10. Accessories:
 a. Include locking device to hold single-blade dampers in a fixed position without vibration.

E. Jackshaft:

2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.

3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

F. Damper Hardware:

2. Include center hole to suit damper operating-rod size.
3. Include elevated platform for insulated duct mounting.

2.5 CONTROL DAMPERS

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 2. Pottorf.
 3. Ruskin Company.
 4. Young Regulator Company.

B. Low-leakage rating, with linkage outside airstream, and bearing AMCA’s Certified Ratings Seal for both air performance and air leakage.

C. Frames:
 1. Hat shaped.
 2. 0.094-inch-thick, galvanized sheet steel.
 3. Mitered and welded corners.

D. Blades:
 1. Multiple blade with maximum blade width of 6 inches.
 2. Opposed-blade design.
 4. 0.064 inch thick single skin.

E. Blade Axles: 1/2-inch-diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:
 1. Molded synthetic.
 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 3. Thrust bearings at each end of every blade.

2.6 FIRE DAMPERS

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 2. Pottorf.
 3. Ruskin Company.

B. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.

D. Fire Rating: 1-1/2 hours.

E. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.
F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
1. Minimum Thickness: 0.138 inch thick, as indicated, and of length to suit application.
2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 0.034-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.7 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Ductmate Industries, Inc.
2. Nexus PDQ.
3. Ward Industries, Inc.

B. Description: Factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.

2.8 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Ductmate Industries, Inc.
2. METALAIRE, Inc.
3. SEMCO Incorporated.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA’s “HVAC Duct Construction Standards - Metal and Flexible”; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

D. Vane Construction: Double wall.

2.9 REMOTE DAMPER OPERATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Pottorff.
2. Young Regulator Company.

B. Description: Cable system designed for remote manual damper adjustment.

C. Tubing: Brass.

D. Cable: Stainless steel.

E. Wall-Box Cover-Plate Material: Stainless steel.

2.10 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flexmaster U.S.A., Inc.
2. Greenheck Fan Corporation.
3. Pottorf.

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

2.11 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. Ward Industries, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches wide attached to two strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd..
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

1. Minimum Weight: 24 oz./sq. yd..
2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
3. Service Temperature: Minus 50 to plus 250 deg F.

1. Minimum Weight: 16 oz./sq. yd..
2. Tensile Strength: 285 lbf/inch in the warp and 185 lbf/inch in the filling.
3. Service Temperature: Minus 67 to plus 500 deg F.

1. Minimum Weight: 14 oz./sq. yd..
2. Tensile Strength: 450 lbf/inch in the warp and 340 lbf/inch in the filling.
3. Service Temperature: Minus 67 to plus 500 deg F.

2.12 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
1. Flexmaster U.S.A., Inc.
2. Thermaflex

A. Where acoustical flexible duct is shown on drawings, provide Flexmaster Type 8M (or Thermaflex M-KE) UL 181 Class I Air Duct or equal.

B. The duct shall be constructed of a CPE fabric supported by helical wound galvanized steel. The fabric shall be mechanically locked to the steel helix without the use of adhesives or chemicals.

C. The internal working pressure rating shall be at least 6” w.g. positive and 4” w.g. negative through 16” diameter, and 1” w.g. negative for 18” and 20” diameters, with a bursting pressure of at least 2 ½ time the working pressure.

D. The duct shall be rated for a velocity of at lease 4000 feet per minute.

E. The duct must be suitable for continuous operation at a temperature range of -20° F to +250° F.

F. Factory insulate the flexible duct with fiberglass insulation. The R-value shall be at least 8 at a mean temperature of 75° F.

G. Cover the insulation with a fire retardant metalized vapor barrier jacket reinforced with crosshatched scrim having a permeance of not greater than 0.05 perms when tested in accordance with ASTM E96, Procedure.

H. Sound attenuation Properties: Acoustical performance, when tested by an independent laboratory in accordance with the Air Diffusion Council’s Flexible Air Duct Test Code FD 72-R1, Section 3.0, Sound Properties, shall be as follows:

<table>
<thead>
<tr>
<th>Octave Band</th>
<th>2 Hz</th>
<th>3 Hz</th>
<th>4 Hz</th>
<th>5 Hz</th>
<th>6 Hz</th>
<th>7 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>6” diameter</td>
<td>7</td>
<td>31</td>
<td>40</td>
<td>38</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>8” diameter</td>
<td>13</td>
<td>29</td>
<td>36</td>
<td>35</td>
<td>38</td>
<td>22</td>
</tr>
<tr>
<td>12” diameter</td>
<td>21</td>
<td>28</td>
<td>29</td>
<td>33</td>
<td>26</td>
<td>12</td>
</tr>
</tbody>
</table>

I. Flexible Duct Connectors:
1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.
2.13 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install backdraft dampers (control dampers for fans 2,000CFM and larger) at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

 1. Install steel volume dampers in steel ducts.
 2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire and smoke dampers according to UL listing.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

 1. On both sides of duct coils.
 2. Upstream from duct filters.
 3. At outdoor-air intakes and mixed-air plenums.
 4. At drain pans and seals.
 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 7. At each change in direction and at maximum 50-foot spacing.
 8. Upstream from turning vanes.
 9. Upstream or downstream from duct silencers.
 10. Control devices requiring inspection.
 11. Elsewhere as indicated.

I. Install access doors with swing against duct static pressure.
J. Access Door Sizes:

1. One-Hand or Inspection Access: 8 by 5 inches.
2. Two-Hand Access: 12 by 6 inches.

K. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

L. Install flexible connectors to connect ducts to equipment.

M. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

N. Connect terminal units to supply ducts directly, and for fan powered boxes with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

O. Connect flexible ducts to metal ducts with stainless steel draw bands.

P. Install duct test holes where required for testing and balancing purposes.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Ceiling-mounted ventilators.
 2. In-line fans.

1.3 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan-performance ratings on sea level.

B. Operating Limits: Classify according to AMCA 99.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Fan speed controllers.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

C. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Framing and support members relative to duct penetrations.
 2. Ceiling suspension assembly members.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Belts: One set for each belt-driven unit.

1.8 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

1.9 COORDINATION
A. Coordinate size and location of structural-steel support members.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Subject to compliance with requirements, provide products by one of the following:
 1. Loren Cook Company.
 2. Greenheck Fan Corp.
 4. Penn Ventilation.

2.2 CEILING-MOUNTED VENTILATORS
A. Description: Centrifugal fans designed for installing in ceiling or wall or for concealed in-line applications.
B. Housing: Steel, lined with acoustical insulation.
C. Fan Wheel: Centrifugal forward curved type, injection molded of polypropylene resin for smaller fans, galvanized steel for larger fans.
D. Grille: Manufacturer’s standard **Aluminum**, louvered grille with flange on intake and thumbscrew attachment to fan housing.

E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.

F. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 3. Factory mounted disconnect
 4. Stainless steel insect screen
 6. Aluminum backdraft damper
 7. Vibration isolator kit
 8. Time-Delay Switch: See schedules for switch coordination.
 9. See schedules for other options.

2.3 IN-LINE CENTRIFUGAL AND MIXED FLOW INLINE FANS

A. Description: In-line, centrifugal fans consisting of housing, wheel, outlet guide vanes, fan shaft, bearings, motor and disconnect switch, drive assembly, mounting brackets, and accessories.

B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.

C. Direct-Driven Units: Motor encased in housing outside of airstream, factory wired to disconnect switch located on outside of fan housing.

D. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.

E. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.

F. Accessories:
 1. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
 2. Companion Flanges: For inlet and outlet duct connections.
 3. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 4. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.
 5. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit. **See schedules.**
 6. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
 7. See schedules for other options.

2.4 IN-LINE CENTRIFUGAL FANS

A. Description: In-line mounted, centrifugal fans that are UL 705 listed, AMCA certified.

B. Housing: 20 gauge galvanized steel and acoustically insulated. Blower and motor assembly mounted on 14 ga. reinforced channel, resiliently mounted fan. Inlet and outlet duct flanges, reinforced aluminum dampers with continuous aluminum hinge rods and brass bushings.

C. Wheels: twin DWDI centrifugal forward curved type, galvanized steel, balanced in accordance with AMCA Std 204-96 Balance Quality and Vibration Levels for Fans.

D. Motor: Totally enclosed with permanently lubricated bearing and built-in thermal overload protection.
E. Accessories:
 1. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired.
 2. For two speed exhaust fans in science laboratories, do NOT include integral disconnect switch. This provided by electrical. See schedules.
 3. See schedules for other options.

2.5 MOTORS
A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
B. Enclosure Type: Totally enclosed, fan cooled.
C. Two speed motors where scheduled.
D. Spark resistant, explosion proof fan motors where scheduled.

2.6 SOURCE QUALITY CONTROL
A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Install power ventilators level and plumb.
B. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
C. Support suspended units from structure using threaded steel rods and spring hangers having a static deflection of 1 inch. Vibration-control devices are specified in Section 230548.13 "Vibration Controls for HVAC."
D. Install units with clearances for service and maintenance.
E. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS
A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."
B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that cleaning and adjusting are complete.
 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 5. Adjust belt tension.
 6. Adjust damper linkages for proper damper operation.
 7. Verify lubrication for bearings and other moving parts.
 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 10. Shut unit down and reconnect automatic temperature-control operators.
 11. Remove and replace malfunctioning units and retest as specified above.

B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain power ventilators.
 1. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, troubleshooting, servicing, and maintaining equipment and schedules.
 2. Review data in maintenance manuals. Refer to Division 1 Section "Operation and Maintenance Data."
 3. Schedule training with Owner, through Architect, with at least seven days' advance notice.

END OF SECTION 233423
SECTION 233713
DIFFUSERS, Registers, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes grilles, registers, diffusers, and other air devices
B. Related Sections:
 1. Section 089116 "Operable Wall Louvers" and Section 089119 "Fixed Louvers" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 2. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.
B. Samples for Initial Selection: For diffusers, registers, and grilles with factory-applied color finishes.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 5. Duct access panels.
B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Subject to compliance with requirements, provide products by one of the manufacturers specified:
1. Price Industries.
2. Titus.

2.2 AIR DEVICES

A. Rectangular and Square Ceiling Grilles, Registers, Diffusers: See schedules for material, finish, size, pattern, damper type, and accessories.

B. Fire rated air devices: Plans indicate a “fire damper” designation on diffusers that need a fire rated air device. Coordinate with plans.

2.3 INSULATION

A. All cold surfaces that are susceptible to condensation shall be insulated.

B. Insulation may be provided by manufacturer or by installing Contractor. Coordinate with installing Contractor.

2.4 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.
SECTION 238146
WATER-SOURCE UNITARY HEAT PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes unitary heat pumps with refrigerant-to-water heat exchangers, refrigeration circuits, and refrigerant compressor(s).

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each water-source unitary heat pump.
 2. Include rated capacities, operating characteristics, furnished specialties, and accessories.
B. Shop Drawings:
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Product Certificates: For each type of water-source unitary heat pump, signed by product manufacturer.
B. Field quality-control reports.
C. Sample Warranty: For manufacturer's warranty.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For water-source unitary heat pumps to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of water-source unitary heat pumps that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, refrigeration components.
2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. ASHRAE Compliance:

1. ASHRAE 15.

B. Comply with NFPA 70.

C. Comply with safety requirements in UL 484 for assembly of free-delivery, water-source heat pumps.

2.2 WATER-SOURCE UNITARY HEAT PUMPS, 6 TONS AND SMALLER

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Daikin
2. Carrier Corporation; a unit of United Technologies Corp.
3. Trane Inc.

B. Description: Packaged water-source unitary heat pump with temperature controls; factory assembled, piped, wired, tested, and rated according to ASHRAE/ARI/ISO-13256-1.

1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Cabinet and Chassis: Galvanized-steel casing with the following features:

1. Access panel for access and maintenance of internal components.
2. Knockouts for electrical and piping connections.

D. Water Circuits:

1. Refrigerant-to-Water Heat Exchangers:
 a. Source-side or Load side coaxial heat exchangers with copper water tube, with enhanced heat-transfer surfaces inside a steel shell; both shell and tube are leak tested to 450 psig on refrigerant side and 400 psig on water side.
 b. Factory mount heat exchanger in unit on resilient rubber vibration isolators.

E. Refrigerant Circuit Components:

2. Filter-Dryer: Factory installed to clean and dehydrate the refrigerant circuit.
3. Charging Connections: Service fittings on suction and liquid for charging and testing on each circuit.
4. Reversing Valve: Four-way, solenoid-activated valve designed to be fail-safe in heating position with replaceable magnetic coil.
5. Compressor:
 a. Scroll.
 b. Two stage compressors.
 c. Installed on vibration isolators and mounted on a structural steel base plate which is mounted on a high density rubber pad for double isolation and full-length channel stiffeners.
 d. Exterior of compressor shall be wrapped with a high-density sound-attenuating blanket and housed in an acoustically treated enclosure.
 e. Factory-Installed Safeties:
 1) Antirecycle timer.
 2) High-pressure cutout.
 3) Low-pressure cutout or loss of charge switch.
 4) Internal thermal-overload protection.
 5) Freezestat to stop compressor if water-loop temperature in refrigerant-to-water heat exchanger falls below 35 deg F.
 6) Water-coil, low-temperature switch.
 7) Brownout/surge/power interruption protection
7. Pipe Insulation: Refrigerant minimum 3/8-inch-thick, flexible elastomeric insulation on piping exposed to airflow through the unit. Maximum 25/50 flame-spread/smoke-developed indexes according to ASTM E 84.
F. Controls: Control equipment and sequence of operation are specified in Section 230900 "Direct Digital Control (DDC) System for HVAC" and Section 230993 "Sequence of Operations for HVAC DDC."
G. Controls:
1. Basic Unit Control Modes and Devices:
 a. Unit shutdown on high or low refrigerant pressures.
 b. Unit shutdown on low water temperature.
 c. Low- and high-voltage protection.
 d. Overcurrent protection for compressor.
 e. Random time delay, three to 10 seconds, start on power-up.
 f. Time delay override for servicing.
 g. Control voltage transformer.
 h. Water-coil freeze protection (selectable for water or antifreeze).
 i. Automatic intelligent reset. Unit shall automatically reset five minutes after trip if the fault has cleared. Should a fault reoccur three times sequentially, lockout requiring manual reset occurs.
 j. Ability to defeat time delays for servicing.
 k. Digital display to indicate high pressure, low pressure, low voltage, and high voltage.
 l. The low-pressure switch shall not be monitored for the first 90 seconds after a compressor start command to prevent nuisance safety trips.
 m. Remote fault-type indication at thermostat.
 n. Selectable 24-V dc or pilot duty dry contact alarm output.
 o. 24-V dc output to cycle a motorized water valve with compressor contactor.
 p. Service test mode for troubleshooting and service.
 q. Unit-performance sentinel warns when heat pump is running inefficiently.
 r. Compressor soft start.
2. Thermostat: See Section 230900.
3. Terminal Controller:
 a. Scheduled operation for occupied and unoccupied periods on 365-day clock with minimum of four programmable periods per day.
 b. Two-hour unoccupied override period.
 c. Remote-control panel to contain programmable timer and digital display for fault condition.
 d. Compressor-disable relay to stop compressor operation for demand limiting or switch to unoccupied operation.
 e. Automatic restart after five minutes if fault clears. Lockout after three attempts to restart following fault. Indicate fault for service technician.
 f. Backup for volatile memory.

4. DDC interface requirements as further described in Section 230900 and Section 230990.
 a. Interface relay for scheduled operation.
 b. Interface relay to provide indication of fault at central workstation.
 c. Provide BAC-net interface for central DDC workstation for the following functions:
 1) Set-point adjustment.
 2) Start/stop and operating status of heat-pump unit.
 3) Data inquiry to include supply-air and room-air temperature and humidity, and entering-water temperature.
 4) Occupied and unoccupied schedules.

H. Electrical Connection: Single electrical connection with fused disconnect.

I. Capacities and Characteristics: See schedules.

2.3 ACCESSORIES

A. Hose Kits: Tag hose kits to equipment designations.
 2. Operating Temperatures: From 33 to 211 deg F.
 3. Hose Length: 36 inches.
 6. Isolation Valves: Two-piece, bronze-body ball valves with stainless-steel ball and stem, standard-port threaded connections, and galvanized-steel lever handle. Valves shall be factory installed on supply and return connections of both load-side and source-side heat exchangers. If balancing valve is combination shutoff type with memory stop, the isolation valve may be omitted on the return.
 7. Strainer: Y-pattern with blowdown valve in supply connections of both load and source side of heat exchangers.
 9. Water-Regulating Valve Assemblies: Coordinate with BAS Contractor. A direct acting valve regulates discharge pressure during the cooling cycle, and a reverse acting valve regulates the suction pressure during the heating cycle. Valves shall close when heat-pump compressor is not running.
 10. Motorized Water Valve: Coordinate with BAS Contractor. Stop water flow through the unit when compressor is off. Slow-acting, 24-V dc valve with threaded connections is installed between isolation valves and heat exchanger.

B. Loop Controller: Six stages; two stages for heating and four stages for cooling.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping and electric installations for water-source unitary heat pumps to verify actual locations of piping connections and electrical conduits before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Equipment Mounting:

1. Install water-source, unitary heat pumps on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Div. 3

2. Comply with requirements for vibration-isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."

B. Suspend water-source, unitary heat pumps from structure with all-thread hanger rods and spring hangers with vertical-limit stop. Hanger rods and attachments to structure are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment." Vibration hangers are specified in Section 230548.13 "Vibration Controls for HVAC."

C. Install wall-mounting thermostats and switch controls in electrical outlet boxes at heights to match lighting controls or as required in Section 230923 "Direct Digital Control (DDC) System for HVAC."

3.3 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:

1. Connect supply and return hydronic piping to heat pump with unions and shutoff valves and hose kits.

B. Install electrical devices furnished by manufacturer but not specified to be factory mounted.

C. Install piping adjacent to machine to allow space for service and maintenance.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

1. After installing water to water heat pumps and after electrical circuitry has been energized, test units for compliance with requirements.

2. Inspect for and remove shipping bolts, blocks, and tie-down straps.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Heat pumps will be considered defective if they do not pass tests and inspections.
C. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer’s written instructions.
2. Inspect for visible damage to unit casing.
3. Inspect for visible damage to compressor and coils.
4. Inspect internal insulation.
5. Verify that labels are clearly visible.
6. Verify that clearances have been provided for servicing.
7. Verify that controls are connected and operable.
8. Adjust vibration isolators.
9. Start unit according to manufacturer’s written instructions.
10. Complete startup sheets and attach copy with Contractor’s startup report.
11. Inspect and record performance of interlocks and protective devices; verify sequences.
12. Operate unit for an initial period as recommended or required by manufacturer.
13. Verify thermostat calibration.
14. Inspect controls for correct sequencing of heating, refrigeration, and normal and emergency shutdown.

3.6 ADJUSTING

A. Adjust initial temperature set points.

B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to four visits to Project during other-than-normal occupancy hours for this purpose.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain water-source unitary heat pumps.

END OF SECTION 238146
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, Division 1 Specification Sections and other Division 26 Specification Sections, apply to this Section.

1.2 WORK COVERED BY CONTRACT DOCUMENTS

A. The following Summary of Work is intended as an aid to achieve an understanding of the various elements of work included in the project, as is not intended to be all-inclusive. Detailed descriptions of work and requirements are given in drawings and specifications.

B. Scope of Work:

1. General: The "ProBAR Levels 1 & 2 at The Reese"- in Harlingen, Texas consists of office space finish out of the first and second floors approximate 21,720 sq. ft. (total). This space will generally be operated from 7:00am to 6:00pm. (Monday through Friday) with occasional after hours and weekends use.

2. Electrical: Provide all materials and labor associated with complete operational electrical distribution system. Major items of work include, but are not limited to:

 (a) Electrical service:

 (i) Connect to existing electrical gear/infrastructure. See electrical riser diagram.
 (ii) Single phase protection: provide as noted on panels schedules.

 (b) Lighting systems: Interior and exterior lighting system shall consist of LED type lighting systems.

 (c) Power systems: Provide miscellaneous duplex receptacles, isolated ground receptacles for computer terminals, duplex receptacles for flat screens, connections for office furniture system, HVAC and plumbing equipment.

 (d) Voice and Data Communication Cabling Equipment: Under alternate bid provide cabling, connectors, patch panels, racks, etc. Rough ins to remain on base bid

 (e) Multimedia system: Under Alternate Bid provide multimedia outlet for wall mount projectors and flat screens, including connectors, wiring, etc. Rough ins to remain on base bid

 (f) Building Access: Under Alternate Bid provide power to secured doors power supplies and raceways for communication wiring. reception area entrance door magnetic strikes and intercom and camera at designated entrances. Rough ins to remain on base bid

 Electric strikes, magnetic locks and electrified hardware provided by door hardware subcontractor.

 Magnetic locks, card readers, release push buttons, power supplies, wiring, software, programming and associated installation is provided by subcontractor.

 (g) Fire Alarm System: Expand existing addressable control panel to accommodate new building indicating and initiating devices. Indicating devices shall also be provided to comply with IFC 2012 and TDLR.

 (h) Intrusion Detection System: to be addressed by Owner.

1.3 ALLOWANCES

A. Electrical: See Division 1 for electrical allowances.
1.4 COORDINATION

A. All electrical work shall be done under sub-contract to a General Contractor, who ultimately responsible for the entire project. Electrical Contractor shall coordinate all work through General Contractor, even in areas where only electrical work is to take place.

B. All questions, requests for information, submittals, and correspondence from the Electrical Contractor shall be submitted via the General Contractor, who will forward to the Architect, who will then forward to the Engineer.

C. Electrical Contractor shall not make any changes to design without written authorization from the Engineer. If changes are requested by the Owner, Architect, General Contractor, Suppliers, Manufacturers, or any others, Contractor should issue a written RFI for response by the Engineer.

D. Electrical Contractor shall issue seven (7) days written notice prior to any activities that require the presence of the Engineer at the job-site. This applies to all inspections required by specifications, and particularly to those where work will be covered (underground raceways, electrical raceways above ceiling).

E. Cooperate fully with other contractors so that work under those contracts may be carried out smoothly, without interfering with or delaying work under this Contract installation prior to rough-in.

F. Fully coordinate with Mechanical Contractor for providing power to HVAC systems and plumbing equipment installation prior to rough-in.

G. Fully coordinate with Owner’s Furniture Equipment Supplier for the equipment installation prior to rough-in.

A. Issue written notification of the following tasks and allow five (5) days for Engineer to respond and schedule an inspection as required:

1. Upon completion of underground raceways installation and prior to covering up.
2. Upon completion of installing all raceways, labeling all j-boxes and prior to suspended ceiling installation.
3. Upon completion of pulling all wiring, making all terminations, labeling and color-coding wires at the panelboards/switchboards and prior to installing their covers.
4. When ready to request manufacturer’s start-up of each piece of equipment.
5. When ready to conduct complete Fire Alarm demonstration.
6. When ready for Substantial Completion Inspection.
7. When ready for Final Inspection.

Failure to issue written notification may result in work having to be redone to allow for proper inspection. It is this contractor’s responsibility to make sure Engineer receives notification.

1.5 UTILITIES

1. Coordinate with power, water, telephone, cable and gas utilities to locate all utilities prior to digging in any area.
2. Obtain any approvals required from utilities to relocate utilities.
3. Cost of relocating or bypassing utilities indicated on drawings shall be included in Base Bid.
4. Coordinate with utility for electrical service. Base bid shall include all costs associated with service connection, including permit fees.

1.6 CONTRACTOR USE OF PREMISES

A. Use of the Site: Limit use of the premises to work in areas indicated. Confine operations to areas within contract limits indicated. Do not disturb portions of the site beyond the areas in which the Work is indicated.

1. Owner Occupancy: Allow for Owner occupancy and use by the public.
2. Driveways and Entrances: Keep driveways and entrances serving the premises, clear and available to the Owner, the Owner's employees, and emergency vehicles at all time. Do not use these areas for parking or storage of materials. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.

B. Site Safety: Take every precaution to ensure the site does not present a threat to the safety of occupants and/or workers. Minimal safety requirements include, but are not limited to the following:
1. Temporary fencing around construction areas.
2. Yellow caution tape and construction barricades along open trenches during the day. Trenches shall be covered at night and warning lights provided on construction barricades.
3. Temporary fencing around equipment while site work is in progress.

C. Work shall take place with minimal disruption to Owner's operations in areas surrounding the job site.

1.7 SUBMITTALS - Special Requirements

A. Manufacturer's standard dimensioned drawings, performance and product data shall be edited to delete reference to equipment, features, or information, which is not applicable to the equipment being supplied for this project. Including Bill or List of Materials.

B. Faxes and copies of faxes are not acceptable.

C. Electrical Submittals shall be submitted electronically. Please organize the files in packages as follows (PDF format). Files would need to be properly identified (cover letter, stamped, etc.) from the general contractor.

