Contents

Acknowledgments xi
Editors xiii
Contributors xv

CHAPTER ONE
Commonly Used Building Materials 1
Richard Kaczkowski

1.1 Introduction 2
1.2 Structural Materials 2
 1.2.1 Steel 2
 1.2.2 Concrete 7
 1.2.3 Masonry 10
 1.2.4 Wood 12
1.3 Nonstructural Materials 15
 1.3.1 Insulation Materials 15
 1.3.2 Roofing Materials 17
 1.3.3 Wall Cladding Materials 24
1.4 Glossary 28

CHAPTER TWO
Basic Engineering Concepts Important to Building Structures 33
John Roller

2.1 Introduction 34
2.2 Building Classifications 34
2.3 Building Codes 35
2.4 Building Materials 36
2.5 Structural Members and Components 36
2.6 Building Loads and Load Combinations 37
CHAPTER THREE
Building Information Modeling
Karie Johnson, Patrick O’Connor, and Brian Clifford

3.1 What Is BIM? 50
3.2 From Paper and Pencil to Computer-Aided Design to Building Information Modeling 53
3.3 BIM and Practice of Architecture 55
3.4 Data Exchange in the BIM Environment: The Cost of Inadequate Interoperability 57
3.5 3D, 4D, 5D BIM, and Beyond 58
3.6 Lonely BIM versus Social BIM 60
3.7 Benefits of BIM 61
3.8 Developing a BIM Execution Plan 62
3.9 BIM Procurement: An Owner’s Perspective 64
3.10 Contracting for BIM: The Standard Forms 68
3.11 Developing BIM Scopes of Work 75
3.12 Risk Allocation for Social BIM 76
3.13 Intellectual Property Interests in the BIM Model 79
3.14 Glossary 80

CHAPTER FOUR
Plan Reading
Eric Anderson

4.1 Introduction 82
 4.1.1 What Are Construction Plans? 82
 4.1.2 Who Reads Construction Plans? 82
4.2 Standards for Preparing and Reading Construction Plans 83
4.3 Basic Drawing Conventions 85
 4.3.1 Plan Set: Sheet Size 85
 4.3.2 Plan Set: Organization by Discipline 85
 4.3.3 Plan Set: Sheet Organization 86
 4.3.4 Plan Set: Sheet Layout 87
 4.3.5 Graphic Conventions: General 90
 4.3.6 Standard Symbols 91
4.4 Reading a Plan Set: Generally 94
 4.4.1 Step One: Identify Authoritative Sources to Review the Drawings 94
 4.4.2 Step Two: Does the Sheet Layout Use the Uniform Document System Standard? 95
 4.4.3 Step Three: Check Sheet Title Block for Relevant Identifying Data 96
4.5 Reading a Plan Set: Public Work or Industrial Facility

4.5.1 Step One: Identify Authoritative Sources for Plan Review 101
4.5.2 Step Two: Confirm Use of Uniform Document System Standards 101
4.5.3 Step Three: Check Sheet Title Block for Relevant Identifying Data 102
4.5.4 Step Four: Review Graphic Symbol Legends 102
4.5.5 Step Five: Does the Sheet ID System Work? 104
4.5.6 Step Six: Use of Reference Symbols 104
4.5.7 Step Seven: Re-read the Documents 104
4.5.8 Step Eight: Assessment 105

4.6 Summary

105

4.7 Glossary

105

4.8 Bibliography

106

CHAPTER FIVE

Life Safety Systems

Stephanie Nussbaum, Kylie Schalz, John Boyer, James Feuerborn, Robert Rodin, and Amanda Schermer Macvey

5.1 Introduction 108

5.2 Building Codes and Standards 109

5.3 Types of Life Safety Systems and Assemblies 110

5.3.1 Passive Life Safety Systems 110

5.3.2 Active Life Safety Systems 110

5.4 Passive System Design 111

5.4.1 Building Use and Occupancy 111

5.4.2 Egress Path Design 112

5.4.3 Fire Resistive Construction (Fireproofing) 117

5.5 Active System Design 123

5.5.1 Fire Alarm Systems 123

5.5.2 Elevator Systems 126

5.5.3 HVAC Systems 126

5.5.4 Smoke Control and Smoke Management Systems 129

5.5.5 Fire Suppression Systems 133

5.5.6 Electrical Systems 136

5.5.7 Commissioning 141

5.6 Common Problems in Life Safety Systems 141

5.6.1 Resolving Conflicts among Codes 141

5.6.2 Determining Applicable Codes 142

5.6.3 Coordination among Trades 143

5.6.4 Breaches in Fire Resistive Construction 144

5.6.5 Maintenance of Systems and Assemblies 144

5.6.6 Different Interpretation of Code Requirements

by Project Participants 145

5.6.7 Different Interpretation of Code Requirements by AHJ 145

5.7 Glossary 146
CHAPTER SIX
Site Development

Daniel R. DeCesaris, P.E.; William M. Lavery, Jr.; Sara Paquin; Joseph A. Casali, PE; and Jayne Czik