1. Miscellaneous Electrical
 a. 260519 Low-Voltage Electrical Power Conductors and Cables
 b. 260526 Grounding and Bonding for Electrical Systems
 c. 260529 Hangers and Supports for Electrical Systems
 d. 260533 Raceways and Boxes for Electrical Systems
 e. 260536 Cable Trays
 f. 260553 Identification for Electrical Systems
 g. 260544 Sleeves and Sleeve Seals for Electrical Raceways and Cabling
 h. 262726 Wiring Devices

2. Electrical Gear
 a. 262416 Panelboards
 b. 262813 Fuses
 c. 262816 Enclosed Switches and Circuit Breakers
 d. 262913 Enclosed Controllers

3. Light Fixtures
 a. 265116 Interior Lighting
 b. 265219 Emergency and Exit Lighting
 c. 265621 Exterior Lighting
 d. 260923 Light Control Devices

4. Special Systems:
 a. 267210 Fire Alarm System
 b. 267240 Access Control System
 c. 269750 Voice and Data Communications

E. Allow two weeks for initial submittal review by Engineer, from the day it is received at the Engineer's office.

F. Allow one week for review of resubmittals by Engineer.

G. All submittal review comments shall be forwarded by Engineer to Architect, who will then distribute as per Division 1.

1.8 SCHEDULE OF VALUES - Special Requirements

A. Electrical Contractor shall submit a Schedule of Values reflecting the total value of Electrical Work in the Contract, and broken down into the following items as a minimum, with a line item for Materials/Equipment and another for Labor.
ELECTRICAL
1. Electrical gear.
2. Interior raceways including wiring.
3. Light fixtures
5. Fire alarm system
6. Commissioning
7. Allowances.
8. Miscellaneous.
9. Administrative and project management.

1.9 CODE COMPLIANCE:
The design for this project is based on:
1. Occupational Safety and Health Act (OSHA)
2. National Electric Code (NEC)
4. International Building Code
5. UL 916
6. Local ordinances

END OF SECTION 260010
SECTION 260519
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS
A. VFC: Variable frequency controller.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing agency.
 B. Field quality-control reports.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: Member Company of NETA or an NRTL.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES
A. Manufacturer:
 1. Senator Wire & Cable Company.
 2. Southwire Company.
 3. Encore Wire
 B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2, Type XHHW-2 and Type SO.

D. Multiconductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for metal-clad cable, Type MC and Type SO with ground wire.

E. VFC Cable:
 1. Comply with UL 1277, UL 1685, and NFPA 70 for Type TC-ER cable.
 2. Type TC-ER with oversized cross-linked polyethylene insulation, spiral-wrapped foil plus 85 percent coverage braided shields and insulated full-size ground wire or dual spirally wrapped copper tape shields and three bare symmetrically applied ground wires, and sunlight- and oil-resistant outer PVC jacket.
 3. Comply with UL requirements for cables in [Classes I and II, Division 2 hazardous location] applications.

2.2 CONNECTORS AND SPLICES

A. Manufacturers:
 1. AFC Cable Systems, Inc.
 2. AMP Incorporated/Tyco International.
 3. Hubbell/Anderson.
 4. O-Z/Gedney; EGS Electrical Group LLC.
 5. 3M Company; Electrical Products Division.

B. Description: Factory-fabricated connectors and splice of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type XHHW-2, single conductors in raceway.

B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.
C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN/THWN-2, single conductors in raceway.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and underground: Type THHN/THWN-2, single conductors in raceway.

E. Feeders Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

F. Exposed Branch Circuits, Including in Crawlspace: Type THHN/THWN-2, single conductors in raceway.

G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.

H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and underground: Type THHN/THWN-2, single conductors in raceway.

I. Branch Circuits Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

J. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, and strain relief device at terminations to suit application.

K. VFC Output Circuits: Type XHHW-2 in metal conduit, Type TC-ER cable with braided shield or with dual tape shield as indicated by VFC manufacturer.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, which will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.
3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors and conductors feeding the following critical equipment and services for compliance with requirements.
 a. MDF and IDF equipment feeder/branch circuit.

3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
 b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

B. Test and Inspection Reports: Prepare a written report to record the following:

1. Procedures used.
2. Results that comply with requirements.
3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

C. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260519
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes grounding and bonding systems and equipment.
 B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.
 3. Foundation steel electrodes.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
 A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Ground rods.
 2. Ground rings.
 3. Grounding arrangements and connections for separately derived systems.
 B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section "Operation and Maintenance Data," include the following:
 a. Instructions for periodic testing and inspection of grounding features at ground rings and grounding connections for separately derived systems based on and NFPA 70B.

1.6 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Insulated Conductors: tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.2 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

D. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad; 3/4 inch by 10 feet.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 10 AWG and smaller, and stranded conductors for No. 8 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install bare tinned copper conductor, No. 2/0 AWG minimum.

1. Bury at least 24 inches below grade.
2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.

C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

D. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

E. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.

C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.
3.5 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 1. Feeders and branch circuits.
 2. Lighting circuits.
 3. Receptacle circuits.
 5. Three-phase motor and appliance branch circuits.
 6. Flexible raceway runs.
 7. Metal-clad cable runs.
 8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. Water Heater and Heat-Tracing Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

G. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

H. Metallic Fences: Comply with requirements of IEEE C2.
 1. Grounding Conductor: Bare, tinned copper, not less than No. 3 AWG.
 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
 3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.6 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

E. Grounding and Bonding for Piping:
 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

F. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

G. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.

H. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each indicated item, extending around the perimeter of building.
 1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.
 2. Bury ground ring not less than 24 inches from building's foundation.

3.7 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at individual ground rods. Make tests at ground rods before any conductors are connected.
a. Measure ground resistance no fewer than two full days after last trace of precipitation and
 without soil being moistened by any means other than natural drainage or seepage and
 without chemical treatment or other artificial means of reducing natural ground resistance.

 b. Perform tests by fall-of-potential method according to IEEE 81.

4. Prepare dimensioned Drawings locating each, ground rod and ground-rod assembly, and other
grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests
and observations. Include the number of rods driven and their depth at each location, and include
observations of weather and other phenomena that may affect test results. Describe measures
taken to improve test results.

B. Grounding system will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

D. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System with Capacity of 500 kVA and less: 10 ohms.
2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).
5. Manhole Grounds: 10 ohms.

E. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly
and include recommendations to reduce ground resistance.

END OF SECTION 260526
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 a. Hangers.
 b. Steel slotted support systems.
 c. Nonmetallic support systems.
 d. Trapeze hangers.
 e. Clamps.
 f. Turnbuckles.
 g. Sockets.
 h. Eye nuts.
 i. Saddles.
 j. Brackets.
 2. Include rated capacities and furnished specialties and accessories.
B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.
 1. Trapeze hangers. Include product data for components.
 2. Steel slotted-channel systems.
 3. Nonmetallic slotted-channel systems.
 4. Equipment supports.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Structural members to which hangers and supports will be attached.
 3. Size and location of initial access modules for acoustical tile.
 4. Items penetrating finished ceiling, including the following:
a. Lighting fixtures.
b. Air outlets and inlets.
c. Speakers.
d. Sprinklers.
e. Access panels.
f. Projectors.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

1. AWS D1.1/D1.1M.
2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame Rating: Class 1.
2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.

4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
5. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
6. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
8. Channel Dimensions: Selected for applicable load criteria.

B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
 a. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
 b. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 c. Toggle Bolts: All-steel springhead type.
 e. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
 f. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
 g. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 h. Toggle Bolts: All-steel springhead type.
 i. Hanger Rods: Threaded steel

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.

B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs and RMCs as scheduled in NEC 1, where its Table 1 lists maximum spacings that are less than those stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMTs, and RMCs may be supported by openings through structure members, according to NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Spring-tension clamps.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Architectural Section "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.
3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Sections "Cast-in-Place Concrete” or "Miscellaneous Cast-in-Place Concrete.”

C. Anchor equipment to concrete base as follows:
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Sections "Exterior Painting", "Interior Painting" and "High-Performance Coatings" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533
RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Nonmetal conduits, tubing, and fittings.
 3. Metal wireways and auxiliary gutters.
 4. Nonmetal wireways and auxiliary gutters.
 5. Surface raceways.
 7. Handholes and boxes for exterior underground cabling.

1.3 DEFINITIONS
A. GRC: Galvanized rigid steel conduit.
B. IMC: Intermediate metal conduit.
C. EMT: Electrical metallic tubing.
D. ENT: Electrical nonmetallic tubing.
E. EPDM: Ethylene-propylene-diene terpolymer rubber.
F. FMC: Flexible metal conduit.
G. LFMC: Liquidtight flexible metal conduit.
H. LFNC: Liquidtight flexible nonmetallic conduit.
I. NBR: Acrylonitrile-butadiene rubber.
J. RNC: Rigid nonmetallic conduit.

1.4 ACTION SUBMITTALS
A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:

1. Structural members in paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems, Inc.
2. Alflex Inc.
3. Allied Tube & Conduit; a Tyco International Ltd. Co.
4. Anamet Electrical, Inc.; Anaconda Metal Hose.
5. Electri-Flex Co.
7. Maverick Tube Corporation.
10. Hylsa

B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. GRC: Comply with ANSI C80.1 and UL 6.

D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.

1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch, minimum.

E. EMT: Comply with ANSI C80.3 and UL 797.

F. FMC: Comply with UL 1; zinc-coated steel.

G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
2. Fittings for EMT:
 a. Material: die cast.
 b. Type: compression.
3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.
I. Joint Compound for GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems, Inc.
2. Anamet Electrical, Inc.; Anaconda Metal Hose.
3. Arnco Corporation.
4. CANTEX Inc.
7. ElecSYS, Inc.
8. Electri-Flex Co.
9. Lamson & Sessions; Carlon Electrical Products.
10. Manhattan/CDT/Cole-Flex.
11. RACO; a Hubbell Company.
12. Thomas & Betts Corporation.

B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. RNC: Type EPC-40-PVC complying with NEMA TC 2 and UL 651 unless otherwise indicated.

D. LFNC: Comply with UL 1660.

E. RTRC: Comply with UL 1684A and NEMA TC 14.

F. Fittings for and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

G. Fittings for LFNC: Comply with UL 514B.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper B-Line, Inc.
2. Hoffman.
3. Square D; Schneider Electric.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 or Type 3R unless otherwise indicated, and sized according to NFPA 70.

1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Hinged type unless otherwise indicated.

E. Finish: Manufacturer's standard enamel finish.
2.4 NONMETALLIC WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hoffman.
 2. Lamson & Sessions; Carlon Electrical Products.

B. Listing and Labeling: Nonmetallic wireways and auxiliary gutters shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Description: Fiberglass polyester, extruded and fabricated to required size and shape, without holes or knockouts. Cover shall be gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections shall be flanged and have stainless-steel screws and oil-resistant gaskets.

D. Fittings and Accessories: Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.

2.5 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Thomas & Betts Corporation.
 c. Wiremold Company (The); Electrical Sales Division.
 d. Panduit.

C. Tele-Power Poles:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Wiremold Company (The); Electrical Sales Division.
 b. Panduit

 2. Material: Aluminum with clear anodized finish.

 3. Fittings and Accessories: Dividers, end caps, covers, cutouts, wiring harnesses, devices, mounting materials, and other fittings shall match and mate with tele-power pole as required for complete system.

2.6 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 2. EGS/Appleton Electric.
 7. RACO; a Hubbell Company.
 9. Spring City Electrical Manufacturing Company.
 10. Thomas & Betts Corporation.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.

E. Metal Floor Boxes:
 2. Type: Fully adjustable.
 3. Shape: Rectangular.
 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

G. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb.
 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

H. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

I. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.

J. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

L. Gangable boxes are allowed as along is permitted by the NEC.

M. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 for indoor applications and Type 3R (stainless steel) outdoor with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

N. Cabinets:
 1. NEMA 250, Type 1, Type 3R galvanized-steel or 4XSS box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.7 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

A. General Requirements for Handholes and Boxes:
1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. Armorcast Products Company.
 b. Carson Industries LLC.
 c. CDR Systems Corporation.
 d. NewBasis.
4. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
5. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
6. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
7. Cover Legend: Molded lettering, "ELECTRIC".
8. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.

2.8 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
1. Tests of materials shall be performed by an independent testing agency.
2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
1. Exposed Conduit: GRC.
2. Concealed Conduit, Aboveground: GRC.
3. Underground Conduit: RNC, Type EPC-40-PVC.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R or Type 4SS as noted on plans.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:
1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
c. Mechanical rooms.
d. Gymnasiums.

3. Concealed in Ceilings and Interior Walls and Partitions: EMT
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
5. Damp or Wet Locations: GRC.
6. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 1/2-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
3. EMT: Use setscrew steel fittings. Comply with NEMA FB 2.10.
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

G. Install surface raceways only where indicated on Drawings.

H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Raceways Embedded in Slabs:
1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.

2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.

3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.

4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.

5. Change from RNC, Type EPC-40-PVC TO EMT or GRC before rising above floor.

J. Stub-ups to Above Recessed Ceilings:

1. Use EMT for raceways.

2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

N. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

O. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

P. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

Q. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

S. Surface Raceways:

1. Install surface raceway with a minimum 2-inch radius control at bend points.

2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

T. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

U. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

V. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

W. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F.
 e.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

X. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

Y. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

Z. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

AA. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

BB. Locate boxes so that cover or plate will not span different building finishes.

CC. Support boxes of three gangs or more from one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

DD. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

EE. Set metal floor boxes level and flush with finished floor surface.

FF. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.
3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 3 for pipe less than 6 inches in nominal diameter.
2. Install backfill as specified in Division 3.
3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 3.
4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
6. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits but a minimum of 6 inches below grade. Align planks along centerline of conduit.
7. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.
D. Install handholes with bottom below frost line, below grade.
E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.
F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Through cable trays.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include data indicating dimensions and finishes for each type of cable tray indicated.
B. Shop Drawings: For each type of cable tray.
 1. Show fabrication and installation details of cable trays, including plans, elevations, and sections of components and attachments to other construction elements. Designate components and accessories, including clamps, brackets, hanger rods, splice-plate connectors, expansion-joint assemblies, straight lengths, and fittings.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Floor plans and sections, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Include scaled cable tray layout and relationships between components and adjacent structural, electrical, and mechanical elements.
 2. Vertical and horizontal offsets and transitions.
 3. Clearances for access above and to side of cable trays.
 4. Vertical elevation of cable trays above the floor or below bottom of ceiling structure.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR CABLE TRAYS
A. Cable Trays and Accessories: Identified as defined in NFPA 70 and marked for intended location, application, and grounding.
 1. Source Limitations: Obtain cable trays and components from single manufacturer.
B. Sizes and Configurations: See the Cable Tray Schedule on Drawings for specific requirements for types, materials, sizes, and configurations.

C. Structural Performance: See articles on individual cable tray types for specific values for the following parameters:

1. Uniform Load Distribution: Capable of supporting a uniformly distributed load on the indicated support span when supported as a simple span and tested according to NEMA VE 1.
2. Concentrated Load: A load applied at midpoint of span and centerline of tray.
3. Load and Safety Factors: Applicable to both side rails and rung capacities.

2.2 LADDER AND THROUGH CABLE TRAYS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cablofil, Inc.
2. Chalfant Manufacturing Company.
3. Cooper B-Line, Inc.
5. GS Metals Corp.; GLOBETRAY Products.
6. MPHusky.
7. PW Industries.

B. Through Tray Description:

1. Configuration: Two longitudinal members (side rails) with a solid sheet over rungs exposed on the interior of the trough, or corrugated sheet with both edges welded to the side rails.
2. Rung Spacing: Rungs or corrugations shall be spaced a maximum of 6 inches o.c. and have a minimum flat bearing surface of 2 inches.
3. Radius-Fitting Rung Spacing: 9 inches at center of tray's width.
4. Structural Performance: Capable of supporting a maximum cable load, with a safety factor of 1.5, plus a 200-lb concentrated load, when tested according to NEMA VE 1.
5. Minimum Usable Load Depth: 4 inches.
6. Straight Section Lengths: 12 feet except where shorter lengths are required to facilitate tray assembly.
7. Width: 12 inches unless otherwise indicated on Drawings.
9. Class Designation: Comply with NEMA VE 1, Class 12B.
10. Splicing Assemblies: Bolted type using serrated flange locknuts.
11. Splicing Assembly Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.
12. Hardware and Fasteners: Steel, zinc plated according to ASTM B 633.

2.3 MATERIALS AND FINISHES

A. Steel:

1. Straight Section and Fitting Side Rails and Rungs: Steel complies with the minimum mechanical properties of ASTM A 1008/A 1008M, Grade 33, Type 2.
2. Steel Tray Splice Plates: ASTM A 1011/A 1011M, HSLAS, Grade 50, Class 1.
3. Fasteners: Steel complies with the minimum mechanical properties of ASTM A 510/A 510M, Grade 1008.
 b. Hardware: Galvanized, ASTM B 633
2.4 CABLE TRAY ACCESSORIES

A. Fittings: Tees, crosses, risers, elbows, and other fittings as indicated, of same materials and finishes as cable tray.

B. Barrier Strips: Same materials and finishes as for cable tray.

C. Cable tray supports and connectors, including bonding jumpers, as recommended by cable tray manufacturer.

2.5 WARNING SIGNS

A. Lettering: 1-1/2-inch high, black letters on yellow background with legend "Warning! Not To Be Used as Walkway, Ladder, or Support for Ladders or Personnel."

B. Comply with requirements for fasteners in Section 260553 "Identification for Electrical Systems."

2.6 SOURCE QUALITY CONTROL

A. Testing: Test and inspect cable trays according to NEMA VE 1.

PART 3 - EXECUTION

3.1 CABLE TRAY INSTALLATION

A. Install cable trays according to NEMA VE 2.

B. Install cable trays as a complete system, including fasteners, hold-down clips, support systems, barrier strips, adjustable horizontal and vertical splice plates, elbows, reducers, tees, crosses, cable dropouts, adapters, covers, and bonding.

C. Install cable trays so that the tray is accessible for cable installation and all splices are accessible for inspection and adjustment.

D. Remove burrs and sharp edges from cable trays.

E. Fasten cable tray supports to building structure.

F. Design fasteners and supports to carry cable tray, the cables, and a concentrated load of 200 lb. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems."

G. Place supports so that spans do not exceed maximum spans on schedules and provide clearances shown on Drawings. Install intermediate supports when cable weight exceeds the load-carrying capacity of the tray rungs.

H. Construct supports from channel members, threaded rods, and other appurtenances furnished by cable tray manufacturer. Arrange supports in trapeze or wall-bracket form as required by application.

I. Support bus assembly to prevent twisting from eccentric loading.

J. Locate and install supports according to NEMA VE 2. Do not install more than one cable tray splice between supports.
K. Make connections to equipment with flanged fittings fastened to cable trays and to equipment. Support cable trays independent of fittings. Do not carry weight of cable trays on equipment enclosure.

L. Install expansion connectors where cable trays cross building expansion joints and in cable tray runs that exceed dimensions recommended in NEMA VE 2. Space connectors and set gaps according to applicable standard.

M. Make changes in direction and elevation using manufacturer's recommended fittings.

N. Make cable tray connections using manufacturer's recommended fittings.

O. Seal penetrations through fire and smoke barriers. Comply with requirements in Section 078413 "Penetration Firestopping."

P. Install capped metal sleeves for future cables through firestop-sealed cable tray penetrations of fire and smoke barriers.

Q. Install cable trays with enough workspace to permit access for installing cables.

R. Install barriers to separate cables of different systems, such as power, communications, and data processing; or of different insulation levels, such as 600, 5000, and 15 000 V.

S. Install permanent covers, if used, after installing cable. Install cover clamps according to NEMA VE 2.

T. Clamp covers on cable trays installed outdoors with heavy-duty clamps.

U. Install warning signs in visible locations on or near cable trays after cable tray installation.

3.2 CABLE TRAY GROUNDING

A. Ground cable trays according to NFPA 70 unless additional grounding is specified. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Bond cable trays to power source for cables contained within with bonding conductors sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors."

3.3 CABLE INSTALLATION

A. Install cables only when each cable tray run has been completed and inspected.

B. Fasten cables on horizontal runs with cable clamps or cable ties according to NEMA VE 2. Tighten clamps only enough to secure the cable, without indenting the cable jacket. Install cable ties with a tool that includes an automatic pressure-limiting device.

C. Fasten cables on vertical runs to cable trays every 18 inches.

D. Fasten and support cables that pass from one cable tray to another or drop from cable trays to equipment enclosures. Fasten cables to the cable tray at the point of exit and support cables independent of the enclosure. The cable length between cable trays or between cable tray and enclosure shall be no more than 72 inches.

E. In existing construction, remove inactive or dead cables from cable trays.
3.4 CONNECTIONS

A. Remove paint from all connection points before making connections. Repair paint after the connections are completed.

B. Connect raceways to cable trays according to requirements in NEMA VE 2 and NEMA FG 1.

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections.
 1. After installing cable trays and after electrical circuitry has been energized, survey for compliance with requirements.
 2. Visually inspect cable insulation for damage. Correct sharp corners, protuberances in cable trays, vibrations, and thermal expansion and contraction conditions, which may cause or have caused damage.
 3. Verify that the number, size, and voltage of cables in cable trays do not exceed that permitted by NFPA 70. Verify that communications or data-processing circuits are separated from power circuits by barriers or are installed in separate cable trays.
 4. Verify that there are no intruding items such as pipes, hangers, or other equipment in the cable tray.
 5. Remove dust deposits, industrial process materials, trash of any description, and any blockage of tray ventilation.
 6. Visually inspect each cable tray joint and each ground connection for mechanical continuity. Check bolted connections between sections for corrosion. Clean and retorque in suspect areas.
 7. Check for improperly sized or installed bonding jumpers.
 8. Check for missing, incorrect, or damaged bolts, bolt heads, or nuts. When found, replace with specified hardware.
 9. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that all takeoff raceways are bonded to cable trays. Test entire cable tray system for continuity. Maximum allowable resistance is 1 ohm.

B. Prepare test and inspection reports.

3.6 PROTECTION

A. Protect installed cable trays and cables.
 1. Install temporary protection for cables in open trays to safeguard exposed cables against falling objects or debris during construction. Temporary protection for cables and cable tray can be constructed of wood or metal materials and shall remain in place until the risk of damage is over.
 2. Repair damage to galvanized finishes with zinc-rich paint recommended by cable tray manufacturer.
 3. Repair damage to paint finishes with matching touchup coating recommended by cable tray manufacturer.

END OF SECTION 260536
SECTION 260544
SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

B. Related Requirements:
 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: Nitrile (Buna N rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
3. Pressure Plates: Carbon steel.
4. Connecting Bolts and Nuts: [Carbon steel, with corrosion-resistant coating,] of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
2. Sealant shall have VOC content of 150 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Sealant shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:

 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."

 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.

4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:

1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.

2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
SECTION 260553
IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 5. Warning labels and signs.
 6. Instruction signs.
 7. Equipment identification labels.
 8. Miscellaneous identification products.

1.2 ACTION SUBMITTALS

A. Product Data: For each electrical identification product indicated.

1.3 QUALITY ASSURANCE

A. Comply with ANSI A13.1.

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

PART 2 - PRODUCTS

2.1 POWER AND CONTROL RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:

 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.
C. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing ends of legend label.

2.2 ARMORED AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each cable size.

B. Colors for Cables Carrying Circuits at 600 V and Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing ends of legend label.

D. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.

E. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tube with machine-printed identification label. Sized to suit diameter of and shrinks to fit firmly around cable it identifies. Full shrink recovery at a maximum of 200 deg F. Comply with UL 224.

2.3 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing ends of legend label.

C. Self-Adhesive, Self-Laminating Polyester Labels: Preprinted, 3-mil thick flexible label with acrylic pressure-sensitive adhesive that provides a clear, weather- and chemical-resistant, self-laminating, protective shield over the legend. Labels sized to fit the cable diameter such that the clear shield overlaps the entire printed legend.

D. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tube with machine-printed identification label. Sized to suit diameter of and shrinks to fit firmly around cable it identifies. Full shrink recovery at a maximum of 200 deg F. Comply with UL 224.

E. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of cable it identifies and to stay in place by gripping action.

F. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of cable it identifies and to stay in place by gripping action.
2.4 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Self-Adhesive, Self-Laminating Polyester Labels: Preprinted, 3-mil thick flexible label with acrylic pressure-sensitive adhesive that provides a clear, weather- and chemical-resistant, self-laminating, protective shield over the legend. Labels sized to fit the conductor diameter such that the clear shield overlaps the entire printed legend.

C. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tube with machine-printed identification label. Sized to suit diameter of and shrinks to fit firmly around conductor it identifies. Full shrink recovery at a maximum of 200 deg F. Comply with UL 224.

D. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.5 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Baked-Enamel Warning Signs:
 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 7 by 10 inches.

D. Metal-Backed, Butyrate Warning Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 10 by 14 inches.

E. Warning label and sign shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."
2.6 INSTRUCTION SIGNS

A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. inches and 1/8 inch thick for larger sizes.
 1. Engraved legend with black letters on white face.
 2. Punched or drilled for mechanical fasteners.
 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

B. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch.

C. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

2.7 EQUIPMENT IDENTIFICATION LABELS

A. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

B. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch.

C. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.8 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

B. Apply identification devices to surfaces that require finish after completing finish work.
C. **Self-Adhesive Identification Products:** Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

D. **Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.**

E. **Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape with adhesive appropriate to the location and substrate.**

F. **System Identification Color-Coding Bands for Raceways and Cables:** Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

G. **Underground-Line Warning Tape:** During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

H. **Painted Identification:** Comply with requirements in painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

A. **Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A, and 120 V to ground:** Install labels at 30-foot maximum intervals.

B. **Accessible Raceways and Cables within Buildings:** Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:

2. Power.
3. UPS.
4. Fire Alarm System
5. Fire-Suppression Supervisory and Control System
6. Security System
7. Mechanical and Electrical Supervisory System
8. Telecommunication System.
9. Control Wiring.

C. **Power-Circuit Conductor Identification:** For secondary conductors No. 1/0 AWG and larger in vaults, pull and junction boxes, manholes, and handholes use color-coding conductor tape. Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above.

D. **Power-Circuit Conductor Identification, 600 V or Less:** For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.

1. **Color-Coding for Phase and Voltage Level Identification, 600 V or Less:** Use colors listed below for ungrounded service feeder and branch-circuit conductors.

 a. **Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.**
b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.

c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.

d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

E. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

F. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use write-on tags with the conductor or cable designation, origin, and destination.

G. Control-Circuit Conductor Termination Identification: For identification at terminations provide heat-shrink preprinted tubes with the conductor designation.

H. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.

 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

J. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for both direct-buried cables and cables in raceway.

K. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

L. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 2. Identify system voltage with black letters on an orange background.
3. Apply to exterior of door, cover, or other access.

4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

M. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

N. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- high letters for emergency instructions at equipment used for power transfer and load shedding.

O. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch- high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label Stenciled legend 4 inches high.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment to Be Labeled:
 a. Panelboards, electrical cabinets, and enclosures.
 b. Access doors and panels for concealed electrical items.
 c. Electrical switchgear and switchboards.
 d. Transformers.
 e. Emergency system boxes and enclosures.
 f. Motor-control centers.
 g. Disconnect switches.
 h. Enclosed circuit breakers.
 i. Motor starters.
 j. Push-button stations.
 k. Power transfer equipment.
 l. Contactors.
 m. Remote-controlled switches, dimmer modules, and control devices.
 n. Power-generating units.
 o. Voice and data cable terminal equipment.
 p. Master clock and program equipment.
 q. Intercommunication and call system master and staff stations.
3.3 INSTALLATION

Verify identity of each item before installing identification products.

END OF SECTION 260553
SECTION 260923
LIGHTING CONTROL DEVICES

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Devices and associated accessories for automatic control of lighting and other loads:

1. Wallbox occupancy sensors.
2. Wired occupancy sensors.
5. Wired load control modules with wireless communication inputs for wireless sensors and control stations.
6. Wired dimmers and switches with wireless communication inputs.
7. Wireless control stations.

1.02 ADMINISTRATIVE REQUIREMENTS

A. Coordination:

1. Coordinate the placement of sensors and wall controls with millwork, furniture, equipment, etc. installed under other sections or by others.
2. Coordinate the placement of wall controls with actual installed door swings.
3. Coordinate the placement of daylight sensors with windows, skylights, and luminaires to achieve optimum operation. Coordinate placement with ductwork, piping, equipment, or other potential obstructions to light level measurement installed under other sections or by others.
4. Coordinate the work to provide luminaires and lamps compatible with the lighting controls to be installed.
5. Notify Architect of any conflicts or deviations from the contract documents to obtain direction prior to proceeding with work.

B. Sequencing:

1. Do not install sensors and wall controls until final surface finishes are complete.

1.03 SUBMITTALS

A. See Section 01 3000 - Administrative Requirements for submittal procedures.

B. Product Data: Include ratings, configurations, standard wiring diagrams, dimensions, colors, service condition requirements, and installed features.

1. Occupancy/Vacancy Sensors: Include detailed basic motion detection coverage range diagrams.
2. Wall Dimmers: Include derating information for ganged multiple devices.

C. Samples:

1. Wallbox Controls:
1.04 QUALITY ASSURANCE

A. Conform to requirements of NFPA 70.

B. Maintain at the project site a copy of each referenced document that prescribes execution requirements.

C. Manufacturer Qualifications:
 1. Company with not less than ten years of experience manufacturing lighting controls, including products using wireless communication between devices.
 2. Registered to ISO 9001, including in-house engineering for product design activities.
 3. Provides factory direct technical support hotline available 24 hours per day, 7 days per week.
 4. Qualified to supply specified products and to honor claims against product presented in accordance with warranty.

1.05 DELIVERY, STORAGE, AND HANDLING

A. Store products in a clean, dry space in original manufacturer's packaging in accordance with manufacturer's written instructions until ready for installation.

1.06 FIELD CONDITIONS

A. Maintain field conditions within manufacturers required service conditions during and after installation.

 1. System Requirements- Lutron, Unless Otherwise Indicated:
 a. Ambient Temperature:
 1) Lighting Controls: Between 32 and 104 degrees F (0 and 40 degrees C).
 b. Relative Humidity: Less than 90 percent, non-condensing.
 c. Protect lighting controls from dust.

1.07 WARRANTY

A. See Section 01 7800 - Closeout Submittals, for additional warranty requirements.

B. Manufacturer's Standard Warranty:
1. Manufacturer Lighting Control System Components, Except Wallbox Occupancy Sensors, Wireless Sensors, Ballasts/Drivers and Ballast Modules: One year 100 percent parts coverage, no manufacturer labor coverage.

2. Wallbox Occupancy Sensors and Wireless Sensors: Five years 100 percent parts coverage, no manufacturer labor coverage.

3. Ballasts/Drivers and Ballast Modules: Three years 100 percent parts coverage, no manufacturer labor coverage.

PART 2 PRODUCTS

2.01 MANUFACTURERS

B. Other Acceptable Manufacturers:

1. Wattstopper
2. Sensor Switch
3. Products by listed manufacturers are subject to compliance with specified requirements and 10 day prior approval by Architect

C. Substitutions:

1. All proposed substitutions (clearly delineated as such) must be submitted in writing for approval by Architect a minimum of 10 working days prior to the bid date and must be made available to all bidders. Proposed substitutes must be accompanied by a review of the specification noting compliance on a line-by-line basis.
2. Any proposed substitutions to be reviewed by Architect/Engineer. Contractor accepts responsibility and associated costs for all required modifications to related equipment and wiring. Provide complete engineered shop drawings (including power wiring) with deviations from the original design highlighted in an alternate color for review and approval by Architect prior to rough-in.

D. Source Limitations: Where possible, furnish products produced by a single manufacturer and obtained from a single supplier.

2.02 LIGHTING CONTROL DEVICES - GENERAL REQUIREMENTS

A. Provide products listed, classified, and labeled by Underwriters Laboratories Inc. (UL) as suitable for the purpose indicated.

B. Unless specifically indicated to be excluded, provide all required equipment, conduit, boxes, wiring, connectors, hardware, supports, accessories, programming, etc. as necessary for a complete operating system that provides the control intent indicated.

C. Design lighting control equipment for 10 year operational life while operating continually at any temperature in an ambient temperature range of 32 degrees F (0 degrees C) to 104 degrees F (40 degrees C) and 90 percent non-condensing relative humidity.

D. Electrostatic Discharge Tolerance: Design and test equipment to withstand electrostatic discharges without impairment when tested according to IEC 61000-4-2.
E. Power Failure Recovery: When power is interrupted for periods up to 10 years and subsequently restored, lights to automatically return to same levels (dimmed setting, full on, or full off) as prior to power interruption.

F. Wireless Devices:
 1. Capable of diagnosing system communications.
 2. Capable of having addresses automatically assigned to them.
 3. Receives signals from other wireless devices and provides feedback to user.
 4. Capable of determining which devices have been addressed.
 5. RF Frequency: 434 MHz; operate in FCC governed frequency spectrum for periodic operation; continuous transmission spectrum is not permitted.
 6. RF Range: 60 feet (18 m) line-of-sight or 30 feet (9 m) through typical construction materials between RF transmitting devices and compatible RF receiving devices.

G. Device Finishes:
 1. Wallbox Controls:
 2. Standard Colors: Comply with NEMA WD1 where applicable.
 3. Color Variation in Same Product Family: Maximum delta E of 1, CIE L*a*b color units per ASTM E308.
 4. Visible Parts: Exhibit ultraviolet color stability when tested with multiple actinic light sources as defined in ASTM D4674. Provide proof of testing upon request.

2.03 WALLBOX OCCUPANCY SENSORS

A. General Requirements:
 1. Passive Infrared Sensing:
 a. Utilize multiple segmented lens, with internal grooves to eliminate dust and residue build-up.
 b. Passive infrared coupled with technology for sensing fine motions; Lutron XCT Technology. Signal processing technology detects fine-motion passive infrared (PIR) signals without the need to change the sensor’s sensitivity threshold.
 2. Ultrasonic Sensing: Utilize an operating frequency of 32 kHz or 40 kHz, crystal-controlled to operate within plus/minus 0.005 percent tolerance.
 3. Dual Technology Sensing: Passive infrared and ultrasonic sensing coupled with technology for sensing very fine motions; Lutron XCT Technology. Signal processing technology detects fine-motion passive infrared (PIR) and ultrasonic signals without the need to change the sensor’s sensitivity threshold.

B. Wall Switch Occupancy/Vacancy Sensors; Lutron Maestro Series:
 1. General Requirements:
 a. Turns off lighting after reasonable and adjustable time delay once the last person to occupy the space vacates a room or area. Provide adjustable timeout settings of 1, 5, 15, and 30 minutes.
 b. Switches at point of minimum energy to maximize relay life, actively adapting to variations in relay timing.
 c. Suitable for incandescent, halogen, electronic low-voltage, magnetic low-voltage, compact fluorescent, LED, magnetic fluorescent, electronic fluorescent, and fan loads.
 2. Passive Infrared Wall Switch Combination Occupancy/Vacancy Sensors:
 a. Programmable to operate as an occupancy sensor (automatic-on and automatic-off) or a vacancy sensor (manual-on and automatic-off).
b. Adjustable sensitivity (high, low presets).

c. Selectable option to enable low light feature (automatic-on when ambient light is below threshold). Ambient light threshold to be adaptive utilizing occupant feedback; Lutron Smart Ambient Light Detection.

d. Selectable option to inhibit automatic turn-on of lights after manual-off operation while room is occupied for applications such as presentation viewing in conference rooms and classrooms; when room is vacated, returns to normal automatic-on operation after time delay period.

e. Product(s):

1) Passive Infrared Wall Switch Occupancy/Vacancy Sensor; Lutron Maestro Series, Model MS-OPS6M2-DV: 6 A lighting (120-277 V), 3 A fan (120 V); coverage of 900 square feet (81 sq m) with mounting height of 4 feet (1.2 m); 180 degree field of view; multi-location capability using standard 3-way or companion switch (up to nine companion switches may be connected).

2) Passive Infrared Wall Switch Occupancy/Vacancy Sensor; Lutron Maestro Series, Model MS-OPS6M2N-DV: 6 A lighting (120-277 V), 3 A fan (120 V); neutral required; coverage of 900 square feet (81 sq m) with mounting height of 4 feet (1.2 m); 180 degree field of view; multi-location capability using standard 3-way or companion switch (up to nine companion switches may be connected).

3) Passive Infrared Wall Switch Occupancy/Vacancy Sensor; Lutron Maestro Series, Model MS-OPS6M2U-DV: 6 A lighting (120-277 V), 3 A fan (120 V); convertible to require connection to either neutral or ground; coverage of 900 square feet (81 sq m) with mounting height of 4 feet (1.2 m); 180 degree field of view; multi-location capability using standard 3-way or companion switch (up to nine companion switches may be connected).

4) Passive Infrared Wall Switch Occupancy/Vacancy Sensor; Lutron Maestro Series, Model UMS-OPS6M2-DV: BAA (Buy American Act) Compliant; 6 A lighting (120-277 V), 3 A fan (120 V); neutral required; coverage of 900 square feet (81 sq m) with mounting height of 4 feet (1.2 m); 180 degree field of view; multi-location capability using companion switch (up to nine companion switches may be connected); minimum load requirement.

2.04 WIRED OCCUPANCY SENSORS

A. General Requirements:

1. Connects directly to compatible ballasts and modules without the need of a power pack or other interface.
2. Turns off or reduces lighting automatically after reasonable time delay when a room or area is vacated by the last person to occupy the space.
3. Accommodates all conditions of space utilization and all irregular work hours and habits.
4. Comply with UL 94.
5. Self-Adaptive: Continually adjusts sensitivity and timing to ensure optimal lighting control for any use of the space.
6. Furnished with field-adjustable controls for time delay and sensitivity to override any adaptive features.
7. Power Failure Memory: Settings and learned parameters to be saved in non-volatile memory and not lost should power be interrupted and subsequently restored.
8. Furnished with all necessary mounting hardware and instructions.
9. Class 2 devices.

B. Wired Dual Technology Sensors:
1. Passive Infrared Sensing: Utilize multiple segmented lens, with internal grooves to eliminate dust and residue build-up.
2. Ultrasonic Sensing: Utilize an operating frequency of 32 kHz or 40 kHz, crystal-controlled to operate within plus/minus 0.005 percent tolerance.
3. Ceiling-Mounted Sensors: Provide customizable mask to block off unwanted viewing areas.
4. Isolated Relay: Provide an internal additional isolated relay with Normally Open, Normally Closed, and Common outputs for use with HVAC control, Data Logging and other control options. Omit the choice in the following paragraph if only models with integral photocell will be used.
5. Integral Photocell: Provide an integral photocell with adjustable sensitivity to prevent lights from turning on when there is sufficient natural light if more than one model is required, the optional choice can be used to assign type designations.

2.05 WIRELESS SENSORS

A. General Requirements:
1. Operational life of 10 years without the need to replace batteries when installed per manufacturer's instructions.
2. Communicates directly to compatible RF receiving devices through use of a radio frequency communications link.
3. Does not require external power packs, power wiring, or communication wiring.
4. Capable of being placed in test mode to verify correct operation from the face of the unit.

B. Wireless Occupancy/Vacancy Sensors:
1. General Requirements:
 a. Provides a clearly visible method of indication to verify that motion is being detected during testing and that the unit is communicating to compatible RF receiving devices.
 b. Utilize multiple segmented lens, with internal grooves to eliminate dust and residue build-up.
 c. Sensing Mechanism: Passive infrared coupled with technology for sensing fine motions; Lutron XCT Technology. Signal processing technology detects fine-motion passive infrared (PIR) signals without the need to change the sensor's sensitivity threshold.
 d. Provide optional, readily accessible, user-adjustable controls for timeout, automatic/manual-on, and sensitivity.
 e. Turns off lighting after reasonable and adjustable time delay once the last person to occupy the space vacates a room or area. Provide adjustable timeout settings of 1, 5, 15, and 30 minutes.
 f. Capable of turning dimmer's lighting load on to an optional locked preset level selectable by the user. Locked preset range to be selectable on the dimmer from 1 percent to 100 percent.
 g. Color: White.
 h. Provide all necessary mounting hardware and instructions for both temporary and permanent mounting.
 i. Provide temporary mounting means for drop ceilings to allow user to check proper performance and relocate as needed before permanently mounting sensor. Temporary mounting method to be designed for easy, damage-free removal.
 j. Sensor lens to illuminate during test mode when motion is detected to allow installer to place sensor in ideal location and to verify coverage prior to permanent mounting.
 k. Ceiling-Mounted Sensors:
 1) Provide surface mounting bracket compatible with drywall, plaster, wood, concrete, and compressed fiber ceilings.
 2) Provide recessed mounting bracket compatible with drywall and compressed fiber ceilings.
 l. Wall-Mounted Sensors: Provide wall or corner mounting brackets compatible with drywall and plaster walls.
2. Wireless Combination Occupancy/Vacancy Sensors:
 a. Ceiling-Mounted Sensors: Programmable to operate as an occupancy sensor (automatic-on and automatic-off), an occupancy sensor with low light feature (automatic-on when less than one footcandle of ambient light available and automatic-off), or a vacancy sensor (manual-on and automatic-off).
 b. Wall-Mounted Sensors: Programmable to operate as an occupancy sensor (automatic-on and automatic-off), or a vacancy sensor (manual-on and automatic-off).
 c. Product(s):
 1) Ceiling-Mounted Occupancy/Vacancy Sensor; Lutron Radio Powr Savr Series, Model LFR2-OCR2B-P-WH Coverage from 324 square feet (30.2 sq m) to 676 square feet (62.4 sq m) depending on ceiling height from 8 to 12 feet (2.4 to 3.7 m); 360 degree field of view.
 2) Wall-Mounted Occupancy/Vacancy Sensor; Lutron Radio Powr Savr Series, Model LFR2-OWLBPWH; Minor motion coverage of 1500 square feet (139.4 sq m) and major motion coverage of 3000 square feet (278.7 sq m) with mounting height of 6 to 8 feet (1.8 to 2.4 m); 180 degree field of view.
 3) Corner-Mounted Occupancy/Vacancy Sensor; Lutron Radio Powr Savr Series, Model LFR2-OKLB-P-WH Minor motion coverage of 1225 square feet (113.8 sq m) and major motion coverage of 2500 square feet (232.3 sq m) with mounting height of 6 to 8 feet (1.8 to 2.4 m); 90 degree field of view.
 4) Hallway Occupancy/Vacancy Sensor; Lutron Radio Powr Savr Series, Model LFR2-OHLBP-WH; Major motion coverage of up to 150 feet (45.7 m) with mounting height of 6 to 8 feet (1.8 to 2.4 m); narrow field of view..

2.06 LOAD CONTROL MODULES FOR WIRELESS SENSORS AND CONTROL STATIONS

A. Provide wireless load control modules as indicated or as required to control the loads as indicated.

B. Junction Box-Mounted Modules:
 1. Communicates via radio frequency with up to nine compatible wireless control stations, up to six occupancy/vacancy sensors, and one daylight sensor.
 2. Plenum rated.
 3. Dimming Modules:
 a. Product(s):
 1) 5 A dimming module with 0-10V control; Lutron PowPak Dimming Module Model RMJ-5T-DV-B; IEC 60929 is a standard for electronic fluorescent ballasts, and is used by other lighting equipment controlled by low voltage signals including LED drivers and low voltage controlled neon. It defines specific methods for 0-10V, pulse width modulation (PWM), and Digitally Addressable Lighting Interface (DALI).
 b. Single low voltage dimming module with Class 1 or Class 2 isolated 0-10V output signal conforming to IEC 60929 Annex E.2; source or sink automatically configures.
 c. Configurable high- and low-end trim.
 d. Relay: Rated for 0-10 V ballasts, LED drivers, or fixtures that conform with NEMA 410.
 4. Relay Modules:
 a. Product(s):
 1) 16 A relay module, without contact closure output; Lutron PowPak Relay Module Model RMJ-16R-DV-B; 16 A relay module, with contact closure output; Lutron PowPak Relay Module Model RMJ-16RCCO1-DV-B; 5 A relay module, without contact closure output; Lutron PowPak Relay Module Model RMJ-SR-DV-B.
2.07 WIRELESS CONTROL STATIONS

A. Product(s):
 1. 2-Button Control; <Lutron Pico Wireless Control Model PJ2-2B;
 a. Button Marking on drawings
 2. 2-Button Control with Night Light; Lutron Pico Wireless Control Model PJN-2B.
 3. Wallbox Adapter; Lutron Model PICO-WBX-ADAPT.

B. Communicates directly to compatible RF receiving devices through use of a radio frequency communications link.

C. Does not require external power packs, power or communication wiring.

D. Allows for easy reprogramming without replacing unit.

E. Button Programming:
 2. Toggle action.

F. Includes LED to indicate button press or programming mode status.

G. Mounting:
 1. Capable of being mounted with a table stand or directly to a wall under a faceplate.
 2. Faceplates: Provide concealed mounting hardware.

H. Power: Battery-operated with minimum ten-year battery life (3-year battery life for night light models).

I. Finish: <<As specified for wall controls in "Device Finishes" under LIGHTING CONTROL DEVICES - GENERAL REQUIREMENTS article above;}}

2.08 SOURCE QUALITY CONTROL

A. See Section 01 4000 - Quality Requirements, for additional requirements.

B. Factory Testing; Lutron Standard Factory Testing:
 1. Perform full-function factory testing on all completed assemblies. Statistical sampling is not acceptable.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that field measurements are as shown on the drawings.

B. Verify that ratings and configurations of devices are consistent with the indicated requirements.

C. Verify that mounting surfaces are ready to receive devices.

D. Verify that conditions are satisfactory for installation prior to starting work.
3.02 PREPARATION
 A. Clean dirt, debris, plaster, and other foreign materials from outlet boxes.

3.03 INSTALLATION
 A. Perform work in a neat and workmanlike manner in accordance with NECA 1 and, where applicable, NECA 130
 B. Coordinate locations of outlet boxes provided under Section 26 0537 as required for installation of devices provided under this section.
 C. Where multiple devices are installed at the same location and at the same mounting height, gang devices together under a common wall plate.
 D. Install products in accordance with manufacturer's instructions.
 E. Install permanent barrier between ganged devices when voltage between adjacent devices exceeds 300 V.
 F. Install wall dimmers to achieve full rating specified after derating for ganging as instructed by manufacturer.
 G. Sensor Locations:
 1. Sensor locations indicated are diagrammatic. Within the design intent, reasonably minor adjustments to locations may be made in order to optimize coverage and avoid conflicts or problems affecting coverage, in accordance with manufacturer's recommendations.
 H. Ensure that daylight sensor placement minimizes sensor view of electric light sources. Locate ceiling-mounted and luminaire-mounted daylight sensors to avoid direct view of luminaires.
 I. Lamp Burn-In: Operate lamps at full output for prescribed period per manufacturer's recommendations prior to use with any dimming controls. Replace lamps that fail prematurely due to improper lamp burn-in.
 J. Identify devices in accordance with Section 26 0553.

3.04 FIELD QUALITY CONTROL
 A. See Section 01 4000 - Quality Requirements, for additional requirements.
 B. Correct defective work, adjust for proper operation, and retest until entire system complies with contract documents.

3.05 ADJUSTING
 A. Sensor Fine-Tuning: Contractor to provide fine-tuning of sensor calibration.

3.06 CLEANING
A. Clean exposed surfaces to remove dirt, paint, or other foreign material and restore to match original factory finish.

3.07 CLOSEOUT ACTIVITIES

A. See Section 01 7800 - Closeout Submittals, for closeout submittals.

B. See Section 01 7900 - Demonstration and Training, for additional requirements.

C. Demonstration: Demonstrate proper operation of lighting control devices to Engineer; or owner, and correct deficiencies or make adjustments as directed.

3.08 PROTECTION

A. Protect installed products from subsequent construction operations.

END OF SECTION 26 0923
SECTION 262200
LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes: Distribution and buck-boost dry-type transformers rated 600 V and less, with capacities up to 1500 kVA
 B. Copper-wound transformers exceeding US Department of Energy 2016 mandated minimum efficiency. These transformers shall be UL listed to feed a K-7 electronic equipment load profile and be optimized to minimize operating cost under light loading.
 B. Compliance with full specification is required
 C. Basic compliance with NEMA TP1/EPACT2005, NEMA Premium, CEE Tier 1, or CSL3 is not sufficient to meet this specification due to the following:
 1. Efficiencies must exceed the US DOE 2016 minimum requirement
 2. No load losses must comply with those defined in this specification
 3. Efficiency at low load and under nonlinear K-7 load must meet the minimum requirements of this specification
 4. K-7 listing per UL 1561 is required
 5. Comprehensive testing under linear and nonlinear loading is required to verify specified performance
 6. Performance submittals are required
 D. Load Mix: Transformer shall be UL 1561 Listed to feed a mix of equipment load profiles such as computers without de-rating or significant degradation of efficiency.