6.1 Introduction to Site Development 150
6.2 Zoning 151
 6.2.1 Legal, Nonconforming, and Preexisting Lots of Record 152
 6.2.2 Requesting Relief 153
6.3 Existing Site Conditions and Site Constraints 156
 6.3.1 Wetlands 156
 6.3.2 Subsurface Site Investigations 158
 6.3.3 Groundwater Monitoring 162
 6.3.4 Conclusion 163
6.4 Utilities 163
 6.4.1 Private Sewer System: On-site Wastewater Treatment Systems 163
 6.4.2 Public Sewer System 163
 6.4.3 Water 166
 6.4.4 Natural Gas 169
 6.4.5 Electrical 169
 6.4.6 Dig Safe System, Inc. 170
6.5 Site Design 170
 6.5.1 Building Location 171
 6.5.2 Building Finished Floor Elevation 171
 6.5.3 Parking 172
 6.5.4 Loading Areas and Docks 174
 6.5.5 Pedestrian/Vehicular Interface 174
 6.5.6 Signage 175
 6.5.7 Landscaping 176
 6.5.8 Miscellaneous Site Elements 176
6.6 Stormwater Management 176
 6.6.1 Site Grading 178
 6.6.2 Existing Conditions versus Proposed Conditions 179
 6.6.3 Volume of Runoff versus Peak Runoff Rates 179
 6.6.4 Best Management Practices 180
 6.6.5 Attenuation 181
 6.6.6 Water Quality 182
 6.6.7 Groundwater Recharge 182
 6.6.8 Technical Release–55 182
 6.6.9 Technical Release–20 183
6.7 Permitting 183
 6.7.1 Planning Commission 183
 6.7.2 Developmental Plan Review 183
 6.7.3 State Government Agencies 183
 6.7.4 Conservation Commission 184
 6.7.5 Building Review Commission 184
6.8 Fire Safety and Regulations 184
 6.8.1 Site Access/Fire Lanes 184
 6.8.2 Hydrant Locations 185
 6.8.3 Fire Department Connections 185
 6.8.4 Turnaround 186
6.9 Traffic Impacts 186
 6.9.1 Photographs 187
CHAPTER SEVEN
Sustainable Design and Building
Leah A. Rochwarg and William R. Braz

7.1 Introduction to Sustainable Building
7.1.1 Scope of Sustainable Design and Building
7.1.2 Common Misperceptions

7.2 Governing Law and Model Contracts
7.2.1 Recent Developments in Standard Contracts

7.3 Sustainability Guidelines for the Designer and Builder
7.3.1 U.S. Green Building Council
7.3.2 LEED: Uptake and Growth in the Design and Construction Industry
7.3.3 LEED Rating System Structure
7.3.4 LEED Credit Categories
7.3.5 The LEED Certification Process
7.3.6 Project Registration
7.3.7 Project Certification
7.3.8 Life Cycle Considerations
7.3.9 LEED Resources and Tools
7.3.10 Current Version—LEED v4
7.3.11 LEED Certification Levels
7.3.12 Updates to the LEED Rating System
7.3.13 Beyond LEED: Other Green Building Rating Systems

7.4 Risk Management and Sustainable Development
7.4.1 Current Risks of Sustainable Building
7.4.2 Emerging Risks of Sustainable Building
7.4.3 Alignment of Parties
7.4.4 Considerations in Drafting Design, Construction, and Construction Management Contracts

7.5 Conclusion
7.6 Glossary

CHAPTER EIGHT
Furniture, Fixtures, and Equipment
Mark Dalton, Daniel Brenner, and Erin Krejci

8.1 Introduction to Furniture, Fixtures, and Equipment
8.1.1 What Is FF&E?
8.1.2 What Is Not FF&E
8.1.3 The Evolving Nature of FF&E
8.1.4 The FF&E Team