1.3 REFERENCES
 C. ANSI/NEMA ST 20 - Dry Type Transformers for General Applications.
 D. NEMA Premium Efficiency Transformers Program
 E. Consortium for Energy Efficiency (CEE): Specification for Low-Voltage, Dry-Type Distribution Transformers

H. Metering Standards:
 1. Computational algorithms per IEEE Std 1459-2000
 2. UL 916, UL 61010C-1 CAT III

I. IEEE C57.110-1998 – IEEE Recommended Practice for establishing transformer capability when feeding nonsinusoidal load currents

J. IEEE Std C57.12.91-1995 Standard Test Code for Dry-Type Transformers

K. IEEE-1100 – Recommended Practice for Powering and Grounding Sensitive Electronic Equipment

P. ISO 17025 – International Standards Organization - General requirements for the competence of testing and calibration laboratories

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Certified Test Reports
 1. Provide test reports certified by factory test engineer for both transformer types and each kVA used on this project documenting compliance of previously manufactured units.
 2. Provide details of factory ISO compliant production nonlinear load test
 3. Provide performance under nonlinear load profile typical of modern electronic equipment
 4. Provide NEMA TP2 test reports

C. Shop Drawings:
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 3. Include diagrams for power, signal, and control wiring.

D. Qualification Data: For testing agency.

E. Source quality-control reports.
F. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.5 MANUFACTURERS

A. Subject to compliance with requirements, manufacturers offering transformers that may be incorporated into the Work include the following:

1. Powersmiths International Corp Model ESAVER2016 (Non-harmonics canceling type).
2. Powersmiths International Corp. Model T10002016 (harmonics canceling type).
3. Square D NEMA Premium 30
4. Eaton corp. CSL3
5. Others as approved by Engineer prior to bidding.

B. Source Limitations: Obtain each transformer type from single source from single manufacturer.

1.1 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units of types specified, designed for 60-Hz service.

B. Cores: Grain-oriented, non-aging silicon steel.

C. Coils: Continuous windings without splices, except for taps.

D. Internal Coil Connections: Brazed or pressure type.

E. Enclosure: Class complies with NEMA 250 for the environment in which installed.

F. Warranty: 25 years pro-rated

G. International Standard Organization registration

1. Registration to current ISO standard is required.
2. Independent annual audits are required.
3. Product shall be manufactured in registered facility
5. ISO 14001:2004 Registered – Environmental Management System

H. Low-Sound-Level Units: NEMA ST 20 standard sound levels when factory tested according to IEEE C57.12.91. All units on this project to be sound level tested and meet the NEMA ST-20 levels.

I. Wall Brackets: Manufacturer's standard brackets.

1.2 GENERAL-PURPOSE DISTRIBUTION AND POWER TRANSFORMERS

A. Comply with NEMA ST 20 and list and label as complying with UL 1561.

B. Cores: One leg per phase.
C. Windings: One coil per phase in primary and secondary.

D. K-Factor rating: K-7

E. Exceed minimum efficiency requirements of US Department of Energy, 10 CFR Part 431, April 18, 2013, Energy Conservation Program: Energy Conservation Standards for Distribution Transformers; Final Rule which takes effect January 1, 2016, and comply with the table of Maximum No Load Losses, efficiency requirements at 1/6 load, efficiency at 35% load per 10 CFR Part 431, and efficiency at 25% load under a K-7 load profile.

<table>
<thead>
<tr>
<th>kVA</th>
<th>No load losses (Watts)</th>
<th>Efficiency @ 1/6 load (%)</th>
<th>Efficiency @ 35% load (%)</th>
<th>Efficiency at 25% load under K-7 nonlinear load</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>47</td>
<td>97.85%</td>
<td>98.28</td>
<td>98.00%</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>98.05%</td>
<td>98.34</td>
<td>98.10%</td>
</tr>
<tr>
<td>25</td>
<td>66</td>
<td>98.15%</td>
<td>98.41</td>
<td>98.15%</td>
</tr>
<tr>
<td>30</td>
<td>71</td>
<td>98.27%</td>
<td>98.50</td>
<td>98.30%</td>
</tr>
<tr>
<td>45</td>
<td>97</td>
<td>98.40%</td>
<td>98.66</td>
<td>98.40%</td>
</tr>
<tr>
<td>50</td>
<td>112</td>
<td>98.45%</td>
<td>98.67</td>
<td>98.42%</td>
</tr>
<tr>
<td>63</td>
<td>120</td>
<td>98.50%</td>
<td>98.75</td>
<td>98.48%</td>
</tr>
<tr>
<td>75</td>
<td>135</td>
<td>98.63%</td>
<td>98.82</td>
<td>98.60%</td>
</tr>
<tr>
<td>100</td>
<td>180</td>
<td>98.65%</td>
<td>98.88</td>
<td>98.65%</td>
</tr>
<tr>
<td>112.5</td>
<td>195</td>
<td>98.70%</td>
<td>98.92</td>
<td>98.70%</td>
</tr>
<tr>
<td>125</td>
<td>215</td>
<td>98.73%</td>
<td>98.94</td>
<td>98.72%</td>
</tr>
<tr>
<td>150</td>
<td>235</td>
<td>98.80%</td>
<td>98.99</td>
<td>98.80%</td>
</tr>
<tr>
<td>175</td>
<td>270</td>
<td>98.82%</td>
<td>99.02</td>
<td>98.82%</td>
</tr>
<tr>
<td>200</td>
<td>310</td>
<td>98.84%</td>
<td>99.05</td>
<td>98.84%</td>
</tr>
<tr>
<td>225</td>
<td>330</td>
<td>98.90%</td>
<td>99.09</td>
<td>98.90%</td>
</tr>
<tr>
<td>250</td>
<td>365</td>
<td>98.91%</td>
<td>99.10</td>
<td>98.92%</td>
</tr>
<tr>
<td>300</td>
<td>400</td>
<td>98.95%</td>
<td>99.15</td>
<td>99.00%</td>
</tr>
<tr>
<td>400</td>
<td>530</td>
<td>98.96%</td>
<td>99.20</td>
<td>99.02%</td>
</tr>
<tr>
<td>450</td>
<td>600</td>
<td>98.97%</td>
<td>99.22</td>
<td>99.03%</td>
</tr>
<tr>
<td>500</td>
<td>650</td>
<td>99.00%</td>
<td>99.25</td>
<td>99.05%</td>
</tr>
<tr>
<td>600</td>
<td>800</td>
<td>99.01%</td>
<td>99.28</td>
<td>99.07%</td>
</tr>
<tr>
<td>750</td>
<td>875</td>
<td>99.10%</td>
<td>99.32</td>
<td>99.10%</td>
</tr>
<tr>
<td>850</td>
<td>950</td>
<td>99.11%</td>
<td>99.34</td>
<td>99.11%</td>
</tr>
<tr>
<td>1000</td>
<td>1200</td>
<td>99.12%</td>
<td>99.36</td>
<td>99.12%</td>
</tr>
</tbody>
</table>

F. Enclosure: Indoor, ventilated with lockable hinged door

G. Maximum Footprint for 115 degree C rise model in a NEMA 1 enclosure:

1. 18" Wide x 17" Deep x 27" High for 15kVA.
2. 26" Wide x 18" Deep x 30" High for 20, 30, 45kVA
3. 33" Wide x 22" Deep x 40" High for 50, 63, 75, 100, 112.5kVA
4. 38" Wide x 27" Deep x 48" High for 125, 150, 175, 200kVA
5. 38" Wide x 32" Deep x 52" High for 225, 250, 300kVA
6. 52" Wide x 38" Deep x 61" High for 400, 450, 500 kVA
7. 64" Wide x 47" Deep x 67" High for 600, 750 kVA
8. 64" Wide x 53" Deep x 67" High for 850, 1000 kVA

H. Insulation Class: 185 or 220 deg C class for transformers 15 kVA or smaller; 220 deg C class for transformers larger than 15 kVA.

I. Rated Temperature Rise: 130 deg C maximum rise above 40 deg C.

J. Taps: For transformers 3 kVA and larger, full-capacity taps in high-voltage windings are as follows:
 1. If all transformers have same voltage taps, select from 4 subparagraphs below. If taps vary, delete all and show on Drawings. First item is standard.
 2. Taps, 3 through 25 kVA: Two 5-percent taps below rated high voltage.
 3. Taps, 3 through 10 kVA: Two 5-percent taps below rated high voltage.
 4. Taps, 15 through 500 kVA: Six 2.5-percent taps, 2 above and 4 below rated high voltage.

K. Electrostatic Shielding: Each winding is independently single shielded with a full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 1. Coil leads and terminal strips are arranged to minimize capacitive coupling between input and output connections.
 2. Shield Terminal: Separate; marked "Shield" for grounding connection.
 3. Capacitance: Shield limits capacitance between primary and secondary to a maximum of 33 picofarads over a frequency range of 20 Hz to 1 MHz.
 4. Common-Mode Noise Attenuation: Minus 120 dB minimum, 0.5 to 1.5 kHz; minus 65 dB minimum, 1.5 to 100 kHz.
 5. Normal-Mode Noise Attenuation: Minus 52 dB minimum, 1.5 to 10 kHz.

1.3 HARMONIC CANCELING TRANSFORMERS

A. Transformers designed to treat a broad spectrum of odd harmonic currents, up to the 25th harmonic frequency.

B. 3rd Harmonic Treatment: 3rd, 9th, and other zero sequence currents shall not be coupled into the primary winding.

C. Voltage Distortion: Change in voltage THD between transformer primary and secondary terminals shall be minimized.

D. Fundamental current imbalance shall be reduced on the primary side of the transformer compared to the secondary side.

E. Exceed minimum efficiency requirements of US Department of Energy, 10 CFR Part 431, April 18, 2013, Energy Conservation Program: Energy Conservation Standards for Distribution Transformers; Final Rule which takes effect January 1, 2016, and comply with the table of Maximum No Load Losses, efficiency requirements at 1/6 load, efficiency at 35% load per 10 CFR Part 431, and efficiency at 50% load under a K-7 load profile.

<table>
<thead>
<tr>
<th>kVA</th>
<th>No load losses (Watts)</th>
<th>Efficiency @ 1/6 load (%)</th>
<th>Efficiency @ 35% load (%)</th>
<th>Efficiency at 50% load under K-9 nonlinear load</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>52</td>
<td>97.80%</td>
<td>98.28%</td>
<td>97.75%</td>
</tr>
<tr>
<td>20</td>
<td>66</td>
<td>97.95%</td>
<td>98.34%</td>
<td>97.80%</td>
</tr>
<tr>
<td>25</td>
<td>73</td>
<td>98.00%</td>
<td>98.41%</td>
<td>97.85%</td>
</tr>
</tbody>
</table>
LOW-VOLTAGE TRANSFORMERS

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Transformer Size (kVA)</th>
<th>Efficiency at Low Voltage</th>
<th>Efficiency at Mid Voltage</th>
<th>Efficiency at High Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>78</td>
<td>98.20%</td>
<td>98.50%</td>
<td>97.88%</td>
</tr>
<tr>
<td>45</td>
<td>107</td>
<td>98.30%</td>
<td>98.66%</td>
<td>97.95%</td>
</tr>
<tr>
<td>50</td>
<td>123</td>
<td>98.35%</td>
<td>98.67%</td>
<td>97.98%</td>
</tr>
<tr>
<td>63</td>
<td>132</td>
<td>98.40%</td>
<td>98.75%</td>
<td>98.00%</td>
</tr>
<tr>
<td>75</td>
<td>149</td>
<td>98.50%</td>
<td>98.82%</td>
<td>98.10%</td>
</tr>
<tr>
<td>100</td>
<td>198</td>
<td>98.57%</td>
<td>98.88%</td>
<td>98.30%</td>
</tr>
<tr>
<td>112.5</td>
<td>215</td>
<td>98.60%</td>
<td>98.92%</td>
<td>98.35%</td>
</tr>
<tr>
<td>125</td>
<td>237</td>
<td>98.65%</td>
<td>98.94%</td>
<td>98.40%</td>
</tr>
<tr>
<td>150</td>
<td>259</td>
<td>98.70%</td>
<td>98.99%</td>
<td>98.47%</td>
</tr>
<tr>
<td>175</td>
<td>297</td>
<td>98.72%</td>
<td>99.02%</td>
<td>98.50%</td>
</tr>
<tr>
<td>200</td>
<td>341</td>
<td>98.75%</td>
<td>99.05%</td>
<td>98.55%</td>
</tr>
<tr>
<td>225</td>
<td>363</td>
<td>98.80%</td>
<td>99.09%</td>
<td>98.60%</td>
</tr>
<tr>
<td>250</td>
<td>402</td>
<td>98.83%</td>
<td>99.10%</td>
<td>98.63%</td>
</tr>
<tr>
<td>300</td>
<td>440</td>
<td>98.88%</td>
<td>99.15%</td>
<td>98.70%</td>
</tr>
<tr>
<td>400</td>
<td>583</td>
<td>98.90%</td>
<td>99.20%</td>
<td>98.73%</td>
</tr>
<tr>
<td>450</td>
<td>660</td>
<td>98.92%</td>
<td>99.22%</td>
<td>98.75%</td>
</tr>
<tr>
<td>500</td>
<td>715</td>
<td>98.94%</td>
<td>99.25%</td>
<td>98.77%</td>
</tr>
<tr>
<td>600</td>
<td>880</td>
<td>98.95%</td>
<td>99.28%</td>
<td>98.79%</td>
</tr>
<tr>
<td>750</td>
<td>963</td>
<td>98.96%</td>
<td>99.32%</td>
<td>98.84%</td>
</tr>
<tr>
<td>850</td>
<td>1045</td>
<td>98.98%</td>
<td>99.34%</td>
<td>98.96%</td>
</tr>
<tr>
<td>1000</td>
<td>1320</td>
<td>99.00%</td>
<td>99.36%</td>
<td>98.90%</td>
</tr>
</tbody>
</table>

F. Enclosure: Indoor, ventilated with lockable hinged door

G. Maximum Footprint for 115 degree C rise model in a NEMA 1 enclosure:
 1. 18" Wide x 17" Deep x 27" High for 15kVA.
 2. 26" Wide x 18" Deep x 30" High for 20, 30, 45kVA
 3. 33" Wide x 22" Deep x 40" High for 50, 63, 75, 100, 112.5kVA
 4. 38" Wide x 27" Deep x 48" High for 125, 150, 175, 200kVA
 5. 38" Wide x 32" Deep x 52" High for 225, 250, 300kVA
 6. 52" Wide x 38" Deep x 61" High for 400, 450, 500kVA
 7. 64" Wide x 47" Deep x 67" High for 600, 750kVA
 8. 64" Wide x 53" Deep x 67" High for 850, 1000kVA

H. Insulation Class: 185 or 220 deg C class for transformers 15 kVA or smaller; 220 deg C class for transformers larger than 15 kVA.

I. Rated Temperature Rise: 115 deg C maximum rise above 40 deg C.

J. Taps: For transformers 3 kVA and larger, full-capacity taps in high-voltage windings are as follows:

K. Taps, 15 through 500 kVA: Four 2.5-percent taps, 2 above and 2 below rated high voltage.

L. Electrostatic Shielding: Each winding is independently single shielded with a full-width copper electrostatic shield arranged to minimize interwinding capacitance.
M. Coil leads and terminal strips are arranged to minimize capacitive coupling between input and output connections.

 1. Shield Terminal: Separate; marked "Shield" for grounding connection.
 2. Capacitance: Shield limits capacitance between primary and secondary to a maximum of 33 picofarads over a frequency range of 20 Hz to 1 MHz.
 3. Common-Mode Noise Attenuation: Minus 120 dB minimum, 0.5 to 1.5 kHz; minus 65 dB minimum, 1.5 to 100 kHz.
 4. Normal-Mode Noise Attenuation: Minus 52 dB minimum, 1.5 to 10 kHz.

1.4 BUCK-BOOST TRANSFORMERS

A. Description: Self-cooled, two-winding dry type, rated for continuous duty and with wiring terminals suitable for connection as autotransformer. Transformers shall be listed and labeled as complying with UL 506 or UL 1561.

 1. Standard impedance at 60Hz: 2 percent to 5 percent (up to 10 kVA), 4 percent to 6.5 percent (above 10 kVA).
 2. Nameplate Rating: Linear load, 60Hz.
 3. Insulation Class: 220 deg C system.
 4. Temperature Rise: 80deg C.
 5. Core Construction: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 6. Coil Conductors: Continuous aluminum windings, with terminations brazed, welded, or bolted.
 7. Coil Impregnation: Vacuum impregnated with polyester resin.
 8. Sound Level: Not exceeding values listed above for distribution transformers.
 9. Enclosure: Ventilated, NEMA 250, Type 3R.
 10. Terminations: Transformer coils shall terminate in mounting pads. Mounting lugs shall be provided on all units up to and including 270 A ratings.
 11. Antivibration pads or isolators shall be used between the transformer core and coil and the enclosure.
 12. Ground core and coil assembly to enclosure with a flexible copper grounding strap or equivalent.
 13. Mounting:
 a. Ventilated Units up to 750 lb.: Suitable for wall, floor, or ceiling mounting (drip plate required).
 b. Ventilated Units over 750 lb.: Suitable for floor mounting only.
 c. Encapsulated Units up to 285 lb.: Suitable for wall or floor mounting.
 d. Encapsulated Units over 285 lb.: Suitable for floor mounting only.

B. Enclosure: Ventilated, NEMA 250, Type 3R.

 1. Finish Color: NSF/ANSI 49 gray.

1.5 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution and buck-boost transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."

1.6 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.

 1. Resistance measurements of all windings at the rated voltage connections and at all tap connections.
2. Ratio tests at the rated voltage connections and at all tap connections.
3. Phase relation and polarity tests at the rated voltage connections.
4. No load losses, and excitation current and rated voltage at the rated voltage connections.
5. Impedance and load losses at rated current and rated frequency at the rated voltage connections.
6. Applied and induced tensile tests.
7. Regulation and efficiency at rated load and voltage.
8. Insulation Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
9. Temperature tests.

B. Factory Sound-Level Tests: Conduct prototype sound-level tests on production-line products.

PART 2 - EXECUTION

2.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.

D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.

F. Proceed with installation only after unsatisfactory conditions have been corrected.

2.2 INSTALLATION

A. Install wall-mounted transformers level and plumb with wall brackets fabricated by transformer manufacturer.
 1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.

B. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.

C. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" or [Section 033053 "Miscellaneous Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 260529 "Hangers and Supports for Electrical Systems."
1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

D. Secure transformer to concrete base according to manufacturer's written instructions.

E. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.

F. Remove shipping bolts, blocking, and wedges.

2.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

2.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

C. Efficiency & Harmonic Performance Validation: To insure that the products shipped to the job site meet this specification, provide on-site revenue class accurate efficiency and harmonic measurements of transformers once installed and operating at customer's site. Data shall be collected from primary and secondary sides of the transformer simultaneously on a synchronized cycle-by-cycle basis. The use of two discrete meters that are not synchronized is not acceptable. Sampling shall be of 10% of transformers on the project once installed and operating, as selected by customer. Submit a detailed report to the project engineer.

D. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

E. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS for dry-type, air-cooled, low-voltage transformers. Certify compliance with test parameters.

F. Remove and replace units that do not pass tests or inspections and retest as specified above.

G. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

H. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

2.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.

2.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262200
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.
 3. Load centers.

1.3 DEFINITIONS

A. ATS: Acceptance testing specification.
B. GFCI: Ground-fault circuit interrupter.
C. GFEP: Ground-fault equipment protection.
D. HID: High-intensity discharge.
E. MCCB: Molded-case circuit breaker.
F. SPD: Surge protective device.
G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of panelboard.
 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details.
 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
 4. Detail bus configuration, current, and voltage ratings.
 5. Short-circuit current rating of panelboards and overcurrent protective devices.
 6. Include evidence of NRTL listing for series rating of installed devices.
7. Include evidence of NRTL listing for SPD as installed in panelboard.
8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
9. Include wiring diagrams for power, signal, and control wiring.
10. Key interlock scheme drawing and sequence of operations.
11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Keys: Two spares for each type of panelboard cabinet lock.
2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.
3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.10 FIELD CONDITIONS

A. Environmental Limitations:
1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 23 deg F to plus 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Architect no fewer than 7 days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without Architect’s, Construction Manager’s and Owner’s written permission.
 3. Comply with NFPA 70E.

1.11 WARRANTY

A. Manufacturer’s Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

B. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.
 1. SPD Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Square D Co.
 2. Eaton Corporation.
 3. Siemens
 4. GE

2.2 PANELBOARDS COMMON REQUIREMENTS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 “Seismic Controls for Electrical Systems.”

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NEMA PB 1.

E. Comply with NFPA 70.

F. Enclosures: Flush and Surface-mounted, dead-front cabinets.

1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R or 4XSS (as noted on plans).
 d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5 or Type 12 (as noted on plans).

2. Height: 84 inches maximum.

3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.

4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.

5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.

6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

7. Finishes:
 a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: Same finish as panels and trim.

G. Incoming Mains:

1. Location: coordinated on the field by the electrical contractor.
2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

H. Phase, Neutral, and Ground Buses:

 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.

2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.

3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.

5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.

6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.

7. Split Bus: Vertical buses divided into individual vertical sections.
I. Conductor Connectors: Suitable for use with conductor material and sizes.
 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 8. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.

J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

K. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
 1. Percentage of Future Space Capacity: Ten percent.

L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
 1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.3 PERFORMANCE REQUIREMENTS

A. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 1 or Type 2 (as noted on plans).

2.4 POWER PANELBOARDS

A. Panelboards: NEMA PB 1, distribution type.

B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches high, provide two latches, keyed alike.

C. Mains: Circuit breaker or Lugs only (as noted on plans).

E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.
2.5 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

B. Mains: Circuit breaker or Lugs only (as noted on plans).

C. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.

D. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

E. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.6 ELECTRONIC-GRADE PANELBOARDS

A. Panelboards: NEMA PB 1; with factory-installed, integral SPD; labeled by an NRTL for compliance with UL 67 and UL 1449 after installing SPD.

B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

C. Main Overcurrent Protective Devices: Bolt-on thermal-magnetic circuit breakers.

D. Branch Overcurrent Protective Devices: Bolt-on thermal-magnetic circuit breakers.

E. SPD.

1. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 100 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.

2. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:

a. Line to Neutral: 1200 V for 480Y/277 V and 700 V for 208Y/120 V.

b. Line to Ground: 1200 V for 480Y/277 V [700 V for 208Y/120 V.

c. Neutral to Ground: 1200 V for 480Y/277 V [700 V for 208Y/120 V.

d. Line to Line: 2000 V for 480Y/277 V [1200 V for 208Y/120 V.

3. Protection modes and UL 1449 VPR for 240/120-V, single-phase, three-wire circuits shall not exceed the following:

a. Line to Neutral: 700 V.

b. Line to Ground: 700 V.

c. Neutral to Ground: 700 V.

d. Line to Line: 1200 V.

4. SCCR: Equal to the SCCR of the panelboard in which installed

5. Inominal Rating: 20 kA.

F. Buses:

1. Copper phase and neutral buses; 200 percent capacity neutral bus and lugs.

2. Copper equipment and isolated ground buses.
2.7 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.

1. Thermal-Magnetic Circuit Breakers:

a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

3. Electronic Trip Circuit Breakers:

a. RMS sensing.
 b. Field-replaceable rating plug or electronic trip.
 c. Digital display of settings, trip targets, and indicated metering displays.
 d. Multi-button keypad to access programmable functions and monitored data.
 e. Multi-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 f. Integral test jack for connection to portable test set or laptop computer.
 g. Field-Adjustable Settings:

 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long and short time adjustments.
 4) Ground-fault pickup level, time delay, and I squared T response.

4. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).

5. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).

8. MCCB Features and Accessories:

a. Standard frame sizes, trip ratings, and number of poles.
 b. Breaker handle indicates tripped status.
 c. UL listed for reverse connection without restrictive line or load ratings.
 d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 g. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 h. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional with field-adjustable 0.1- to 0.6-second] time delay.
 i. Rating Plugs: Three-pole breakers with ampere ratings greater than 150 amperes shall have interchangeable rating plugs or electronic adjustable trip units.
 j. Auxiliary Contacts: Two, SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.
 k. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.
 l. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 m. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function with other upstream or downstream devices.
 n. Multipole units enclosed in a factory assembled to operate as a single unit.
 o. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
p. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2.8 IDENTIFICATION

A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.9 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to NECA 407 and NEMA PB 1.1.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
B. Comply with NECA 1.

C. Install panelboards and accessories according to NECA 407 and NEMA PB 1.1.

D. Equipment Mounting:
 1. Install panelboards on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete." and or Section 033053 "Miscellaneous Cast-in-Place Concrete."
 2. Attach panelboard to the vertical finished or structural surface behind the panelboard.

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Mount top of trim 90 inches above finished floor unless otherwise indicated.

G. Mount panelboard cabinet plumb and rigid without distortion of box.

H. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

I. Mounting panelboards with space behind is recommended for damp, wet, or dirty locations. The steel slotted supports in the following paragraph provide an even mounting surface and the recommended space behind to prevent moisture or dirt collection.

J. Mount surface-mounted panelboards to steel slotted supports 5/8 inch in depth. Orient steel slotted supports vertically.

K. Install overcurrent protective devices and controllers not already factory installed.

 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

L. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

M. Install filler plates in unused spaces.

N. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

O. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:

1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

D. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers and low-voltage surge arrestors stated in NETA ATS, Paragraph 7.6 Circuit Breakers and Paragraph 7.19.1 Surge Arrestors, Low-Voltage. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:

 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:

 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

E. Panelboards will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 "Overcurrent Protective Device Coordination Study."
C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.

1. Measure loads during period of normal facility operations.
2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416
SECTION 262726
WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Twist-locking receptacles.
 3. Receptacles with integral surge-suppression units.
 4. Isolated-ground receptacles.
 5. USB charger electrical outlet
 6. Tamper-resistant receptacles.
 7. Weather-resistant receptacles.
 8. Snap switches and wall-box dimmers.
 9. Wall-switch and exterior occupancy sensors.
 11. Cord and plug sets.
 12. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. TVSS: Transient voltage surge suppressor.
F. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers’ packing-label warnings and instruction manuals that include labeling conditions.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Service/Power Poles: One for every 10, but no fewer than one.
 2. Floor Service-Outlet Assemblies: One for every 10 but no fewer than one.
 3. Poke-Through, Fire-Rated Closure Plugs: One for every five floor service outlets installed, but no fewer than two.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers’ Names: Shortened versions (shown in parentheses) of the following manufacturers’ names are used in other Part 2 articles:

 1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper).
 2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
 4. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour).

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

 1. Connectors shall comply with UL 2459 and shall be made with stranded building wire.
 2. Devices shall comply with the requirements in this Section.

2.3 STRAIGHT-BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
B. Hospital-Grade, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.

C. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 1. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

D. Tamper-Resistant Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.
 1. Description: Labeled shall comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.4 GFCI RECEPTACLES

A. General Description:
 1. Straight blade, feed-through type.
 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

C. Tamper-Resistant GFCI Convenience Receptacles, 125 V, 20 A:

D. Hospital-Grade, Duplex GFCI Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.
 1. Description: Labeled shall comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.5 TVSS RECEPTACLES

A. General Description: Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 1449, and FS W-C-596, with integral TVSS in line to ground, line to neutral, and neutral to ground.
 1. TVSS Components: Multiple metal-oxide varistors; with a nominal clamp-level rating of 400 V and minimum single transient pulse energy dissipation of 240 J, according to IEEE C62.41.2 and IEEE C62.45.
 2. Active TVSS Indication: Visual and audible, with light visible in face of device to indicate device is "active" or "no longer in service."

B. Duplex TVSS Convenience Receptacles:
 1. Description: Straight blade, 125 V, 20 A; NEMA WD 6 Configuration 5-20R.

C. Isolated-Ground, Duplex Convenience Receptacles:
 1. Description:
 a. Straight blade, 125 V, 20 A; NEMA WD 6 Configuration 5-20R.
b. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.6 USB CHARGER RECEPTACLES

A. General Description: Comply with NEMA WD 1, NEMA WD 6. Comparable with iPad, iPhone, Tablets, Mobile Phone, Smartphones, Digital Cameras.

1. Components: 20A tamper resistant receptacle, two 5 volt DC, 2100 mA USB ports (2.0 and 3.0), 10.5 watts.
2. 2.1-amp USB type A receptacles, back and side wire terminals
3. Legrand TMBUSWCC6

B. Hospital-Grade, Duplex Convenience Receptacles: Comply with UL 498 Supplement sd.

1. Description: Straight blade, 125 V, 20 A; NEMA WD 6 Configuration 5-20R.
2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
3. Comply with NFPA 70.

C. Isolated-Ground, Hospital-Grade, Duplex Convenience Receptacles:

1. Description:
 a. Straight blade, 125 V, 20 A; NEMA WD 6 Configuration 5-20R.
 b. Comply with UL 498 Supplement sd.
 c. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.7 HAZARDOUS (CLASSIFIED) LOCATION RECEPTACLES

A. Wiring Devices for Hazardous (Classified) Locations: Comply with NEMA FB 11 and UL 1010.

2.8 TWIST-LOCKING RECEPTACLES

A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.

B. Isolated-Ground, Single Convenience Receptacles, 125 V, 20 A:

1. Description:
 a. Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
 b. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.9 PENDANT CORD-CONNECTOR DEVICES

A. Description:

1. Matching, locking-type plug and receptacle body connector.
2. NEMA WD 6 Configurations L5-20P and L5-20R, heavy-duty grade, and FS W-C-596.
4. External Cable Grip: Woven wire-mesh type made of high-strength, galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.10 CORD AND PLUG SETS

A. Description:
 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.

2.11 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

B. Switches, 120/277 V, 20 A:
 1. Single Pole
 2. Two Pole
 3. Three Way
 4. Four Way

C. Pilot-Light Switches, 20 A:
 1. Description: Single pole, with neon-lighted handle, illuminated when switch is "off."

D. Key-Operated Switches, 120/277 V, 20 A:
 1. Description: Single pole, Corbin type with factory-supplied key in lieu of switch handle.

E. Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches: 120/277 V, 20 A; for use with mechanically held lighting contactors.

F. Key-Operated, Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches: 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.

2.12 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 1. 600 W; dimmers shall require no derating when ganged with other devices. Illuminated when "off."

D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.
2.13 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.

1. Plate-Securing Screws: Tamper proof metal with head color to match plate finish.
2. Material for Finished Spaces: Type 302 stainless steel, 0.04-inch thick.
3. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.14 FLOOR SERVICE FITTINGS

A. Type: Modular, flap-type, dual-service units suitable for wiring method used.

B. Compartments: Barrier separates power from voice and data communication cabling.

C. Service Plates, Rectangular, solid brass with satin finish. Select accordingly to be fully flush with the finished surface:
 1. Suitable for Wood floor
 2. Suitable for Carpet floor.
 3. Suitable for Tile floor.

D. Power Receptacle: NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.

E. Voice and Data Communication Outlet: Blank cover with bushed cable opening.

2.15 POKE-THROUGH ASSEMBLIES

A. Description:

1. Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service-outlet assembly.
2. Comply with UL 514 scrub water exclusion requirements.
3. Service-Outlet Assembly: Flush type with four simplex receptacles and space for four RJ-45 jacks complying with requirements in Section 271500 "Communications Horizontal Cabling."
4. Size: Selected to fit nominal 4-inch cored holes in floor and matched to floor thickness.
5. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
6. Closure Plug: Arranged to close unused 4-inch cored openings and reestablish fire rating of floor.
7. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of four, four-pair cables that comply with requirements in Section 271500 "Communications Horizontal Cabling."

2.16 PREFABRICATED MULTIOUTLET ASSEMBLIES

A. Description:

1. Two-piece surface metal raceway, with factory-wired multioutlet harness.
2. Components shall be products from single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.

B. Raceway Material: Metal, with manufacturer's standard finish.

C. Multioutlet Harness:
1. Receptacles: 15-A, 125-V, NEMA WD 6 Configuration 5-15R receptacles complying with NEMA WD 1, UL 498, and FS W-C-596.
2. Receptacle Spacing: 12 inches or as noted on plans.
3. Wiring: No. 12 AWG solid, Type THHN copper, single circuit or two circuit (as noted on plans), connecting alternating receptacles.

2.17 SERVICE POLES
A. Description:
1. Factory-assembled and -wired units to extend power and voice and data communication from distribution wiring concealed in ceiling to devices or outlets in pole near floor.
2. Poles: Nominal 2.5-inch-square cross section, with height adequate to extend from floor to at least 6 inches above ceiling, and with separate channels for power wiring and voice and data communication cabling.
3. Mounting: Ceiling trim flange with concealed bracing arranged for positive connection to ceiling supports; with pole foot and carpet pad attachment.
5. Wiring: Sized for minimum of five No. 12 AWG power and ground conductors and a minimum of four, four-pair, Category 3 or Category 5 voice and data communication cables.
6. Power Receptacles: Two duplex, 20-A, straight-blade receptacles complying with requirements in this Section.
7. Voice and Data Communication Outlets: Blank insert with bushed cable opening (Four RJ-45 jacks)

2.18 FINISHES
A. Device Color:
1. Wiring Devices Connected to Normal Power System: Ivory or as selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
3. TVSS Devices: Blue.
4. Isolated-Ground Receptacles: Orange.
B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION
3.1 INSTALLATION
A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.

3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtailed.

4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailed existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:
 1. Replace devices that have been in temporary use during construction and that were installed before finishing operations were complete.
 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 4. Connect devices to branch circuits using pigtailed that are not less than 6 inches in length.
 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtailed for device connections.
 8. Tighten unused terminal screws on the device.
 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.
 2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
 1. Install dimmers within terms of their listing.
 2. Verify that dimmers used for fan speed control are listed for that application.
 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."
B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
2. Test Instruments: Use instruments that comply with UL 1436.
3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

B. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Test straight-blade convenience outlets in patient-care area and hospital-grade convenience outlets for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz.

D. Wiring device will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION 262726
SECTION 262816
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Fusible switches.
2. Nonfusible switches.
3. Molded-case circuit breakers (MCCBs).
5. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers’ technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

1. Enclosure types and details for types other than NEMA 250, Type 1.
2. Current and voltage ratings.
3. Short-circuit current ratings (interrupting and withstand, as appropriate).
4. Include evidence of NRTL listing for series rating of installed devices.
5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.

1. Wiring Diagrams: For power, signal, and control wiring.
1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Manufacturer's field service report.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 2. Fuse Pullers: Two for each size and type.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member Company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.9 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Architect and or Construction Manager no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Architect's or Construction Manager's written permission.
 4. Comply with NFPA 70E.

1.10 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Square D Co.
 2. Eaton Corporation.
 3. Siemens
 4. GE

2.2 FUSIBLE SWITCHES

A. Type HD, Heavy Duty, Single Throw, 240 or 600-V ac (as per connected voltage), 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
B. Type HD, Heavy Duty, Double Throw, 240 or 600-V ac (as per connected voltage) 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
6. Hookstick Handle: Allows use of a hookstick to operate the handle.
7. Lugs: Mechanical type, suitable for number, size, and conductor material.
8. Service-Rated Switches: Labeled for use as service equipment.

2.3 NONFUSIBLE SWITCHES

A. Type HD, Heavy Duty, Single Throw, 240 or 600-V ac (as per connected voltage), 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

B. Type HD, Heavy Duty, Double Throw, 240 or 600-V ac (as per connected voltage), 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
5. Hookstick Handle: Allows use of a hookstick to operate the handle.
6. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.4 SHUNT TRIP SWITCHES

A. General Requirements: Comply with ASME A17.1, UL 50, and UL 98, with 200-kA interrupting and short-circuit current rating when fitted with Class J fuses.

B. Switches: Three-pole, horsepower rated, with integral shunt trip mechanism and Class J fuse block; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

C. Control Circuit: 120-V ac; obtained from integral control power transformer, with primary and secondary fuses, with a control power transformer/source of enough capacity to operate shunt trip, connected pilot, and indicating and control devices.

D. Accessories:
1. Oiltight key switch for key-to-test function.
2. Isolated neutral lug; 100 percent rating.
3. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.
4. Form C alarm contacts that change state when switch is tripped.
5. Three-pole, double-throw, fire-safety and alarm relay; 120-V ac coil voltage.
6. Three-pole, double-throw, fire-alarm voltage monitoring relay complying with NFPA 72.

2.5 MOLDED-CASE CIRCUIT BREAKERS

A. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

C. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

D. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and i^2t response.

E. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

F. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

G. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

H. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 5. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 6. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 7. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts; "b" contacts operate in reverse of circuit-breaker contacts.
 8. Alarm Switch: One NC contact that operates only when circuit breaker has tripped.
 9. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 10. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
 11. Electrical Operator: Provide remote control for on, off, and reset operations.
2.6 MOLDED-CASE SWITCHES

A. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

B. Features and Accessories:

1. Standard frame sizes and number of poles.
2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Auxiliary Contacts: Two SPDT switches with “a” and “b” contacts; “a” contacts mimic switch contacts, “b” contacts operate in reverse of switch contacts.
7. Alarm Switch: One NC contact that operates only when switch has tripped.
8. Key Interlock Kit: Externally mounted to prohibit switch operation; key shall be removable only when switch is in off position.
9. Zone-Selective Interlocking: Integral with ground-fault shunt trip unit; for interlocking ground-fault protection function.
10. Electrical Operator: Provide remote control for on, off, and reset operations.

2.7 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 3R OR 4XSS (as noted on drawings).
4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
6. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7 or Type 9 (as noted on drawings).

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
B. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

D. Install fuses in fusible devices.

E. Comply with NECA 1.

3.3 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Acceptance Testing Preparation:

1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

C. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 "Overcurrent Protective Device Coordination Study."

END OF SECTION 262816
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Interior incandescent, HID, LED’s and fluorescent luminaires, lamps, and ballasts.
 2. Luminaire supports.

B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

A. BIM: Building information model.
B. CAD: Computer-aided design.
C. CCT: Correlated color temperature.
D. CRI: Color Rendering Index.
E. LED: Light-emitting diode.
F. Fixture: See "Luminaire."
G. IP: International Protection or Ingress Protection Rating
H. Lumen: Measured output of lamp and luminaire, or both.
I. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Ballast, including BF.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 6. Include photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing and Calculation Guides, of each luminaire type. The adjustment
factors shall be for lamps, ballasts, and accessories identical to those indicated for the luminaire as applied in this Project. For LED light fixtures the adjustment factors shall be for lamps and accessories identical to those indicated for the lighting fixture as applied in this Project IES LM-79 and IES LM-80

a. Retain or "Manufacturers' Certified Data" or "Testing Agency Certified Data" Subparagraph below. Retain first subparagraph if photometric data, based on testing by accredited manufacturers' laboratories, is considered adequate for luminaires in this Project. Retain second subparagraph if photometric data for one or more luminaires are based on independent laboratory tests; coordinate with the Interior Lighting Fixture Schedule on Drawings to indicate which units shall meet this requirement. See the Evaluations. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program (NVLAP) for Energy Efficient Lighting Products.
b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

8. Sound Performance Data: For air-handling luminaires. Indicate sound power level and sound transmission class in test reports certified according to standards specified in Section 233713 "Diffusers, Registers, and Grilles."

B. Shop Drawings: For nonstandard or custom luminaires.

1. Include plans, elevations, sections, and mounting and attachment details.
2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, and required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.

C. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

D. Qualification Data: For testing laboratory providing photometric data for luminaires.

E. Product Certificates: For each type of ballast for bi-level and dimmer-controlled luminaires, from manufacturer.

F. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

G. Sample warranty.

1.5 PRIOR APPROVAL SUBMITTAL REQUESTS

A. Full submittal data , by type, clearly highlighted and arrowed to identify the specific proposed manufacturer's nomenclature

B. Full submittal data of lamp and proposed manufacturer.

C. Full submittal data of ballast/driver (LED) data of proposed manufacturer

D. LED lumen data will include
 1. Lumen output
 2. L70 and L90 testing
 3. Confirmation of independent test lab data ITL
 4. Color temperature and CRI with quantity of McAdam Ellipse steps
 a. Data shall include sphere and goniometer results for total lumen, total power, luminaire efficacy, CRI and junction temperature for the specified color temperature
5. Make and brand of LED diode should be clearly identified on submittal data

E. LED dimming shall be equal in range and quality to the specified drivers. Quality of dimming to be defined by dimming range, freedom from perceived flicker or visible stroboscopic flicker, smooth and continuous change in level (no visible steps in transitions), natural square law response to control input, and stable when input voltage conditions fluctuate over what is typically experience in a commercial environment.

F. All substitutions must meet specified fixtures certifications (UL, ETL, CE, CSA, RoHS, DLC, Energy Star)

G. Provide lighting calculations with the prior approval request based on reflectance values and light loss factors provided by the engineer and displayed on lighting calculation drawings. Calculations shall be shown on one sheet with dimensions as shown on construction set. Data will be submitted electronically in dxf format on a flash drive and with printed calculations on Architectural E size sheets to scale with construction set sheets.

1. Discrepancies between prior approval data calculations and the original design calculations will result in immediate disqualification of review due to time based constraints on the bid process

H. Prior approval request may require a sample of both the proposed and specified fixtures provided by the alternate manufacturer at NO additional cost to the project. Samples of both specified and proposed must be provided within 10 working days of request.

I. All data will be submitted electronically and in a bound format

J. Bound data will be secured in hard binder with 3" rings for ease of review or PDF file.

1. Types will be marked with a tab by type and indexed for ease of reference

K. LED warranty information MUST be included by type and marked in RED to clearly identify the manufacturer’s warranty terms. Warranty data MUST meet or exceed the specified manufacturers terms

L. Prior approvals MUST be received and acknowledged to the specifiers office no less than 10 days prior to bid.

M. ALL prior approval data must be submitted in one package with complete information. Information that is incomplete will be rejected without review.

N. The prior approval will be returned marked approved or rejected by type with no explanation. If any specification is deemed not equal the review will be stopped, the type rejected with no explanation.

O. Lumen output for the proposed fixture must be highlighted in yellow for clear identification.

P. All inverter systems supply power to LED fixtures must have pure PWM sine wave function and work with any type of lighting load.

Q. LED warranty information must be included by type and marked in red to clearly identify the manufacturer’s warranty terms. Warranty data must meet or exceed the specified manufacturers terms.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in maintenance manuals.

1. Provide a list of all lamp types used on Project; use ANSI and manufacturers’ codes.
1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
3. Fluorescent-luminaire-mounted emergency battery pack: One for every 40 emergency lighting unit.
4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

A. LED luminaires
 1. Provide from a single manufacturer for each luminaire type.
 2. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace (materials and labor) components of luminaires that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Two year(s) from date of Substantial Completion.
2. LED luminaires –warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.

C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
D. UL Compliance: Comply with UL 1598.

E. Lamp base complying with ANSI C81.61 or IEC 60061-1.

F. Recessed Luminaires: Comply with NEMA LE 4.

G. EMI Filters: Factory installed to suppress conducted EMI according to MIL-STD-461E. Fabricate luminaires with one filter on each ballast indicated to require a filter.

H. Air-Handling Fluorescent Luminaires: For use with plenum ceiling for air return and heat extraction and for attaching an air-diffuser-boot assembly specified in Section 233713 "Diffusers, Registers, and Grilles."
 1. Air-Supply Units: Slots in one or both side trims join with air-diffuser-boot assemblies.
 2. Heat-Removal Units: Air path leads through lamp cavity.
 3. Combination Heat-Removal and Air-Supply Unit: Heat is removed through lamp cavity at both ends of the luminaire door with air supply same as for air-supply units.
 4. Dampers: Operable from outside luminaire for control of return-air volume.
 5. Static Luminaire: Air-supply slots are blanked off, and luminaire appearance matches active units.

2.2 BALLASTS FOR LINEAR FLUORESCENT LAMPS

A. General Requirements for Electronic Ballasts:
 1. Comply with UL 935 and with ANSI C82.11.
 2. Designed for type and quantity of lamps served.
 3. Ballasts shall be designed for full light output unless another BF, dimmer, or bi-level control is indicated.
 4. Sound Rating: Class A.
 5. THD Rating: Less than 10 percent.
 6. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 7. Operating Frequency: 42 kHz or higher.
 8. Lamp Current Crest Factor: 1.7 or less.
 9. BF: 0.88 or higher.
 10. Power Factor: 0.98 or higher.
 11. Parallel Lamp Circuits: Multiple lamp ballasts shall comply with ANSI C82.11 and shall be connected to maintain full light output on surviving lamps if one or more lamps fail.

B. Luminaires controlled by occupancy sensors shall have programmed-start ballasts.

C. Electronic Programmed-Start Ballasts for T5, T8, T5HO, T5 and T5HO Lamps: Comply with ANSI C82.11 and the following:
 1. Lamp end-of-life detection and shutdown circuit for T5 diameter lamps.
 2. Automatic lamp starting after lamp replacement.

D. Single Ballasts for Multiple Luminaires: Factory wired with ballast arrangements and bundled extension wiring to suit final installation conditions without modification or rewiring in the field.

E. Ballasts for Dimmer-Controlled Luminaires: Electronic type.
 1. Dimming Range: 100 to 5 percent of rated lamp lumens.
 2. Ballast Input Watts: Can be reduced to 20 percent of normal.
 3. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.
 4. Control: Coordinate wiring from ballast to control device to ensure that ballast, controller, and connecting wiring are compatible.
2.3 BALLASTS FOR COMPACT FLUORESCENT LAMPS

A. Description: Electronic-programmed rapid-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated:

1. Lamp end-of-life detection and shutdown circuit.
2. Automatic lamp starting after lamp replacement.
3. Sound Rating: Class A.
4. THD Rating: Less than 20 percent.
5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
6. Operating Frequency: 20 kHz or higher.
7. Lamp Current Crest Factor: 1.7 or less.
8. BF: 0.95 or higher unless otherwise indicated.
9. Power Factor: 0.95 or higher.
10. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on EMI and RFI for non-consumer equipment.

2.4 BALLASTS FOR HID LAMPS

A. Electromagnetic Ballast for Metal Halide Lamps: Comply with ANSI C82.4 and UL 1029. Include the following features unless otherwise indicated:

1. Ballast Circuit: Constant-wattage autotransformer or regulating high-power-factor type.
3. Rated Ambient Operating Temperature: 104 deg F.
4. Open-circuit operation that will not reduce average life.
5. Low-Noise Ballasts: Manufacturers’ standard epoxy-encapsulated models designed to minimize audible luminaire noise.

B. Electronic Ballast for Metal Halide Lamps: Include the following features unless otherwise indicated:

1. Minimum Starting Temperature: Minus 20 deg F for single-lamp ballasts.
2. Rated Ambient Operating Temperature: 130 deg F.
3. Lamp end-of-life detection and shutdown circuit.
4. Sound Rating: Class A.
5. Total Harmonic Distortion Rating: Less than 20 percent.
6. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
7. Lamp Current Crest Factor: 1.5 or less.
8. Power Factor: 0.90 or higher.
9. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.
11. Instant-Restrike Device: Integral with ballast or solid-state potted module, factory installed within fixture and compatible with lamps, ballasts, and mogul sockets up to 150 W.
12. Minimum Starting Temperature: Minus 40 deg F.

2.5 QUARTZ LAMP LIGHTING CONTROLLER

A. General Requirements for Controllers: Factory installed by luminaire manufacturer. Comply with UL 1598.

B. Standby (Quartz Restrike): Automatically switches quartz lamp on when an HID lamp in the fixture is initially energized and during the HID lamp restrike period after brief power outages.

C. Connections: Designed for a single branch-circuit connection.

D. Switching Off: Automatically switches quartz lamp off when HID lamp strikes.
E. Switching Off: Automatically switches quartz lamp off when HID lamp reaches approximately 60 percent light output.

2.6 EMERGENCY FLUORESCENT POWER UNIT

A. Internal Type: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body and compatible with ballast. Comply with UL 924.
 1. Emergency Connection: Operate two fluorescent lamp(s) continuously at an output of 1100 lumens each. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast.
 2. Nightlight Connection: Operate one fluorescent lamp continuously.
 3. Test Push Button and Indicator Light: Visible and accessible without opening luminaire or entering ceiling space.
 a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 5. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
 6. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 7. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

B. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more fluorescent lamps, remote mounted from luminaire. Comply with UL 924.
 1. Emergency Connection: Operate one fluorescent lamp continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast.
 2. Nightlight Connection: Operate one fluorescent lamp in a remote luminaire continuously.
 5. Housing: NEMA 250, Type 1 enclosure.
 6. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 7. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 8. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.7 FLUORESCENT LAMPS

A. T8 rapid-start lamps, rated 32-W maximum, nominal length of 48 inches, 3100 initial lumens (minimum), CRI of 85 (minimum), color temperature of 4100 K, and average rated life of 24,000 hours unless otherwise indicated.
B. T8 rapid-start lamps, rated 17-W maximum, nominal length of 24 inches, 1400 initial lumens (minimum), CRI of 85 (minimum), color temperature of 4100 K, and average rated life of 24,000 hours unless otherwise indicated.

C. T5 rapid-start lamps, rated 28-W maximum, nominal length of 45.8 inches, 3050 initial lumens (minimum), CRI of 85 (minimum), color temperature of 4100 K, and average rated life of 30,000 hours unless otherwise indicated.

D. T5HO rapid-start, high-output lamps, rated 54-W maximum, nominal length of 45.8 inches, 5000 initial lumens (minimum), CRI of 85 (minimum), color temperature of 4100 K, and average rated life of 45,000 hours unless otherwise indicated.

E. Compact Fluorescent Lamps: Four-pin, CRI of 80 (minimum), color temperature of 4100 K, average rated life of 10,000 hours at three hours of operation per start, and suitable for use with dimming ballasts unless otherwise indicated.
 1. 13 W: T4, double or triple tube, rated 900 initial lumens (minimum).
 2. 18 W: T4, double or triple tube, rated 1200 initial lumens (minimum).
 3. 26 W: T4, double or triple tube, rated 1800 initial lumens (minimum).
 4. 32 W: T4, triple tube, rated 2400 initial lumens (minimum).
 5. 42 W: T4, triple tube, rated 3200 initial lumens (minimum).
 6. 57 W: T4, triple tube, rated 4300 initial lumens (minimum).
 7. 70 W: T4, triple tube, rated 5200 initial lumens (minimum).