8.2 The FF&E Process
Chapter Nine

Modular Construction

Zach Jones and Martin Anderson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>250</td>
</tr>
<tr>
<td>9.1.1 Brief Historical Overview</td>
<td>251</td>
</tr>
<tr>
<td>9.1.2 Definitions</td>
<td>251</td>
</tr>
<tr>
<td>9.2 Modular Buildings: Permanent versus Relocatable</td>
<td>252</td>
</tr>
<tr>
<td>9.2.1 Permanent Modular Buildings</td>
<td>253</td>
</tr>
<tr>
<td>9.2.2 Relocatable (Temporary) Modular Buildings</td>
<td>256</td>
</tr>
<tr>
<td>9.2.3 Modular Building Process</td>
<td>258</td>
</tr>
<tr>
<td>9.3 Heavy Modular Construction</td>
<td>264</td>
</tr>
<tr>
<td>9.3.1 Industrial and Energy Projects</td>
<td>264</td>
</tr>
<tr>
<td>9.3.2 Accelerated Bridge Construction</td>
<td>264</td>
</tr>
<tr>
<td>9.3.3 Other Construction</td>
<td>265</td>
</tr>
<tr>
<td>9.4 Other Considerations</td>
<td>266</td>
</tr>
<tr>
<td>9.4.1 Enabling Technologies</td>
<td>266</td>
</tr>
<tr>
<td>9.4.2 Licensing, Inspection, and Organized Labor</td>
<td>266</td>
</tr>
<tr>
<td>9.4.3 Environmental</td>
<td>269</td>
</tr>
<tr>
<td>9.4.4 Financial</td>
<td>269</td>
</tr>
<tr>
<td>9.4.5 Legal</td>
<td>269</td>
</tr>
<tr>
<td>9.5 Selected Recent U.S. Modular Projects</td>
<td>271</td>
</tr>
<tr>
<td>9.5.1 Medical Education and Training Campus Dorms</td>
<td>271</td>
</tr>
<tr>
<td>at Fort Sam Houston</td>
<td>271</td>
</tr>
<tr>
<td>9.5.2 University of Virginia Medical Center Annex</td>
<td>271</td>
</tr>
<tr>
<td>9.5.3 The Modules at Templetown</td>
<td>272</td>
</tr>
<tr>
<td>9.5.4 Massachusetts “Fast 14” Bridge Replacement</td>
<td>272</td>
</tr>
<tr>
<td>9.5.5 Carbon Capture Storage</td>
<td>273</td>
</tr>
<tr>
<td>9.6 Glossary</td>
<td>273</td>
</tr>
</tbody>
</table>

Chapter Ten

Interior Finishes: Aspects and Failures

Patrick A. Drewry and Timothy J. Schap

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>276</td>
</tr>
<tr>
<td>10.2 Definition</td>
<td>276</td>
</tr>
<tr>
<td>10.3 History</td>
<td>276</td>
</tr>
<tr>
<td>10.4 Common Types of Interior Finish Materials</td>
<td>277</td>
</tr>
<tr>
<td>10.4.1 Glass</td>
<td>277</td>
</tr>
<tr>
<td>10.4.2 Gypsum Board</td>
<td>278</td>
</tr>
<tr>
<td>10.4.3 Wood</td>
<td>279</td>
</tr>
<tr>
<td>10.4.4 Concrete</td>
<td>280</td>
</tr>
<tr>
<td>10.4.5 Masonry: Brick</td>
<td>280</td>
</tr>
</tbody>
</table>
10.4.6 Masonry: Stone 282
10.4.7 Carpet 283
10.4.8 Coatings 283

10.5 Characteristics of Interior Finishes 283
10.5.1 Psychology 284
10.5.2 Composition 284
10.5.3 Maintainability 284
10.5.4 Safety 284
10.5.5 Fire Resistance 285
10.5.6 Acoustics 286

10.6 Common Failures 288
10.6.1 Indoor Air Quality 288
10.6.2 Moisture 289
10.6.3 Energy Efficiency 292

10.7 Summary 294
10.8 Glossary 295
10.9 Bibliography 296

CHAPTER ELEVEN
Alternative Energy Projects 297

Peter C. Halls, Larry Lacher, and Bernard (B.J.) Nodzon, Jr.

11.1 Introduction 298

11.2 Wind-Powered Electrical Generation 298
11.2.1 Introduction to Wind 298
11.2.2 Project Overview 299
11.2.3 Turbines 302
11.2.4 Towers 303
11.2.5 Foundations 305
11.2.6 Roads and Crane Pads 307
11.2.7 Collection System 308
11.2.8 SCADA 312
11.2.9 Meteorological Equipment 314
11.2.10 Substation 315
11.2.11 Transmission Line 315

11.3 Solar-Powered Electrical Generation 319
11.3.1 Introduction to Solar 319
11.3.2 Project Overview 320
11.3.3 Panels 320
11.3.4 Inverters 321
11.3.5 Mounting Systems and Trackers 322
11.3.6 Foundations 323
11.3.7 Collection System, SCADA, Substation, and Transmission Line 324
11.3.8 CSP Plants 324

11.4 Biomass-Based Electrical Generation 327
11.4.1 Introduction to Biomass 327
11.4.2 Project Overview 327
11.4.3 Biomass Collection, Storage, and Handling Equipment 328
11.4.4 Building Shell 329
11.4.5 Boiler 329
11.4.6 Steam Turbine and Generator 331
11.4.7 Steam Condensation System 332
11.4.8 System Controls 333
11.4.9 Pollution Controls 333

11.5 Biofuel Production 334
11.5.1 Introduction to Biofuels 334
11.5.2 Project Overview 334
11.5.3 Input Supply Collection, Handling, and Storage 334
11.5.4 Production Equipment and Systems 335

11.6 Glossary 336

Table of Cases 341
Index 000