F. INCANDESCENT LAMPS:
 1. Bulb shape complying with ANSI C79.1.
 2. Edison socket.
 3. CRI of 100. CCT of 3000 K.
 4. Dimmable from 100 percent to zero percent of maximum light output.
 5. Operating at nominal voltage of 120 V.

2.8 LED LIGHTING FIXTURES AND LED LAMPS

A. All LED products must be UL, ETL and/or CSA listed

B. All LED products must have LM-79 and LM-80 testing noted on specification sheet by an independent test lab

C. All LED products should be identified as L70 and/or L90 ratings based on independent test lab data

D. All outdoor and wet location listed products must clearly state the IP rating carried on the fixture based on independent test lab data

E. Bulb shape complying with ANSI C79.1.

F. CRI of Minimum 80. CCT of 4100 K.

G. Rated lamp life of 50,000 hours.

H. Lamps dimmable from 100 percent to 0 percent of maximum light output.

I. Nominal Operating Voltage: as noted on light fixture schedule.

J. All LED products must be serviceable for accessible for field repair needs

K. All indoor lighting color rendering should be within a 3 step McAdams ellipse. All indoor lighting should be 4000-4100 kelvin unless specifically noted
L. All control systems that interface with an LED product will be supported by a project “integrator” until project completion. This includes contact with the installer prior to installation, availability during installation, and final checkout and startup after installation. The quantity of days required for startup will be based on the manufacturer/agents discretion and need.

1. The project integrator must be capable of performing low voltage and dmx terminations. High voltage terminations are performed solely by the electrical subcontractor.

2. Reporting of final startup completion of the controls system back to the engineer is mandatory.

3. Invitation to attend the training with the owners representative should be made to the engineer no less than 5 days prior to training

4. Signature confirmation of training and startup is required within 5 business days after completion back to the engineer’s office.

M. All LED drivers should be capable of 0-10 volt controls and DMX control and shall dim to 1% of total lumen output. Where specifically specified the dimming driver may be required to dim to .1% of lumen output, otherwise known as “dim to dark”

N. Driver manufacturers must have a 5 year history producing dimmable electronic LED drivers for the North American market.

O. Ambient driver temperatures must be within -20 degrees to 50 degrees C (-4 degrees to 122 degrees F)

P. Driver (internal) must limit inrush current.

1. Base specification: meet or exceed NEMA 410 driver inrush standard of 430 amp per 10 amps load with a maximum of 370 amps/2 seconds

2. Preferred specification: Meet or exceed 30ma’s at 277 VAC for up to 50 watts of load and 75A at 240us att 277 VAC for 100 watts of load

3. Withstand up to a 1,000 volt surge without impairment of performance as defined by ANSI C62.41 Category A

4. No visible change in light output with a variation of plus/minus 10 percent line voltage input.

5. Total harmonic distortion less than 20%, and meet ANSI C82.11 maximum allowable THD requirements at full output. THD shall at no point in the dimming curve allow imbalance current to exceed full output THD

2.9 HID LAMPS

A. High-Pressure Sodium Lamps: ANSI C78.42, CRI of 21 (minimum), color temperature 1900 K, and average rated life of 24,000 hours, minimum.

1. Dual-Arc Tube Lamps: Arranged so only one of two arc tubes is lighted at one time and, when power is restored after an outage, the cooler arc tube, with lower internal pressure, lights instantly, providing an immediate 8 to 15 percent of normal light output.

B. Metal Halide Lamps: ANSI C78.43, with minimum CRI of 65 and color temperature 4000 K.

C. Pulse-Start, Metal Halide Lamps: Minimum CRI of 65 and color temperature 4000 K.

D. Ceramic, Pulse-Start, Metal Halide Lamps: Minimum CRI of 80 and color temperature 4000 K.

2.10 CYLINDER

A. With integral mounting provisions.
2.11 DOWNLIGHT
 A. Universal mounting bracket.
 B. Integral junction box with conduit fittings.

2.12 LINEAR INDUSTRIAL
 A. Luminaire and housing certified to the following standard[s].
 1. Class 1, Division 2, Group(s) [A] [B] [C] [and] [D].
 2. NEMA 4X.
 3. IP 66.
 4. Wet locations.
 5. CSA C22.2 No 137.

2.13 PARKING GARAGE
 A. Low-profile housing and heat sink.
 B. Fully gasketed and sealed.
 C. Stainless-steel latches.
 D. Integral pressure equalizer.

2.14 RECESSED LINEAR
 A. Integral junction box with conduit fittings.

2.15 STRIP LIGHT
 A. Integral junction box with conduit fittings.

2.16 SURFACE MOUNT, LINEAR
 A. Universal mounting bracket.
 B. Integral junction box with conduit fittings.

2.17 SURFACE MOUNT, NONLINEAR
 A. Universal mounting bracket.
 B. Integral junction box with conduit fittings.

2.18 SUSPENDED, LINEAR
 A. Ceiling mounted with two 5/32-inch diameter aircraft cable supports adjustable to 120 inches in length.
2.19 SUSPENDED, NONLINEAR

A. Universal mounting bracket.

B. Integral junction box with conduit fittings.

2.20 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Tempered Fresnel glass, prismatic glass or prismatic acrylic, refer to light fixture schedule.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 4. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Housings:
 1. Extruded-aluminum housing and heat sink or as noted on light fixture schedule.
 2. Powder-coat finish.

E. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.

2.21 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.22 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish shall match luminaire.

D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation.

C. Examine walls, floors, roofs, and ceilings for suitable conditions where luminaires will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

A. Comply with NECA 1.

B. Remote Mounting of Ballasts: Distance between the ballast and luminaire shall not exceed that recommended by ballast manufacturer. Verify, with ballast manufacturers, maximum distance between ballast and luminaire.

C. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

D. Install lamps in each luminaire.

E. Coordinate layout and installation of luminaires and suspension system with other construction that penetrates ceilings or is supported by them.

F. Supports:

1. Sized and rated for luminaire weight.
2. Able to maintain luminaire position after cleaning and relamping.
3. Provide support for luminaire without causing deflection of ceiling or wall.
4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.

G. Ceiling-Grid-Mounted Luminaire Supports: Use grid as a support element.

1. Install ceiling support system rods or wires, independent of the ceiling suspension devices, for each luminaire. Locate not more than 6 inches from luminaire corners.
2. Support Clips: Fasten to luminaires and to ceiling grid members at or near each luminaire corner with clips that are UL listed for the application.
3. Luminaires of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support luminaires independently with at least two 3/4-inch metal channels spanning and secured to ceiling tees.

4. Install at least one independent support rod or wire from structure to a tab on luminaire. Wire or rod shall have breaking strength of the luminaire weight at a safety factor of 3.

H. Flush-Mounted Luminaire Support:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.

I. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls, or a minimum 20 gauge backing plate attached to wall structural members, or using through bolts and backing plates on either side of wall.
 2. Do not attach luminaires directly to gypsum board.

J. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and [tubing or rod for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

K. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and Section 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

B. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

C. Luminaire will be considered defective if it does not pass operation tests and inspections.

D. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Burn-in all HID lamps that require specific aging period to operate properly, prior to occupancy by Owner.
3.7 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265116
SECTION 265219
EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Emergency lighting units.
 2. Exit signs.
 3. Luminaire supports.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Emergency Lighting Unit: A lighting unit with internal or external emergency battery powered supply and the means for controlling and charging the battery and unit operation.
D. Fixture: See "Luminaire" Paragraph.
E. Lumen: Measured output of lamp and luminaire, or both.
F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support.
 1. Include data on features, accessories, and finishes.
 2. Include physical description of the unit and dimensions.
 3. Battery and charger for light units.
 4. Include life, output of luminaire (lumens, CCT, and CRI), and energy-efficiency data.
 5. Include photometric data and adjustment factors based on laboratory tests, complying with IES LM-45, for each luminaire type.
 a. Testing Agency Certified Data: For indicated luminaires and signs, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires and signs shall be certified by manufacturer.
 b. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Shop Drawings: For nonstandard or custom luminaires.
1. Include plans, elevations, sections, and mounting and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, and required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.

C. Product Schedule:
 1. For emergency lighting units. Use same designations indicated on Drawings.
 2. For exit signs. Use same designations indicated on Drawings.

D. Qualification Data: For testing laboratory providing photometric data for luminaires.

E. Product Certificates: For each type of luminaire.

F. Product Test Reports: For each luminaire for tests performed by manufacturer and witnessed by a qualified testing agency.

G. Sample Warranty: For manufacturer's special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in emergency, operation, and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
 2. Luminaire-mounted, emergency battery pack: One for every 20 emergency lighting units. Furnish at least one of each type.
 3. Diffusers and Lenses: two for every 100 of each type and rating installed. Furnish at least one of each type.
 4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.7 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.9 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace (materials and labor) components of luminaires that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Two year(s) from date of Substantial Completion.

B. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Emergency Power Unit Batteries: 5 years from date of Substantial Completion. Full warranty shall apply for first year and prorated warranty for the remaining four years.

2. Warranty Period for Emergency Fluorescent Ballast and Self-Powered Exit Sign Batteries: Seven years from date of Substantial Completion. Full warranty shall apply for first year and prorated warranty for the remaining six years.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.

C. Comply with NFPA 70 and NFPA 101.

D. Comply with NEMA LE 4 for recessed luminaires.

E. Comply with UL 1598 for fluorescent luminaires.

F. Lamp Base: Comply with ANSI C81.61 or IEC 60061-1.

G. Bulb Shape: Complying with ANSI C79.1.

H. Internal Type Emergency Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body and compatible with ballast.

1. Emergency Connection: Operate two lamp(s) continuously at an output of 1100 lumens each upon loss of normal power. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast.

2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.

3. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
a. Ambient Temperature: Less than 0 deg F or exceeding 104 deg F, with an average value exceeding 95 deg F over a 24-hour period.
b. Ambient Storage Temperature: Not less than minus 4 deg F and not exceeding 140 deg F.
c. Humidity: More than 95 percent (condensing).
d. Altitude: Exceeding 3300 feet.

4. Nightlight Connection: Operate lamp continuously at 40 percent of rated light output.
5. Test Push-Button and Indicator Light: Visible and accessible without opening luminaire or entering ceiling space.

a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.

7. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
8. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

I. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more lamps, remote mounted from luminaire.

1. Emergency Connection: Operate fluorescent or LED lamp continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast.
2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
5. Charger: Fully automatic, solid-state, constant-current type.
6. Housing: NEMA 250, Type 1 enclosure listed for installation inside, on top of, or remote from luminaire. Remote assembly shall be located no less than half the distance recommended by the ballast/emergency power unit manufacturer, whichever is less.
7. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
8. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.2 EMERGENCY LIGHTING

A. General Requirements for Emergency Lighting Units: Self-contained units.

B. Emergency Luminaires:

1. Emergency Luminaires: as indicated on Drawings, with the following additional features:
 a. Rated for installation in damp locations, and for sealed and gasketed luminaires in wet locations.

C. Emergency Lighting Unit:

1. Emergency Lighting Unit: as indicated on Drawings.
2. Wall with universal junction box adaptor.
3. UV stable thermoplastic housing, rated for damp locations.
D. Remote Emergency Lighting Units:
 1. Emergency Lighting Unit: as indicated on Drawings.
 2. Wall with universal junction box adaptor.
 3. UV stable thermoplastic housing, rated for damp locations.
 4. External emergency power unit.

2.3 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:
 1. Lamps for AC Operation: Fluorescent, two for each luminaire; 20,000 hours of rated lamp life.
 2. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
 3. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.

C. Self-Luminous Signs:
 1. Powered by tritium gas, with universal bracket for flush-ceiling, wall, or end mounting. Signs shall be guaranteed by manufacturer to maintain the minimum brightness requirements in UL 924 for 20 years.
 2. Use strontium oxide aluminate compound to store ambient light and release the stored energy when the light is removed. Include universal bracket for flush-ceiling, wall, or end mounting.

2.4 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access:
 1. Smooth operating, free of light leakage under operating conditions.
 2. Designed to permit relamping without use of tools.
 3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Glass: Annealed crystal glass unless otherwise indicated.
 2. Acrylic: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Housings:
 1. Powder coat finish.

2.5 METAL FINISHES

A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
2.6 LUMINAIRE SUPPORT COMPONENTS
 A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for conditions affecting performance of luminaires.
 B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
 C. Examine walls, floors, roofs, and ceilings for suitable conditions where emergency lighting luminaires will be installed.
 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Comply with NECA 1.
 B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
 C. Install lamps in each luminaire.
 D. Supports:
 1. Sized and rated for luminaire and emergency power unit weight.
 2. Able to maintain luminaire position when testing emergency power unit.
 3. Provide support for luminaire and emergency power unit without causing deflection of ceiling or wall.
 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire and emergency power unit weight and vertical force of 400 percent of luminaire weight.
 E. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls, or a minimum 20 gauge backing plate attached to wall structural members, or using through bolts and backing plates on either side of wall.
 2. Do not attach luminaires directly to gypsum board.
 F. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
G. Ceiling Grid Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.
 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

3.3 IDENTIFICATION
 A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL
 A. Perform the following tests and inspections:
 1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
 B. Luminaire will be considered defective if it does not pass operation tests and inspections.
 C. Prepare test and inspection reports.

3.5 STARTUP SERVICE
 A. Perform startup service:
 1. Charge emergency power units and batteries minimum of 24 hours and conduct one-hour discharge test.

3.6 ADJUSTING
 A. Adjustments: Within 12 months of date of Substantial Completion, provide on-site visit to do the following:
 1. Inspect all luminaires. Replace lamps, emergency power units, batteries, signs, or luminaires that are defective.
 a. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 2. Conduct short-duration tests on all emergency lighting.

END OF SECTION 265219
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Exterior HID and compact fluorescent luminaires, lamps, and ballasts.
2. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
3. Luminaire-mounted photoelectric relays.

B. Related Requirements:

1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
2. Section 265613 "Lighting Poles and Standards" for poles and standards used to support exterior lighting equipment.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color rendering index.
C. Fixture: See "Luminaire."
D. HID: High-intensity discharge.
E. Lumen: Measured output of lamp and luminaire, or both.
F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.
G. Pole: Luminaire support structure, including tower used for large-area illumination.
H. Standard: See "Pole."

1.4 ACTION SUBMITTALS

A. Product Data: For each type of luminaire.

1. Arrange in order of luminaire designation.
2. Include data on features, accessories, and finishes.
3. Include physical description and dimensions of the luminaires.
5. Lamps, including life, output (lumens, CCT, and CRI), and energy-efficiency data.
6. Photometric data and adjustment factors based on laboratory tests, complying with IES "Lighting Measurements Testing and Calculation Guides," of each luminaire type. The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the luminaire as applied in this Project.
 For LED luminaires the adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project IES LM-79 and IES LM-80.
 a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the NVLAP for Energy Efficient Lighting Products.
 b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
7. Photoelectric relays.
8. Means of attaching luminaires to supports, and indication that attachment is suitable for components involved.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, and required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Include diagrams for power, signal, and control wiring.

D. Samples: For products designated for sample submission in the Exterior Lighting Fixture Schedule.

E. Samples for Initial Selection: For each type of luminaire with custom, factory-applied finish.
 1. Include Samples of luminaires and accessories involving color and finish selection.

F. Samples for Verification: For each type of luminaire.
 1. Include Samples of luminaires and accessories to verify finish selection.
 2. Lamps and ballasts, installed.
 3. Cords and plugs.
 4. Support system.

G. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Luminaires.
 2. Structural members to which equipment and luminaires will be attached.
 3. Underground utilities and structures.
 4. Existing underground utilities and structures.
 5. Above-grade utilities and structures.
 6. Existing above grade utilities and structures.
 7. Building features.
 8. Vertical and horizontal information.

B. Qualification Data: For testing laboratory providing photometric data for luminaires.
C. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Product Certificates: For each type of the following:
 1. Ballast for bi-level and dimmable luminaires.
 2. Lamp.
 3. Photoelectric relay.

E. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

F. Sample warranty.

1.6 PRIOR APPROVAL SUBMITTAL REQUESTS

A. Full submittal data, by type, clearly highlighted and arrowed to identify the specific proposed manufacturer’s nomenclature

B. Full submittal data of lamp and proposed manufacturer.

C. Full submittal data of ballast/driver (LED) data of proposed manufacturer

D. LED lumen data will include
 1. Lumen output
 2. L70 and L90 testing
 3. Confirmation of independent test lab data ITL
 4. Color temperature and CRI with quantity of McAdam Ellipse steps
 a. Data shall include sphere and goniometer results for total lumen, total power, luminaire efficacy, CRI and junction temperature for the specified color temperature
 5. Make and brand of LED diode should be clearly identified on submittal data

E. LED dimming shall be equal in range and quality to the specified drivers. Quality of dimming to be defined by dimming range, freedom from perceived flicker or visible stroboscopic flicker, smooth and continuous change in level (no visible steps in transitions), natural square law response to control input, and stable when input voltage conditions fluctuate over what is typically experience in a commercial environment.

F. All substitutions must meet specified fixtures certifications (UL,ETL, CE, CSA, RoHS, DLC, Energy Star)

G. Provide lighting calculations with the prior approval request based on reflectance values and light loss factors provided by the engineer and displayed on lighting calculation drawings. (may be unique by area) Calculations shall be shown on one sheet with dimensions as shown on construction set. Data will be submitted electronically in dxf format on a flash drive and with printed calculations on Architectural E size sheets to scale with construction set sheets.

1. Discrepancies between prior approval data calculations and the original design calculations will result in immediate disqualification of review due to time based constraints on the bid process

H. Prior approval request may require a sample of both the proposed and specified fixtures provided by the alternate manufacturer at NO additional cost to the project. Samples of both specified and proposed must be provided within 10 working days of request.

I. All data will be submitted electronically and in a bound format

J. Bound data will be secured in hard binder with 3” rings for ease of review or PDF file.

1. Types will be marked with a tab by type and indexed for ease of reference
K. LED warranty information MUST be included by type and marked in RED to clearly identify the manufacturer's warranty terms. Warranty data MUST meet or exceed the specified manufacturers terms.

L. Prior approvals MUST be received and acknowledged to the specifiers office no less than 10 days prior to bid.

M. ALL prior approval data must be submitted in one package with complete information. Information that is incomplete will be rejected without review.

N. The prior approval will be returned marked approved or rejected by type with no explanation. If any specification is deemed not equal the review will be stopped, the type rejected with no explanation.

O. Lumen output for the proposed fixture must be highlighted in yellow for clear identification.

P. All inverter systems supply power to LED fixtures must have pure PWM sine wave function and work with any type of lighting load.

Q. LED warranty information must be included by type and marked in red to clearly identify the manufacturer's warranty terms. Warranty data must meet or exceed the specified manufacturers terms.

1.7

1.8 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires to include in [operation] and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.9 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
 2. Glass, Acrylic, and Plastic Lenses, Covers and Other Optical Parts: One for every 100 of each type and rating installed. Furnish at least one of each type.
 3. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.
 5. Ballasts: One for every 100 of each type and rating installed. Furnish at least one of each type.

1.10 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturers' laboratory accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products and complying with applicable IES testing standards.
1.11 DELIVERY, STORAGE, AND HANDLING
A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.12 FIELD CONDITIONS
A. Verify existing and proposed utility structures prior to the start of work associated with luminaire installation.
B. Mark locations of exterior luminaires for approval by Architect prior to the start of luminaire installation.

1.13 WARRANTY
A. Warranty: Manufacturer and Installer agree to repair or replace (labor and material) components of luminaires that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including luminaire support components.
 b. Faulty operation of luminaires, ballasts, and accessories.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
B. Warranty Period: Two year(s) from date of Substantial Completion.
A. LED luminaires Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. NRTL Compliance: Luminaires shall comply with UL 1598 and be listed and labeled for indicated class and division of hazard by an NRTL.
C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
D. Lateral Light Distribution Patterns: Comply with IES RP-8 for parameters of lateral light distribution patterns indicated for luminaires.
E. UL Compliance: Listed for wet location (UL 1598).
F. Lamp base complying with ANSI C81.61 or IEC 60061-1.
G. EMI Filters: Factory installed to suppress conducted EMI as required by MIL-STD-461E. Fabricate luminaires with one filter on each ballast indicated to require a filter.
H. In-line Fusing: Install on the ballast primary for each luminaire.
I. Lamp Rating: Lamp marked for outdoor use and in enclosed locations.
J. Source Limitations: Obtain luminaires from single source from a single manufacturer.

K. Source Limitations: For luminaires, obtain each color, grade, finish, type, and variety of luminaire from single source with resources to provide products of consistent quality in appearance and physical properties.

2.2 LED LIGHTING FIXTURES AND LED LAMPS

A. All LED products must be UL, ETL and/or CSA listed

B. All LED products must have LM-79 and LM-80 testing noted on specification sheet by an independent test lab

C. All LED products should be identified as L70 and/or L90 ratings based on independent test lab data

D. All outdoor and wet location listed products must clearly state the IP rating carried on the fixture based on independent test lab data

E. Bulb shape complying with ANSI C79.1.

F. CRI of Minimum 80. CCT of 4100 K.

G. Rated lamp life of 50,000 hours.

H. Lamps dimmable from 100 percent to 0 percent of maximum light output.

I. Nominal Operating Voltage: as noted on light fixture schedule.

J. All LED products must be serviceable for accessible for field repair needs.

K. All outdoor pole mounted products must have surge suppression within each fixture.

L. All outdoor lighting color rendering should be within a 7 step McAdams Ellipse. All outdoor lighting should be 4000 kelvin unless specifically noted

M. All control systems that interface with an LED product will be supported by a project “integrator” until project completion. This includes contact with the installer prior to installation, availability during installation, and final checkout and startup after installation. The quantity of days required for startup will be based on the manufacturer/agents discretion and need.

1. The project integrator must be capable of performing low voltage and DMX terminations. High voltage terminations are performed solely by the electrical subcontractor.

2. Reporting of final startup completion of the controls system back to the engineer is mandatory.

3. Invitation to attend the training with the owners representative should be made to the engineer no less than 5 days prior to training

4. Signature confirmation of training and startup is required within 5 business days after completion back to the engineer’s office.

N. All LED drivers should be capable of 0-10 volt controls and DMX control and shall dim to 1% of total lumen output. Where specifically specified the dimming driver may be required to dim to .1% of lumen output, otherwise known as “dim to dark”

O. Driver manufacturers must have a 5 year history producing dimmable electronic LED drivers for the North American market.

P. Ambient driver temperatures must be within -20 degrees to 50 degrees C (-4 degrees to 122 degrees F)

Q. Driver (internal) must limit inrush current.
1. Base specification: meet or exceed NEMA 410 driver inrush standard of 430 amp per 10 amps load with a maximum of 370 amps/2 seconds
2. Preferred specification: Meet or exceed 30ma’s at 277 VAC for up to 50 watts of load and 75A at 240us att 277 VAC for 100 watts of load
3. Withstand up to a 1,000 volt surge without impairment of performance as defined by ANSI C62.41 Category A
4. No visible change in light output with a variation of plus/minus 10percent line voltage input.
5. Total harmonic distortion less than 20%, and meet ANSI C82.11 maximum allowable THD requirements at full output. THD shall at no point in the dimming curve allow imbalance current to exceed full output THD

2.3 BALLASTS FOR HID LAMPS
A. Electromagnetic Ballast for Metal-Halide Lamps: Comply with ANSI C82.4 and UL 1029. Include the following features unless otherwise indicated:
 1. Ballast Circuit: Constant-wattage autotransformer or regulating high-power-factor type.
 3. Rated Ambient Operating Temperature: 104 deg F.
 4. Open-circuit operation that does not reduce average life.
 5. Low-Noise Ballasts: Manufacturers’ standard epoxy-encapsulated models designed to minimize audible luminaire noise.
B. Electronic Ballast for Metal-Halide Lamps: Include the following features unless otherwise indicated:
 1. Minimum Starting Temperature: Minus 20 deg F for single-lamp ballasts.
 2. Rated Ambient Operating Temperature: 130 deg F.
 3. Lamp end-of-life detection and shutdown circuit.
 4. Sound Rating: Class A.
 5. Total Harmonic Distortion Rating: Less than 20 percent.
 6. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 7. Lamp Current Crest Factor: 1.5 or less.
 8. Power Factor: 0.90 or higher.
 9. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.
 11. Instant-Restrike Device: Integral with ballast or solid-state potted module, factory installed within luminaire and compatible with lamps, ballasts, and mogul sockets up to 150 W.
 12. Minimum Starting Temperature: Minus 40 deg F.
 13. UL Bench Top Rise Letter Code: F.

2.4 BALLASTS FOR LINEAR FLUORESCENT LAMPS
A. General Requirements for Electronic Ballasts:
 1. Comply with UL 935 and with ANSI C82.11.
 2. Designed for type and quantity of lamps served.
 3. Ballasts shall be designed for full light output unless another BF, dimmer, or bi-level control is indicated.
 4. Sound Rating: Class A.
 5. THD Rating: Less than 10 percent.
 6. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 7. Operating Frequency: 42 kHz or higher.
 8. Lamp Current Crest Factor: 1.7 or less.
 9. BF: 0.88 or higher.
 10. Power Factor: 0.98 or higher.
 11. Parallel Lamp Circuits: Multiple lamp ballasts shall comply with ANSI C82.11 and shall be connected to maintain full light output on surviving lamps if one or more lamps fail.
B. Luminaires controlled by occupancy sensors shall have programmed-start ballasts.

C. Electronic Programmed-Start Ballasts for T5, T8, T5HO, T5 and T5HO Lamps: Comply with ANSI C82.11 and the following:
 1. Lamp end-of-life detection and shutdown circuit for T5 diameter lamps.
 2. Automatic lamp starting after lamp replacement.

2.5 BALLASTS FOR COMPACT FLUORESCENT LAMPS

A. Description: Electronic-programmed rapid-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated:
 1. Lamp end-of-life detection and shutdown circuit.
 2. Automatic lamp starting after lamp replacement.
 3. Sound Rating: Class A.
 4. THD Rating: Less than 20 percent.
 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 6. Operating Frequency: 20 kHz or higher.
 7. Lamp Current Crest Factor: 1.7 or less.
 8. BF: 0.95 or higher unless otherwise indicated.
 9. Power Factor: 0.95 or higher.
 10. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on EMI and RFI for nonconsumer equipment.

2.6 FLUORESCENT LAMPS

A. T8 rapid-start lamps, rated 32-W maximum, nominal length of 48 inches, 3100 initial lumens (minimum), CRI of 85 (minimum), color temperature of 4100 K, and average rated life of 24,000 hours unless otherwise indicated.

B. T8 rapid-start lamps, rated 17-W maximum, nominal length of 24 inches, 1400 initial lumens (minimum), CRI of 85 (minimum), color temperature of 4100 K, and average rated life of 24,000 hours unless otherwise indicated.

C. T5 rapid-start lamps, rated 28-W maximum, nominal length of 45.8 inches, 3050 initial lumens (minimum), CRI of 85 (minimum), color temperature of 4100 K, and average rated life of 30,000 hours unless otherwise indicated.

D. T5HO rapid-start, high-output lamps, rated 54-W maximum, nominal length of 45.8 inches, 5000 initial lumens (minimum), CRI of 85 (minimum), color temperature of 4100 K, and average rated life of 45,000 hours unless otherwise indicated.

E. Compact Fluorescent Lamps: Four-pin, CRI of 80 (minimum), color temperature of 4100 K, average rated life of 10,000 hours at three hours of operation per start, and suitable for use with dimming ballasts unless otherwise indicated.
 1. 13 W: T4, double or triple tube, rated 900 initial lumens (minimum).
 2. 18 W: T4, double or triple tube, rated 1200 initial lumens (minimum).
 3. 26 W: T4, double or triple tube, rated 1800 initial lumens (minimum).
 4. 32 W: T4, triple tube, rated 2400 initial lumens (minimum).
 5. 42 W: T4, triple tube, rated 3200 initial lumens (minimum).
 6. 57 W: T4, triple tube, rated 4300 initial lumens (minimum).
 7. 70 W: T4, triple tube, rated 5200 initial lumens (minimum)
2.7 HID LAMPS

A. High-Pressure Sodium Lamps: ANSI C78.42, with CRI 21, CCT 1900 K, and average rated life of 24,000 hours, minimum.
 1. Dual-Arc Tube Lamps: Arranged so only one of two arc tubes is lighted at one time and, when power is restored after an outage, the cooler arc tube, with lower internal pressure, lights instantly, providing an immediate 8 to 15 percent of normal light output.

B. Metal-Halide Lamps: ANSI C78.43, with CRI 65 and CCT 4000 K, minimum.

C. Pulse-Start Metal-Halide Lamps: CRI 65 and CCT 4000 K, minimum.

D. Ceramic Pulse-Start Metal-Halide Lamps: CRI 80 and CCT 4000 K, minimum.

2.8 QUARTZ LAMP-LIGHTING CONTROLLER

A. General Requirements for Controllers: Factory installed by luminaire manufacturer. Comply with UL 1598.

B. Standby (Quartz Restrike): Automatically switches quartz lamp on when an HID lamp in the luminaire is initially energized and during the HID lamp restrike period after brief power outages.

C. Connections: Designed for a single branch-circuit connection.

D. Switching Off: Automatically switches quartz lamp off when HID lamp strikes.

E. Switching Off: Automatically switches quartz lamp off when HID lamp reaches approximately 60 percent light output.

2.9 LUMINAIRE-MOUNTED PHOTOELECTRIC RELAYS

A. Comply with UL 773 or UL 773A.

B. Contact Relays: Factory mounted, single throw, designed to fail in the on position, and factory set to turn light unit on at 1.5 to 3 fc and off at 4.5 to 10 fc with 15-second minimum time delay. Relay shall have directional lens in front of photocell to prevent artificial light sources from causing false turnoff.

 1. Relay with locking-type receptacle shall comply with ANSI C136.10.
 2. Adjustable window slide for adjusting on-off set points.

2.10 LUMINAIRE TYPES - see light fixture schedule on plans

2.11 MATERIALS

A. Metal Parts: Free of burrs and sharp corners and edges.

B. Sheet Metal Components: Corrosion-resistant aluminum or Stainless steel unless otherwise indicated. Form and support to prevent warping and sagging.

C. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.

D. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames,
lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Ballast shall automatically disconnect ballast when door opens.

E. Exposed Hardware Material: Stainless steel.

F. Diffusers and Globes:
 1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125-inch minimum unless otherwise indicated.

G. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

H. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 1. White Surfaces: 85 percent.
 2. Specular Surfaces: 83 percent.
 3. Diffusing Specular Surfaces: 75 percent.

I. Housings:
 1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
 2. Provide filter/breather for enclosed luminaires.

J. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY," including specific lamp type.
 b. Lamp type, wattage, bulb type, and coating (clear or coated) for HID luminaires.
 c. ANSI ballast type (M98, M57, etc.) for HID luminaires.
 d. CCT and CRI for all luminaires.

2.12 METAL FINISHES

A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

B. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.

C. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20 requirements; and seal aluminum surfaces with clear, hard-coat wax.
 3. Class I, Clear-Anodic Finish: AA-M32C22A41 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker), complying with AAMA 611.
4. Class I, Color-Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker), complying with AAMA 611.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire electrical conduit to verify actual locations of conduit connections before luminaire installation.

C. Examine walls, roofs, and canopy ceilings and overhang ceilings for suitable conditions where luminaires will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Comply with NECA 1.

B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.

C. Install lamps in each luminaire.

D. Remote Mounting of Ballasts: Distance between the ballast and luminaire shall not exceed that recommended by ballast manufacturer. Verify the following with ballast manufacturer:
 1. Maximum distance between ballast and luminaire.
 2. Wire size between ballast and luminaire.

F. Fasten luminaire to indicated structural supports.

G. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Support luminaires without causing deflection of finished surface.
 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.

H. Wall-Mounted Luminaire Support:
1. Attached to structural members in walls, or a minimum 1/8-inch backing plate attached to wall structural members or using through bolts and backing plates on either side of wall.

I. Install luminaires level, plumb, and square with finished grade unless otherwise indicated. Install luminaires at height indicated on Drawings.

J. Coordinate layout and installation of luminaires with other construction. Refer to architectural elevations prior to rough-ins.

K. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.

L. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and Section 260533 "Raceways and Boxes for Electrical Systems;" for wiring connections and wiring methods.

3.4 BOLLARD LUMINAIRE INSTALLATION

A. Align units for optimum directional alignment of light distribution.

1. Install on concrete base with top 4 inches above finished grade or surface at location. Cast conduit into base, and shape base to match shape of bollard base. Finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 033000 "Cast-in-Place Concrete."

3.5 INSTALLATION OF INDIVIDUAL GROUND-MOUNTING LUMINAIRES

A. Install on concrete base with top 4 inches above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 033000 "Cast-in-Place Concrete."

3.6 CORROSION PREVENTION

A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.

B. Steel Conduits: Comply with Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch-thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.7 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL

A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Photoelectric Control Operation: Verify operation of photoelectric controls.

C. Illumination Tests:

1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IES testing guide(s):

 a. IES LM-5.
 b. IES LM-50.
 c. IES LM-52.
 d. IES LM-64.
 e. IES LM-72.

D. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain luminaires and photocell relays.

3.10 STARTUP SERVICE

A. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Owner.

3.11 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

 1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
 2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265621
PART 1 - GENERAL

1.1 SUMMARY

A. Expand existing addressable control panel to accommodate new building indicating and initiating devices. Indicating devices shall also be provided to comply with IFC 2012 and TDLR.

B. Related Sections: The following Sections contain requirements that relate to this Section:

1. HVAC Controls - *Electric Control Systems for duct smoke detectors. HVAC down relay. (AHU shut down relay furnished by Fire Alarm Contractor).

C. Definitions:

1. FACP: Fire alarm control panel.
2. LED: Light-emitting diode.
3. Definitions in NFPA 72 apply to fire alarm terms used in this Section.

D. System Description:

1. Noncoded, addressable system; multiplexed signal transmission dedicated to fire alarm service only.

E. Performance Requirements:

1. Comply with NFPA 72.
2. Fire alarm signal initiation shall be by one or more of the following devices:
 b. Heat detectors.
 c. Smoke detectors.
 d. Verified automatic alarm operation of smoke detectors.
 e. Automatic sprinkler system water flow.
 f. Fire extinguishing system operation.

3. Fire alarm signal shall initiate the following actions:
 a. Visual notification appliances shall operate continuously.
 b. Identify alarm at the FACP and remote annunciators.
 c. Audible notification appliances shall operate continuously until silenced.
 d. Visual notification appliances shall continue to operate until reset.
 e. Switch heating, ventilating, and air-conditioning equipment controls to fire alarm mode.
 f. Release fire and smoke doors held open by magnetic door holders.
 g. Transmit an alarm signal to the remote alarm receiving station.
 h. Record events in the system memory.

4. Supervisory signal initiation shall be by one or more of the following devices or actions:
 a. Operation of a fire-protection system valve tamper.
 b. Operation of a fire-protection system valve flow.

5. System trouble signal initiation shall be (per building) by one or more of the following devices or actions:
a. Open circuits, shorts and grounds of wiring for initiating device, signaling line, and notification-appliance circuits.
b. Opening, tampering, or removal of alarm-initiating and supervisory signal-initiating devices.
c. Loss of primary power at the FACP.
d. Ground or a single break in FACP internal circuits.
e. Abnormal ac voltage at the FACP.
f. A break in standby battery circuitry.
g. Failure of battery charging.
h. Abnormal position of any switch at the FACP or annunciator.
i. Fire-pump power failure, including a dead-phase or phase-reversal condition.

6. System Trouble and Supervisory Signal Actions: Ring trouble bell and annunciate at the FACP and remote annunciators. Record event.

F. AHU SHUT DOWN

1. When a fire alarm condition is detected by AHU duct smoke detector and reported, the following functions shall immediately occur:

 a. The system alarm LED on the FACP shall flash.
 b. A local piezo electric signal in the control panel shall sound.
 c. A backlit 80-character LCD display on the FACP shall indicate all information associated with the fire alarm condition, including the type of alarm point and its location within the protected premises.
 d. This particular AHU shall be shut down only; the remaining AHU’s shall remain operational.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings:

 1. System Operation Description: Detailed description for this Project, including method of operation and supervision of each type of circuit and sequence of operations for manually and automatically initiated system inputs and outputs. Manufacturer's standard descriptions for generic systems are not acceptable.
 2. Device Address List: Coordinate with final system programming.
 3. System riser diagram with device addresses, conduit sizes, and cable and wire types and sizes.
 4. Wiring Diagrams: Power, signal, and control wiring. Include diagrams for equipment and for system with all terminals and interconnections identified. Show wiring color code.
 5. Batteries: Size calculations.

C. Field quality-control test reports.

D. Operation and maintenance data.

E. Submittals to Authorities Having Jurisdiction: In addition to distribution requirements for submittals specified in Division 1 Section "Submittals," make an identical submittal to authorities having jurisdiction. To facilitate review, include copies of annotated Contract Drawings as needed to depict component locations. Resubmit if required to make clarifications or revisions to obtain approval. On receipt of comments from authorities having jurisdiction, submit them to Architect for review.

F. Documentation:

 1. Approval and Acceptance: Provide the "Record of Completion" form according to NFPA 72 to Owner, Architect, and authorities having jurisdiction.
2. Record of Completion Documents: Provide the "Permanent Records" according to NFPA 72 to Owner, Architect, and authorities having jurisdiction. Format of the written sequence of operation shall be the optional input/output matrix.
 a. Hard copies on paper to Owner, Architect, and authorities having jurisdiction.
 b. Electronic media may be provided to Architect and authorities having jurisdiction.

1.3 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer shall provide proof of their qualifications as Factory Authorized and Factory Trained for the product(s) specified herein. These documents shall be included in the submittal package. A letter from the manufacturer stating that the Contractor is the Factory Authorized Distributor for the submitted equipment shall be included in the submittal package.
 2. The installing Contractor (Company) shall have completed a minimum of five projects of similar size and scope within the past five years. Provide a list of completed projects to include names and phone numbers of the Owner's representative and the General Contractor for the project.
 3. Contractor Personnel Requirements:
 a. One full time employee with a current Texas Fire Alarm Planning Superintendents License.
 b. One full time employee with NICET Level III certification.
 c. A minimum of two technicians with Factory Training for the submitted product(s). Copies of License, NICET Certification, and Factory Training shall be included in the submittals.
 d. The installation shall be performed by licensed full time employees of the Factory Authorized Distributor.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. A factory-authorized Installer is to perform the Work of this Section. Installer is to be licensed by Texas Commission on Fire Protection as Fire Alarm Technician or Fire Alarm Planning Superintendent. Texas Commission on Fire Protection shall license installing company. Provide copies of licensing with submittal.

D. Compliance with Local Requirements: Comply with the applicable building code, local ordinances, and regulations, and the requirements of the authority having jurisdiction.

E. Comply with Article 5.43-2 Insurance code and fire alarm rules as required by Texas Commission on Fire Protection.

F. Comply with Article 5.43-2 Insurance code and fire alarm rules as required by Texas Commission on Fire Protection.

G. NFPA Compliance: Provide fire alarm and detection systems conforming to the requirements of the following publications:
 1. NFPA 72, "Installation, Maintenance, and Use of Protective Signaling Systems."
 2. NFPA 72E, "Automatic Fire Detectors."

H. NRTL Listing: Provide systems and equipment that are listed and labeled.
 1. Terms "Listed" and "Labeled": As defined in the "National Electrical Code," Article 100.
 2. Listing and Labeling Agency Qualifications: A "Nationally Recognized Testing Laboratory" (NRTL) as defined in OSHA Regulation 1910.7.

I. UL Compliance: All devices are to be UL listed for Fire, Security, and Access Control.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. FACP with voice evacuation and Equipment:
 a. Existing Notifier – NFW 100.
 b. No substitutions

2. Wire and Cable:
 a. Comtran Corporation.
 b. Helix/HiTemp Cables, Inc.; a Draka USA Company.
 c. Rockbestos-Suprenant Cable Corporation; a Marmon Group Company.
 d. West Penn Wire/CDT; a division of Cable Design Technologies.

3. Audible and Visual Signals:
 a. Edwards Systems Technology Inc.
 b. Commercial Products Group.
 c. Gentex Corporation.
 d. System Sensor; a GE-Honeywell Company.

2.2 FACP

A. General Description:

1. Modular, power-limited design with electronic modules, UL 864 listed.
2. Addressable control circuits for operation of mechanical equipment.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at the FACP and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, three line(s) of 80 characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

A. Voice/Alarm Signaling Service: Central emergency communication system with redundant microphones, preamplifiers, amplifiers, and tone generators provided in a separate cabinet.

1. Indicate number of alarm channels for automatic, simultaneous transmission of different announcements to different zones or for manual transmission of announcements by use of the central-control microphone. Amplifiers shall comply with UL 1711.
 a. Allow the application of, and evacuation signal to, indicated number of zones and, at the same time, allow voice paging to the other zones selectively or in any combination.
 b. Programmable tone and message sequence selection.
 c. Standard digitally recorded messages for "Evacuation" and "All Clear."
 d. Generate tones to be sequenced with audio messages of type recommended by NFPA 72 and that are compatible with tone patterns of notification-appliance circuits of fire-alarm control unit.
2. Status Annunciator: Indicate the status of various voice/alarm speaker zones and the status of firefighters' two-way telephone communication zones.
3. Pre-amplifiers, amplifiers, and tone generators shall automatically transfer to backup units, on primary equipment failure.

B. Circuits:

 a. System Layout: Install no more than 100 addressable devices on each signalling line circuit.
2. Notification-Appliance Circuits: NFPA 72, Class A, Style Z.
3. Notification-Appliance Circuits: NFPA 72, Class B, Style Y.
4. Actuation of alarm notification appliances, emergency voice communications, annunciation, elevator recall, and actuation of suppression systems shall occur within 10 seconds after the activation of an initiating device.
5. Electrical monitoring for the integrity of wiring external to the FACP for mechanical equipment shutdown and magnetic door-holding circuits is not required, provided a break in the circuit will cause doors to close and mechanical equipment to shut down.

C. Smoke-Alarm Verification:

1. Initiate audible and visible indication of an "alarm verification" signal at the FACP.
2. Activate a listed and approved "alarm verification" sequence at the FACP and the detector.
3. Record events.
4. Sound general alarm if the alarm is verified.
5. Cancel FACP indication and system reset if the alarm is not verified.

D. Notification-Appliance Circuit: Operation shall sound in a temporal pattern, complying with ANSI S3.41 [120 beats per minute, march-time pattern].

E. Power Supply for Supervision Equipment: Supply for audible and visual equipment for supervision of the ac power shall be from a dedicated dc power supply, and power for the dc component shall be from the ac supply.

F. Alarm Silencing, Trouble, and Supervisory Alarm Reset: Manual reset at the FACP and remote annunciators, after initiating devices are restored to normal.

1. Silencing-switch operation halts alarm operation of notification appliances and activates an "alarm silence" light. Display of identity of the alarm zone or device is retained.
2. Subsequent alarm signals from other devices or zones reactivate notification appliances until silencing switch is operated again.
3. When alarm-initiating devices return to normal and system reset switch is operated, notification appliances operate again until alarm silence switch is reset.

G. Walk Test: A test mode to allow one person to test alarm and supervisory features of initiating devices. Enabling of this mode shall require the entry of a password. The FACP and annunciators shall display a test indication while the test is underway. If testing ceases while in walk-test mode, after a preset delay, the system shall automatically return to normal.

H. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, trouble, and supervisory signals to a remote alarm station through a digital alarm communicator transmitter and telephone lines.

I. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signal, supervisory signal supervisory and digital alarm communicator transmitter shall be powered by the 24-V dc source.

1. The alarm current draw of the entire fire alarm system shall not exceed 80 percent of the power-supply module rating.
2. Power supply shall have a dedicated fused safety switch for this connection at the service entrance equipment. Paint the switch box red and identify it with "FIRE ALARM SYSTEM POWER."

J. Secondary Power: 24-V dc supply system with batteries and automatic battery charger and an automatic transfer switch.
 1. Batteries: Gell Cell.
 2. Battery and Charger Capacity: Comply with NFPA 72.

K. Surge Protection:
 1. Install surge protection on normal ac power for the FACP and its accessories. Comply with Division 16 Section "Transient Voltage Suppression" for auxiliary panel suppressors.
 2. Install surge protectors recommended by FACP manufacturer. Install on all system wiring external to the building housing the FACP.

L. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

M. The fire alarm control panel shall have the capability to support remote monitoring and control via LAN, WAN or Internet connection to a remote graphics workstation in real time.

2.3 MANUAL FIRE ALARM BOXES

A. Description: UL 38 listed; finished in red with molded, raised-letter operating instructions in contrasting color. Station shall show visible indication of operation. Mounted on recessed outlet box; if indicated as surface mounted, provide manufacturer's surface back box.
 1. Double-action mechanism requiring two actions to initiate an alarm, pull-lever type. With integral addressable module, arranged to communicate manual-station status (normal, alarm, or trouble) to the FACP.
 2. Station Reset: Key- or wrench-operated switch.
 3. Provide all manual stations with STI 1100 protective cover.

2.4 SYSTEM SMOKE DETECTORS

A. General Description:
 1. UL 268 listed, operating at 24-V dc, nominal.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.
 3. Multipurpose type, containing the following:
 a. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.
 b. Heat sensor, combination rate-of-rise and fixed temperature.
 4. Plug-in Arrangement: Detector and associated electronic components shall be mounted in a plug-in module that connects to a fixed base. Provide terminals in the fixed base for connection of building wiring.
 5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 6. Integral Visual-Indicating Light: LED type. Indicating detector has operated and power-on status.

B. Photoelectric Smoke Detectors:
1. Sensor: LED or infrared light source with matching silicon-cell receiver.
2. Detector Sensitivity: Between 2.5 and 3.5 percent/foot smoke obscuration when tested according to UL 268A.

C. Duct Smoke Detectors:

1. Photoelectric Smoke Detectors:
 a. Sensor: LED or infrared light source with matching silicon-cell receiver.
 b. Detector Sensitivity: Between 2.5 and 3.5 percent/foot smoke obscuration when tested according to UL 268A.
2. UL 268A listed, operating at 24-V dc, nominal.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.
4. Plug-in Arrangement: Detector and associated electronic components shall be mounted in a plug-in module that connects to a fixed base. The fixed base shall be designed for mounting directly to the air duct. Provide terminals in the fixed base for connection to building wiring.
5. Self-Restoring: Detectors shall not require resetting or readjustment after actuation to restore them to normal operation.
6. Integral Visual-Indicating Light: LED type. Indicating detector has operated status. Provide remote status and alarm indicator and test station where indicated.
7. Sampling Tubes: Design and dimensions as recommended by manufacturer for the specific duct size, air velocity, and installation conditions where applied.

D. Single-Station Duct Detectors:

1. UL 268A listed, operating at 120-V ac.
2. Sensor: LED or infrared light source with matching silicon-cell receiver.
 a. Detector Sensitivity: Between 2.5 and 3.5 percent/foot smoke obscuration when tested according to UL 268A.
3. Plug-in Arrangement: Detector and associated electronic components shall be mounted in a plug-in module that connects to a fixed base. The fixed base shall be designed for mounting directly to the air duct. Provide terminals in the fixed base for connection to building wiring.
4. Self-Restoring: Detectors shall not require resetting or readjustment after actuation to restore them to normal operation.
5. Integral Visual-Indicating Light: LED type. Indicating detector has operated status. Provide remote status and alarm indicator and test station where indicated.
6. Sampling Tubes: Design and dimensions as recommended by manufacturer for the specific duct size, air velocity, and installation conditions where applied.

2.5 HEAT DETECTORS

A. General: UL 521 listed.

B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or rate-of-rise of temperature that exceeds 15 deg F per minute, unless otherwise indicated.

2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.

C. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 190 deg F.
2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.

2.6 NOTIFICATION APPLIANCES

A. Description: Equipped for mounting as indicated and with screw terminals for system connections.
 2. All appliances that are supplied for the requirements of this specification shall be UL Listed for Fire Protective Service, and shall be capable of providing the "equivalent facilitation" which is allowed under the Americans with Disabilities Act Accessibilities Guidelines (ADAAG), and shall be UL 1971 Listed.
 3. All appliances shall be of the same manufacturer as the fire alarm control panel specified to insure absolute compatibility between the appliances and the control panels, and to ensure that the application of the appliances are done in accordance with the single manufacturer's instructions.
 4. Any appliances that do not meet the above requirements, and are submitted for use must show written proof of their compatibility for the purpose intended. Such proof shall be in the form of documentation from all manufacturers that clearly states that their equipment (as submitted) is 100% compatible with each other for the purpose intended. All strobes shall be provided with lens markings oriented for wall mounting.
 5. Notification appliances shall be synchronized in hallways and in any area where two more appliances are visible.
 6. All notification appliances shall be white unless noted otherwise on the drawings.

B. Speaker-Strobes: Provide 4" white speakers/strobes at the locations shown on the drawings. Speakers shall have a 4" mylar cone, paper cones are not acceptable. The rear of the speakers shall be completely sealed protecting the cone during and after installation. In and out screw terminals shall be provided for wiring. Speakers shall provide 1/4w, 1/2w, 1w, and 2w power taps for use with 25V or 70V systems. At the 2-watt setting, the speaker shall provide an 87-dBA sound output over a frequency range of 400-4000 Hz. when measured in reverberation room per UL-1480. Strobes shall provide synchronized flash. Strobe output shall be determined as required by its specific location and application from a family of 15/75cd, 30cd, & 110cd devices.

C. Low Profile Horns: Provide low profile wall mount horns at the locations shown on the drawings. The horn shall provide an 84-dBA sound output at 10 ft. when measured in reverberation room per UL-464. The horn shall have a selectable steady or synchronized temporal output. In and out screw terminals shall be provided for wiring. The horn shall mount in a North American 1-gang box.

D. Low Profile Strobes Horns: Provide low profile wall mount horn/strobes at the locations shown on the drawings. The horn/strobe shall provide an audible output of 84 dBA at 10 ft. when measured in reverberation room per UL-464. Strobes shall provide synchronized flash outputs. The strobe output shall be determined as required by its specific location and application from a family of 15cd, 30cd, 60cd, 75cd & 110cd devices. The horn shall have a selectable steady or synchronized temporal output. In and out screw terminals shall be provided for wiring. Low profile horn/strobes shall mount in a North American 1-gang box.

E. Low profile strobes: Xenon strobe lights listed under UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- high letters on the lens.
 1. Rated Light Output: 75 110 candela or as noted on plans.
 2. Strobe Leads: Factory connected to screw terminals.
2.7 MAGNETIC DOOR HOLDERS

A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching door plate.

 1. Electromagnet: Requires no more than 3 W to develop 25-lbf (111-N) holding force.
 2. Wall-Mounted Units: Flush mounted, unless otherwise indicated.
 3. Rating: 120-V ac.

B. Material and Finish: Match door hardware.

2.8 REMOTE ANNUNCIATOR

A. Description: Duplicate annunciator functions of the FACP for alarm, supervisory, and trouble indications. Also duplicate manual switching functions of the FACP, including acknowledging, silencing, resetting, and testing.

B. Display Type and Functional Performance: Alphanumeric display same as the FACP. Controls with associated LEDs permit acknowledging, silencing, resetting, and testing functions for alarm, supervisory, and trouble signals identical to those in the FACP.

2.9 ADDRESSABLE INTERFACE DEVICE

A. Description: Microelectronic monitor module listed for use in providing a system address for listed alarm-initiating devices for wired applications with normally open contacts.

B. Integral Relay: Capable of providing a direct signal [to the elevator controller to initiate elevator recall] [to a circuit-breaker shunt trip for power shutdown] <Insert other functions>.

2.10 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Listed and labeled according to UL 632.

B. Functional Performance: Unit receives an alarm, supervisory, or trouble signal from the FACP, and automatically captures one or two telephone lines and dials a preset number for a remote central station. When contact is made with the central station(s), the signal is transmitted. The unit supervises up to two telephone lines. Where supervising 2 lines, if service on either line is interrupted for longer than 45 seconds, the unit initiates a local trouble signal and transmits a signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. When telephone service is restored, unit automatically reports that event to the central station. If service is lost on both telephone lines, the local trouble signal is initiated.

C. Secondary Power: Integral rechargeable battery and automatic charger. Battery capacity is adequate to comply with NFPA 72 requirements.

D. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

2.11 AUDIO AMPLIFIERS

A. Each audio power amplifier shall have integral audio signal de-multiplexers, allowing the amplifier to select any one of eight digitized audio channels. The channel selection shall be directed by the system software. Up to 8 multiple and different audio signals must be able to be broadcast simultaneously from the same system network node.
B. Each amplifier output shall include a dedicated, supervised 25/70 Vrms speaker circuit that is suitable for connection of emergency speaker appliances. Each amplifier shall also include a notification appliance circuit rated at 24Vdc @ 3.5A for connection of visible (strobe) appliances. This circuit shall be fully programmable and it shall be possible to define the circuit for the support of audible, visible, or ancillary devices.

C. In the event of a total loss of audio data communications, all amplifiers will default to the local "EVAC" tone generator channel. If the local panel has an alarm condition, then all amplifiers will sound the EVAC signal on their connected speaker circuits.

2.12 WIRE AND CABLE
A. Wire and cable for fire alarm systems shall be UL listed and labeled as complying with NFPA 70, Article 760.
B. Signaling Line Circuits: Twisted, shielded pair, not less than No. 18 AWG size as recommended by system manufacturer.
 1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70 Article 760, Classification CI, for power-limited fire alarm signal service. UL listed as Type FPL, and complying with requirements in UL 1424 and in UL 2196 for a 2-hour rating.
 1. Low-Voltage Circuits: No. 16 AWG, minimum.
 2. Line-Voltage Circuits: No. 12 AWG, minimum.
D. Underground cabling: Please provide water resistant/water blocking type, equal to West Penn "Aquaseal".

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION
A. Connecting to Existing Equipment: Verify that existing fire alarm system is operational before making changes or connections.
 1. Connect new equipment to the existing control panel in the existing part of the building.
 2. Expand, modify, and supplement the existing control equipment as necessary to extend the existing control functions to the new points. New components shall be capable of merging with the existing configuration without degrading the performance of either system.
B. Smoke or Heat Detector Spacing:
 1. Smooth ceiling spacing shall not exceed the rating of the detector.
 2. Spacing of heat detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas, shall be determined according to Appendix A in NFPA 72.
 3. Spacing of heat detectors shall be determined based on guidelines and recommendations in NFPA 72.
C. HVAC: Locate detectors not closer than 3 feet from air-supply diffuser or return-air opening.
D. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of the duct.
E. Single-Station Smoke Detectors: Where more than one smoke alarm is installed within a dwelling or suite, they shall be connected so that the operation of any smoke alarm causes the alarm in all smoke alarms to sound.

F. Remote Status and Alarm Indicators: Install near each smoke detector and each sprinkler water-flow switch and valve-tamper switch that is not readily visible from normal viewing position.

G. Audible Alarm-Indicating Devices: Install not less than 80 inches above the finished floor nor less than 6 inches below the ceiling whichever is lower.

H. Visual Alarm-Indicating Devices: Install as shown and not less than 80 inches above the finished floor or 6 inches below the ceiling whichever is lower.

I. Device Location-Indicating Lights: Locate in public space near the device they monitor.

J. FACP: Flush mount with tops of cabinets not more than 72 inches above the finished floor.

K. Annunciator: Install with top of panel not more than 72 inches above the finished floor.

L. Manual Pull Stations: Mount semi-flush in recessed back boxes with operating handles 48 inches above finished floor or as indicated.

3.2 WIRING INSTALLATION

A. Wiring Method: Install wiring in metal raceway according to Division 26 Section "Raceways and Boxes for Electrical Systems."
1. NEC 1.
2. TIA/EIA 568-A.
3. Stub up raceways into accessible ceiling space.
5. Conceal raceways and wiring except in unfinished spaces and as indicated.
6. Minimum conduit size shall be 1/2 inch. Control and data transmission wiring shall not share conduit with other building wiring systems.
7. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.

B. Wiring Method: Install wiring in metal raceway according to Division 26 Section "Raceways and Boxes for Electrical Systems."
1. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.

C. Wiring Method:
1. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
2. Fire-Rated Cables: Use of 2-hour fire-rated fire alarm cables, NFPA 70 Types Mi and Cl, is not permitted.
3. Signaling Line Circuits: Power-limited fire alarm cables may be installed in the same cable or raceway as signaling line circuits.

D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.

F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and a different color-code for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

G. Wiring to Remote Alarm Transmitting Device: 1-inch conduit between the FACP and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.3 IDENTIFICATION
A. Identify system components, wiring, cabling, and terminals according to Division 16 Section "Electrical Identification."
B. Install instructions frame in a location visible from the FACP.
C. Paint power-supply disconnect switch red and label "FIRE ALARM."

3.4 GROUNDING
A. Ground the FACP and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to the FACP.

3.5 FIELD QUALITY CONTROL
A. Perform the following field tests and inspections and prepare test reports:

 1. Before requesting final approval of the installation, submit a written statement using the form for Record of Completion shown in NFPA 72.
 2. Perform each electrical test and visual and mechanical inspection listed in NFPA 72. Certify compliance with test parameters.
 3. Visual Inspection: Conduct a visual inspection before any testing. Use as-built drawings and system documentation for the inspection. Identify improperly located, damaged, or nonfunctional equipment, and correct before beginning tests.
 4. Testing: Follow procedure and record results complying with requirements in NFPA 72.
 a. Detectors that are outside their marked sensitivity range shall be replaced.
 5. Test and Inspection Records: Prepare according to NFPA 72, including demonstration of sequences of operation by using the matrix-style form in Appendix A in NFPA 70.

3.6 ADJUSTING
A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project outside normal occupancy hours for this purpose.
B. Semiannual Test and Inspection: Six months after date of Substantial Completion and for the following three years, test the fire alarm system complying with the testing and visual inspection requirements in NFPA 72. Perform tests and inspections listed for monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.
3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain the fire alarm system, appliances, and devices. Refer to Division 1 Section "Closeout Procedures."

END OF SECTION 267210
SECTION 269750
VOICE AND DATA COMMUNICATION CABLING EQUIPMENT

PART 1 - GENERAL

1.1 Cabling plan to be submitted and approved by ABA ProBAR Data Operations Team

1.2 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.3 SUMMARY

A. Active network equipment (switches, UPS, etc.) to be procured by ABA ProBAR Data Operations Team. Active network equipment (switches, UPS, network camera) to be configured and installed by ABA ProBAR Data Operations Team. Infrastructure components including but not limited to patch cables, patch panels, wire managers, racks, cabling, ladder, cable tray, fiber distribution panels, pig tails etc. to be provided and installed by contractor.

B. This section establishes a communications infrastructure to be used as signal pathways for voice and high-speed data transmission. Provide a structured cabling system as described hereafter including but not limited to: communications outlets, fiber and voice riser/backbone cable, data and voice copper horizontal cabling, cable connectors, cable protection and terminations, and equipment racks/cabinets for networking hardware and cable termination patch panels.

C. Furnish all labor, materials, tools, equipment and services for the installation described herein. All requirements and specifications will be enforced. Cable pathways and runs to individual outlets are not shown in their entirety but shall be provided as if shown in their entirety. The contractor will communicate with ABA ProBAR Data Operations Team to determine exact routing.

D. Also, this Section includes wire, cable, connecting devices, installation, and testing for an independent local area network for the sole purpose of distributing video surveillance.

1.4 DEFINITIONS

A. EMI: Electromagnetic interference.

B. LAN: Local area network.

C. PVC: Polyvinyl chloride.

D. UTP: Unshielded twisted pair.

1.5 SUBMITTALS

A. Product Data: Include data on features, ratings, and performance for each component specified.

B. Shop Drawings: Include dimensioned plan and elevation views of components. Show access and workspace requirements.

1. System labeling schedules, including electronic copy of labeling schedules, as specified in Part 3, in software and format selected by Owner.
C. Samples: For workstation outlet connectors, jacks, jack assemblies, and faceplates for color selection and evaluation of technical features.

D. Product Certificates: Signed by manufacturers of cables, connectors, and terminal equipment certifying that products furnished comply with requirements.

E. Qualification Data: For firms and persons specified in "Quality Assurance" Article. Provide evidence of Current COMMSCOPE SYSTIMAX [AL1] or MOHAWK certification. Contractor shall be certified under manufacture before bid date.

F. Field Test Reports: Indicate and interpret test results for compliance with performance requirements.

G. Maintenance Data: For products to include in maintenance manuals specified in Division 1.

H. Network Diagram: Floor plan with location of the cable pathway and faceplate location. Each faceplate location will be marked with the data port corresponding to it.

1.6 QUALITY ASSURANCE

A. Installer Qualifications:

1. Contractor shall have installed similar systems in at least (5) other projects in the last five years prior to this bid and be regularly engaged in the business of installation of the types of systems specified in this document. Contractor shall provide information on prior projects including, but no limited to: items such as name and location of project contacts and numbers, total square footage, total number of cables/drops, types of media, etc.

2. An experienced installer who is a registered communication distribution designer certified by the Building Industry Consulting Service International.

3. The Contractor (Company) shall have a minimum of two full-time employees who have completed the Manufacturers Certification for the submitted product(s). Copies of Certification shall be included in the submittals.

4. The head installer should be a Registered Communication Distribution Designer (RCDD) and should follow all BICSI recommendations for Telecommunication Infrastructure Copper and Fiber installations.

5. The Contractor (company) shall provide current Commscope Systimax or Leviton-BerkTek certification before bid date. [AL2]

6. The Contractor (Company) main headquarters office shall be 50 miles from job site.

B. Codes: Comply with applicable sections of the following for interior and exterior installations. Ensure you are using the latest and most current standards and regulations applicable.

1. International Building Code (IBC)
5. Local Codes, amendments, and ordinances.

C. Comply with NFPA 70.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
1.7 WARRANTY

A. The guarantee shall be such, that during the 20-year period, if Owner determines that any cable no longer certifies at 100mb, the contractor shall correct it within 5 working days.

1.8 COORDINATION

A. Adjust arrangements and locations of distribution frames, patch panels, and cross connects in equipment rooms and wiring closets to accommodate and optimize arrangement and space requirements of telephone switch and LAN equipment.

B. Coordinate work of this section with ABA ProBAR Data Operations for their system specifications, telephone instruments, workstations, equipment suppliers, etc.

1.9 EXTRA MATERIALS

A. UTP Patch Cords: For each data connector, provide four-pair cables in 3 feet lengths, terminated with RJ-45 plug at each end. Use keyed plugs for data service.
 a. IT closet-quantity: sufficient to fill all Data/Phone ports on patch panels + 15% additional.
 b. Work area - quantity: sufficient to fill all Phone/Data/VoIP phone jacks in offices.
 c. PoE Cameras - quantity: sufficient to fill all Poe Camera locations

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cable: Category 6
 a. Mohawk Category 6 Jack (blue)
 b. Commscope Category 6 Jack (blue)

2. Cable Jacket Color coding:
 a. Coordinate colors of the cables with ABA ProBAR Data Operations Team for different applications.
 b. Blue cable jacket colors will be used for the project.

 a. Ports in Patch panel: As needed + 15% future growth
 b. 48 Ports panels (only) for Data and VoIP Phones/PoE Cameras.
 c. 48 Ports panels for wireless and other powered applications.
 d. Cat 6 Leviton QuickPort
 e. Terminated on T568B.

4. Category 6 Connector and Face Plates:
 Leviton faceplate – QuickPort finish to match electrical outlets.

5. Floor Distribution Racks:
6. Battery Backup: APC
 a. Coordinate with owner for current part numbers. One UPS per equipment rack.
 b. All accessories required for rack mount

7. Punch down block
 a. For Analog phone cable termination – White.
 b. Use 110 punch blocks.
 c. Terminated on walls.

8. Vertical wire manager on both sides of the rack
 a. Front and rear loading
 b. 45U, 4.9” Width.
 c. Black
 d. Suggested vendors: Chatsworth #30095-x03

9. Horizontal wire manager
 a. Front loading only
 b. 2U
 c. Black
 d. Suggested vendors: Chatsworth #30130-179.

10. Rack Grounding
 a. Chatsworth Ground Bus bar 12” – 13622-012
 b. Chatsworth terminal block
 c. Chatsworth Sheath bonding clamp
 d. Essex # 6 AWG solid Green insulation ground wire

11. Vertical rack mounted power strip rack
 a. 1U, with 12 or more outlets NEMA 5-20R
 b. APC #AP7820B. One PDU unit per equipment rack; input plug NEMA L6-20P.

12. Above ceiling support hardware
 a. Caddy
 b. Chatsworth
 c. PW Industries
 d. B-line

13. Inner duct
 a. Carlon
 b. ARNCO
 c. Endot

14. Labeling:
 a. Indelible labels
 b. Self-adhesive vinyl or vinyl-cloth wraparound tape markers, machine printed with alphanumer-
2.2 SYSTEM REQUIREMENTS

A. General: Provide all required outlets, cable, connectors, fiber, and copper / fiber translators to provide a complete integrated cable plant. Cable plan shall provide complete connectivity. Coordinate the features of materials and equipment so they form an integrated system.

B. Expansion Capability: Unless otherwise indicated, provide spare fibers and conductor pairs in cables, positions in patch panels, cross connects, and terminal strips, and space in backbone cable trays and wire ways to accommodate 20 percent future increase in active workstations.

2.3 MOUNTING ELEMENTS

A. Raceways and Boxes: Comply with Division 16 Section "Raceways and Boxes."

B. Backboards: 3/4-inch interior-grade, fire-resistant-treated plywood.

C. Distribution Racks: Freestanding modular-steel units designed for telecommunications terminal support and coordinated with dimensions of units to be supported.
 1. Approximate Module Dimensions: 84 inches high by 22 inches wide.

2.4 TWISTED-PAIR CABLES, CONNECTORS, AND TERMINAL EQUIPMENT

A. Listed as complying with Category 6 of EIA/TIA-568-B.

B. Conductors: Solid copper.

C. UTP Plenum Cable: Listed for use in air-handling spaces. Features are as specified above, except materials are modified as required for listing.

D. UTP Cable Connecting Hardware: Comply with EIA/TIA-568-B. Leviton QuickPort

E. Patch Panel: Modular panels housing multiple, numbered jack units with Leviton QuickPort at each jack for permanent termination of pair groups of installed cables.
 1. Number of Jacks per Field: One for each four-pair UTP cable.

F. Jacks and Jack Assemblies for UTP Cable: Modular, color-coded, RJ-45 receptacle units with Leviton QuickPort and which direct the patch cords down at a 45-degree angle. Use Leviton QuickPort for data service.

G. Workstation Outlets (Data and Telephone): Dual jack-connector assemblies mounted in single faceplate.
 1. Faceplate: Leviton QuickPort Single-Gang Wallplate with ID Windows
 2. Mounting: Flush, unless otherwise indicated.

2.5 FIBER-OPTIC CABLES, CONNECTORS, AND TERMINAL EQUIPMENT

A. Cables: Factory fabricated, jacketed, low loss, glass type, fiber optic, multimode, graded index, operating at 850 and 1300 nm.

 1. Backbone, Strands per Cable: 12, unless otherwise indicated.
 2. Dimensions: 62.5-micrometer core diameter, 125-micrometer cladding diameter.
 3. Maximum Attenuation: Minus 3.75 dB/km at 850 nm; minus 1.5 dB/km at 1300 nm.
 4. Minimum Modal Bandwidth: 160 MHz/km at 850 nm; 500 MHz/km at 1300 nm.
B. Plenum Cable: Listed for use in plenums.

C. Cable Connectors: Quick-connect, simplex- and duplex-type ST couplers with self-centering, axial alignment mechanisms. Insertion loss not more than 0.7 dB.

D. Patch Panel: Modular panels housing multiple-numbered duplex cable connectors.
 1. Permanent Connection: Permanently connect one end of each connector module to installed cable fiber.
 2. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to satisfy specified expansion criteria.

E. Patch Cords: Dual fiber cables in 36-inch lengths.
 1. Terminations: Two duplex connectors arranged to mate with patch-panel connectors, one at each end of each fiber in cord.

2.6 IDENTIFICATION PRODUCTS

A. Comply with Division 16 Section "Basic Electrical Materials and Methods" and the following:
 1. Cable Labels: Self-adhesive vinyl or vinyl-cloth wraparound tape markers, machine printed with alphanumeric cable designations.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine pathway elements intended for cable. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATION OF MEDIA

A. Backbone Cable for Data Service: Use fiber-optic cable for runs between equipment rooms and wiring closets and for runs between wiring closets.

B. Horizontal Cables for Data Service: Use UTP cable complying with Category 6 of EIA/TIA-568-B for runs between wiring closets and workstation outlets.

3.3 INSTALLATION

A. Wiring Method: Install wiring in raceway (inside walls and above inaccessible ceilings) and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where cable wiring method may be used. Use UL-listed plenum cable in environmental air spaces, including plenum ceilings.

B. Install cable using techniques, practices, and methods that are consistent with Category 6 rating of components and that ensure Category 6 performance of completed and linked signal paths, end to end. Install cable without damaging conductors, shield, or jacket.

C. Do not bend cable in handling or in installing to smaller radius than minimums recommended by manufacturer.
D. Pull cables without exceeding cable manufacturer’s recommended pulling tensions.
 1. Pull cables simultaneously if more than one is being installed in the same raceway.
 2. Use pulling compound or lubricant if necessary. Use compounds that will not damage conductor or insulation.
 3. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips that will not damage media or raceway.

E. Install cable above accessible ceiling parallel and perpendicular to surfaces or exposed structural members, and follow surface contours where possible when cable tray is not nearby. It is the intent for all wiring to be installed on the cable tray.

F. Secure and support cable at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.

G. Wiring within Wiring Closets and Enclosures: Provide adequate length of conductors. Train conductors to terminal points with no excess. Use lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.

H. Separation of Wires: Comply with EIA/TIA-569 rules for separating unshielded copper communication and data-processing equipment cables from potential EMI sources, including electrical power lines and equipment.

I. Make splices, taps, and terminations only at indicated outlets, terminals, and cross-connect and patch panels.

J. Punch downs: Shall be very tight, in the excess of ½” requirements.

K. Provide and install Innerduct rated appropriately for the installation location, verify with architect for plenum and riser rated areas.

L. Install, terminate, test, and document all fiber and copper backbone.

M. Install, terminate, test, and document all fiber and copper voice and data horizontal cable.

N. Provide and place all termination devices such as but not limited to: Modular patch panels, termination blocks, information outlets, phone jacks, fiber distribution panels and fiber splice modules.

O. Provide and place horizontal and vertical cable support devices such as but not limited to: Cable tray, flex tray, D-rings, J-hooks, Cable saddles, and all required mounting hardware, unless otherwise noted.

P. Provide and install approved fire-stopping systems in all communication pass-through spaces, conduit and cable tray wall and floor penetrations. Fire stop systems will be coordinated with General Contractor/Architect.

Q. Patch Panels (specifications apply for Data and Phone Racks)
 a. Ports in Patch panel: As needed + 15% future growth
 b. 48 Ports panels for Data and VoIP Phones/PoE Cameras.
 c. Cat 6, Leviton QuickPort
 d. Terminated on T568B.

R. Office Data/Phone terminations.
 a. Cat 6 Leviton QuickPort
 b. Faceplate color to match electrical wiring faceplates
 c. Faceplate to have space for labeling
 d. Data jacks: Cat 6.
 e. Terminated to T568B specifications.
 f. Phone Jack(s) should be located on the lower windows of the faceplate and data jacks on top.
3.4 GROUNDING

A. Comply with Division 16 Section "Grounding."

B. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

C. Bond shields and drain conductors to ground at only one point in each circuit.

D. Signal Ground Terminal: Locate in each equipment room and wiring closet. Isolate from power system and equipment grounding.

3.5 INSTALLATION IN EQUIPMENT ROOMS AND WIRING CLOSETS

A. Mount patch panels, terminal strips, and other connecting hardware on backboards and freestanding racks.

B. Group connecting hardware for cables into separate logical fields.

C. Use patch panels to terminate cables entering the space, unless otherwise indicated.

3.6 IDENTIFICATION

A. System: Use a unique numeric for each cable, and label cable and jacks, connectors, and terminals to which it connects with the same designation. The location will be provided based on the seat numeric location provided by architect.

B. Workstation: Label cables within outlet boxes.

C. Distribution Racks and Frames: Label each unit and field within that unit.

D. Within Connector Fields, in Wiring Closets and Equipment Rooms: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both communication and data-processing equipment, use a different color for jacks and plugs of each service.

E. Cables, General: Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.

F. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.

G. Cable Schedule: Post in prominent location in each wiring closet and equipment room. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Provide electronic copy of final comprehensive schedules for Project, in software and format selected by Owner.

3.7 FIELD QUALITY CONTROL

A. Testing: On installation of cable and connectors, demonstrate product capability and compliance with requirements. Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.

2. Fiber-Optic Cable Procedures: Perform each visual and mechanical inspection and electrical test, including optional procedures, stated in NETA ATS, Section 7.25. Certify compliance with test parameters and manufacturer's written recommendations. Test optical performance with optical power meter capable of generating light at all appropriate wavelengths.

B. Correct malfunctioning units at Project site, where possible, and retest to demonstrate compliance; otherwise, remove and replace with new units and retest.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain systems.

1. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, troubleshooting, servicing, and maintaining equipment and schedules.
2. Train designated personnel in cable-plant management operations, including changing signal pathways for different workstations, rerouting signals in failed cables, and extending wiring to establish new workstation outlets.
3. Review data in maintenance manuals. Refer to Division 1 Section "Operation and Maintenance Data."
4. Schedule training with Owner, through Architect, with at least seven days' advance notice.

END OF SECTION 269750